
Chapter 3

Optical Testing

This chapter discusses four new techniques developed for testing different optical 

parameters. Section 3.1 describes a technique for testing collimation using optically 

active medium. The remaining sections deal with testing of refractive index of thin 

convex lenses, linear dichroic sheet polarizers and beamsplitters using Michelson 

Interferometer as basic setup.

3.1 Collimation testing utilizing optically active 
materials

Test for collimation is very important in optical experiments. Many methods for 

testing the collimation of a laser beam have been developed. These methods include 
techniques utilizing interferometry and self imaging^H83] jn the interferometric 

techniques, the incident wavefront is split into two and they are made to interfere. 

The space where interference occurs will contain some fringes. These fringes con­

tain the information about the collimation of the interfering beams. An analysis of 
these fringes yields required information about collimation^-^]. In self-imaging 

techniques, a grating is placed in the path of the test beam, which in turn produces 

its self-images at several planes (self-imaging planes) perpendicular to the direction 

of propagation. By placing a grating identical to the original one at self-imaging 

planes, moire fringes can be observed. The variation in the self image fringes gives
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the amount decollimation/colhmationt^H84] jn the above mentioned techniques 

a referencing or a visual inspection and analysis of the images are necessary to deter­

mine collimation.

Recently a method to image 3D wavefronts was developed utilizing a birefringent 
plate^. The output intensity caused by a plane polarized wavefront passing through 

a birefringent plate placed between a pair of crossed polarizers depends upon the dis­

tance each portion of the wavefront traveled through the birefringent medium because 

of the change in rotation of the plane of polarization. Therefore wavefronts traveling 

more distance will produce more output intensity and vice-versa The same principle 

applies for optically active materials. The property of the optically active medium 

to rotate the plane of polarization of the incident plane polarized light along with 

the change in the distance traveled inside the active medium by different wavefronts 

(diverging, converging or collimated) is utilized to determine the collimation of the 

wavefront. This method does not require fringe referencing or analysis, is free from 

stringent optical requirements of interferometric methods and yields accurate results.

3.1.1 Experimental setup and Theory

The collimation testing is realized utilizing the optical setup shown in Fig. 3.1. Light 

from a He-Ne laser source (S) (632 8nm, 30mW) is expanded using a spatial filtering 

assembly (SF) consisting of a microscopic objective (MO) and a pin hole placed at the 

focal point of the objective. The diverging beam from the pin hole falls on the colli­

mating lens (CL) (lens under test) The collimating lens is mounted on a translation 

stage having least count of 0.01 mm. The collimating lens can be moved along the op­

tic axis, making it possible to introduce a known amount of deeollimation/defocusing. 

The beam after passing through a stop (D) which reduces the beam size to 20 mm, 

falls on the polarizer (P). The polarized beam then passes through the optically ac­

tive medium (OAM) (quartz rotators of 22.5° and 45° rotations at 632.8nm), and an 

analyzer (A), which is a polarizer with its plane of polarization perpendicular to that 

of P. The output from the analyzer is gathered by a concentrating lens (LI) and is 

measured using a photodiode (PD) and an amplifier. The amplification unit (AU)
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Figure 3.1: Experimental setup

consists of a current-voltage amplifier and a differential amplifier. The output from 

the amplifier was measured using a sensitive digital meter (DM). The OAM is an 

optically active medium which normally rotates the plane of polarization of linearly 
polarized light passing through it®. Linearly polarized light can be considered to be 

composed of two circularly polarized waves, one right circularly polarized and other 

left circularly polarized. The linearly polarized light entering the optically active 

medium is decomposed into its constituents, which travel through the medium with 

different velocities (because of different refractive indices for left and right circular 

polarizations). This will result in a phase difference between the two waves at the 

exit face of the optically active medium. After coming out of the medium, these 

waves will recombine to form a linearly polarized beam with its plane of polarization 

rotated, making the plane of polarization of the linearly polarized light no longer 

perpendicular to the plane of polarization of the analyzer (Fig. 3.2).

The amount of rotation of the plane of polarization for a normal incident beam is 
given by®

p = pL (3.1)

where p is specific rotation (rotation of plane of polarization caused by unit length of 

the medium) and L is the thickness of the crystal respectively. The specific rotation 
is given by®

p = 7r (n; — nr)/X (3.2)

where ni and nr are the refractive indices for left and right circularly polarized waves 

respectively and A is the vacuum wavelength of the incident light. Depending on the 

values of n( and nr the output will be d-rotatory or /-rotatory.
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Figure 3.2: Rotation of plane of polarization caused by an optically active medium 
of length L to light rays incident at different angles

Quartz crystal is optically active and rotates the plane of polarization of plane po­

larized light when it is incident along its optic axis. Along that direction, double 

refraction or birefringence does not occur, d-rotatory quartz crystals producing 22.5° 

and 45° rotations (for normal incidence) at 632.8 nm having aperture sizes of 25 mm 

are used in the experiment.

From Eqn. (3.1) it can be seen that the rotation of the plane of polarization caused by 

an optically active medium having a particular specific rotation depends only upon 

the distance traveled by the light wave inside the medium (Fig. 3.2). For a diverging 

(Fig. 3.3a) or a converging (Fig. 3.3c) beam, the distances traveled are greater than 

that traveled by a collimated beam (Fig. 3.3b). The distance traveled by a portion 

of the wavefront inside the medium depends upon the incident angle it makes with
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(a) Diverging wavefront (b) Collimated wavefront (c) Converging wavefront 

Figure 3.3. Propagation of different wavefronts through optically active medium

the optically active medium (Fig. 3 2). It can be expressed as

d (cos(02)/

Where d is the distance traveled inside the medium and d2 is the angle of refraction 

which depends upon the incident angle Bx and refractive index of the medium. Then 

the rotation of plane of polarization can be written as,

<f> = pd (3.4)

From Eqn. (3.4) it can be seen that converging or a diverging beam gives rise to 

higher output intensities from the analyzer due to larger rotations of the plane of 

polarization of the incident beam when passed through an optically active medium. 

This effect is utilized to find the eollimation of the laser beam. When the beam 

is exactly collimated, it travels minimum distance inside the medium (Fig. 3.3b). 

Hence, when the beam is collimated the output intensity from the analyzer will be a 

minimum. Therefore by moving the collimating lens along its optic axis and measuring 

the output intensity the eollimation position can be found. For the lens placed at any 

other position than the eollimation position, the output will be greater. The output 

intensity from the analyzer can be calculated using Malu’s law. Fig. 3.4 shows the 

variation in output intensity with the incident angle, which in turn depends upon the 

lens position. A quartz crystal giving rise to 45° rotation is considered (refractive 

index 1 6). From the figure it can be seen that only at eollimation position the 

intensity is a minimum.
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Figure 3.4: Change in output intensity with incident at the optically active medium

3.1.2 Results and Discussion

Lenses having various focal lengths are used to collimate the incident beam using the 

experimental setup shown in Fig 3.1. The lenses are translated along the optic axis 

and the corresponding output intensities are measured using the photodiode. For 

all the lenses used, the output intensity is found to decrease, reach a minimum and 

then increase as the lens is moved from inside the focus to outside the focus (this 

minimum is used m the differential amplifier stage). Fig. 3.5 shows the variation in 

the output intensity with the position of the lens from the pinhole (x) for a lens of 

focal length 50 mm It can be seen that the output intensity decreases as the lens 

is moved towards its focus and then increases as it is moved out side the focus. Fig 

3.5 also shows a least square fit to the experimental data Figures 3 6 to 3.10 show 

the change in output intensities for lenses of focal length 100 mm, 150 mm, 200 mm, 

250 mm and 300 mm respectively. It is evident from these figures that the change in 

output intensity with position for long focal length lenses are less compared to short 

focal length lenses. This can be attributed to the fact that the beam divergence for 

same translation distance is less for long focal length lenses.
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lens position x (mm)

Figure 3.6: Change m normalized measured intensity with lens position for a 100 mm 
focal length lens ( A. Experimental, — : least square fit)

Figure 3.5: Change in normalized measured intensity with lens position for a 50 mm 
focal length lens ( A' Experimental, — : least square fit)
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Figure 3 7: Change m normalized measured intensity with lens position for a 150 mm 
focal length lens ( A: Experimental, — : least square fit)

Figure 3.8 Change in normalized measured intensity with lens position for a 200 mm 
focal length lens ( A: Experimental, — . least square fit)
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Figure 3.9: Change in normalized measured intensity with lens position for a 250 mm 
focal length lens ( A: Experimental, — : least square fit)

The error in finding the collimation position or sensitivity (A/) of the method is 

determined by moving the lens from on either side of the position where the output 

intensity is a minimum (i.e. at collimation), till the output intensity just begins 

to increase It is found that the sensitivity decreases with focal length. This is 

understandable from the fact that long focal length lenses require longer optically 

active mediums to produce the same amount of rotation. The change in A/ with focal 

length is given in Table 3.1. These values are the average of several measurements 

made. The change in (A///)% is also given in the table. The A/ obtained are 
comparable with those using other methods^ especially for low focal length 

lenses

Optically active mediums with larger rotations might give much higher sensitivity 

compared to the present one. The optically active rotator should be selected in 

such a way so that the rotation at the collimation position should always be less 

than when there is decollimation Another criterion should be the refractive index 

of the medium. In higher refractive index mediums, angle of refraction is more and 

hence sensitivity will be less. The sensitivity of the method will be higher if the 

difference of intensities between minimum rotation (normal incidence/collimation) 

position and other positions (converging/divergence) are large. AJ/J0 = Ig Inormal >
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Figure 3.10: Change in normalized measured intensity with lens position for a 300 mm 
focal length lens ( A: Experimental, — : least square fit)

Table 3 1. Sensitivity of the method

Focal length 
(mm)

Quartz crystal of 22.5° rotation Quartz crystal of 45° rotation
A/ (mm) A/// % A/ (mm) A/// %

50 0.04 0.080 0.02 0.040

100 0.09 0 090 0.06 0.060

150 0.16 0.107 0.11 0 073

200 0.22 o no 0.20 0.100

250 0 31 0.124 0.25 0.100

300 0.36 0.120 0.31 0.103

Ie is the output intensity for a particular angle of incidence and Inormai is the output 

intensity at collimation position For this, the crystal thickness should be optimum 

Fig. 3.11 shows the variation in AJ/J0 for different incident angles (at sodium light 

vacuum wavelength, =21.7°). It can be seen that the maximum difference in the 

intensities occur for a thickness of 2.7mm. The experiment is also performed using
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Figure 3.11: Variation of difference in intensity with medium thickness for different 
incident angles

photorefraetive Bi^TiC^o, which is not birefringent, as the optically active medium. 

It has a specific rotation of 6.3°/mm at 632.8 nm. Crystal having a dimension of 

lOx 10x2.5 mm3, with the shorter dimension as the propagation direction is used. Due 

to the short propagation length as well as its higher refractive index, the sensitivity 

using BTO is found to be less. Sugar solutions having various concentrations are 

also used as optically active medium, but the results obtained are poor because high 

concentrations are necessary to obtain the desired effective rotations which in turn 

drastically reduces the transmission of the light beam through the medium.

3.1.3 Conclusion

It is demonstrated that the optically active materials along with a pair of crossed 

polarizers can be used for testing the collimation of a laser beam accurately. The 

method is able to provide a quantitative measurement of collimation. The sensitivity 

can be improved further upon by using higher optical activity medium. The method 

can be extended to study the aberrations in lens systems.
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3.2 Study of refractive index of thin biconvex lenses 
using Michelson Interferometer

One of the most important factors that determine the property of optical glasses is 

their refractive indices and the variation of refractive index with wavelength or the 
dispersion^’ ^. The knowledge of the refractive index of a particular glass material 

can lead to other information like its reflectance and transmittance. There are many 

methods to find the refractive index of a lens. The methods to determine refractive 

index of lenses include liquid immersion method, where a lens is immersed in a liquid 
whose refractive index is varied until the lens is optically visible^. Some of the 

methods depends upon the measurement of the focal length and radius of curvature 

of the lens by immersing the lens in liquids of different refractive indices and using 
Murty’s shearing interferometer [87]-[91]_ Measurement technique using gratings has 

also been reported^]. Most of these methods use immersion of the test lens in a 

liquid solution making it a difficult to align and implement. In The methods using 

Murty’s wedge plate a particular fringe pattern represents the collimation position 

(typically a horizontal or vertical) But to determine exactly whether the fringes are 
horizontal or vertical is little difficult (see Fig. 3 in Refill).

Here a method to determine the refractive index of lenses and their dispersion charac­

teristics is developed using Michelson interferometer. The Michelson Interferometer 

is used to find the parallelism of the incident wave front. The refractive index of thin 

biconvex lens is determined by measuring the focal length and radius of curvature of 

the lenses. The test lens itself is used as the collimating lens to determine the focal 
length f93]_ r]’he lens maker’s formula with thm lens approximation yields accurate 

refractive index values. Three laser wavelengths are used to study the dispersion of 

the lens material The dispersion parameters of the material of the lens are found by 
fitting the experimental data using Sellmeier dispersion formula^. The dispersion 

curve is found to match closely with literature values^.
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3.2.1 Experimental setup and theory

When a Michelson interferometer shown in Fig 3.12 is illuminated by a point source, 

real non-localised interference fringes are formed in a Michelson interferometer. Fig. 
3.13a shows the schematic of point source illumination of two parallel surfaces^ 

(mirror M2 and image of mirror Ml i e. Ml’). The rays after reflection from the 

two surfaces will interfere at the point of observation P. The rays can be assumed to 

be originating from the point sources SI and S2 respectively as shown m Fig. 3.13a. 

These real non-localized fringes can be seen on a screen placed normal to the beam 

propagation. The path difference between the rays reaching P is given by

Ax ss 2 d cos 0 (3.5)

where d is given by

d = h — h (3.6)

where I2 and h are the respective distances of mirrors M2 and Ml from the beam­

splitter. 6 is the angle made by the incident rays with the normal to the parallel 

surfaces. Real fringes of equal inclination are formed at the screen. Now consider 

Fig. 3.13b. Here the path difference between the two rays is zero (I2 — h = d = 0). 

This will produce two diverging wavefronts propagating collinearly and therefore not 

interfering at any point m space. A screen placed normal to the propagation of such 

two wavefronts, will not contain any fringes. Fig. 3.13c shows a well collimated beam 

reflected from mirrors Ml and M2, and propagating collinearly. Even though there is 

a finite path difference between the two beams reflected from M2 and Ml respectively 

(l2 — h — d 7^ 0), they will not interfere at any point in space because the incident 

beam is well collimated. So here also no real fringes will be formed at the detector 

plane. This property of the Michelson interferometer is utilized to find the refractive 

index of convex lenses.

3.2.2 Focal length measurement

The experimental setup to measure the refractive index of thin biconvex lenses is 

shown in Figures 3.12 and 3 14. The beam from a laser source is expanded using a
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Figure 3,12: Setup for finding the focal length of a convex lens
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spatial filtering assembly consisting of a microscopic objective and a pin hole. Three 

He-Ne laser sources having different wavelengths are used to determine the dispersion 

curve of the lens. The sources used are a 594 1 nm (yellow, 2 mW), 611 nm (orange, 

2 mW) and a 632 nm (red, 10 mW). The expanded laser beam passes through the 

test lens (collimating lens), mounted on a lateral translation stage having a resolution 

of 0.01 mm. The beam is reduced in size using a stop just after the lens, to minimize 

spherical aberration. This beam is split into two by a 50:50 beamsplitter. The beams 

are reflected back by Mirrors Ml and M2. After reflections from mirrors Ml and M2 

they are made to interfere at the screen. The fringe patterns are recorded on a PC 

using a CCD camera and frame grabber card.

Finite path length difference is kept between the two beams This condition is neces­

sary so that there will always be formation of real fringes other than when the beams 

are perfectly collimated. The focal length of the test lens is measured by translating 

the lens along its optic axis using the translation stage. When the lens is moved along 

its optic axis towards the focus, the wavefront changes from diverging to collimated 

with the lens position Real circular fringes will be formed on the screen at every 

lens position (x) along the axis. These circular fringes change with the distance from 

the pin hole (x). The number of fringes decreases as the lens is moved towards the 

collimation position. When the beam is exactly collimated (x = /), the field of view 

becomes free from any fringes as there is no interference. Again after the collimation 

position (outside the focus), the fringes start appearing as the wavefront is converg­

ing The position where there is no real fringe is observed is the focal length of the 

lens.

3.2.3 Radius of curvature measurement

The schematic of the experimental setup to measure the radius of curvature is shown 

in Fig. 3.14 where one of the mirrors in Michelson Interferometer setup shown in 

Fig. 3 12 is replaced with the test lens. A well corrected lens is used to collimate 

the diverging beam from the pin hole The collimation is characterized by the lack 

of any real fringes. Along one of the arms, another good lens having a long radius of
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Figure 3 14: Setup for finding the radius of curvature of a convex lens
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curvature was used to focus the beam on to the lens under test. The test lens was 

mounted on a translation stage and was moved along its optic axis Here also real 

circular fringes could be observed on the screen. The test lens is moved away from 

the focusing lens, in order to focus the light beam on the center of curvature of the 

front surface of the lens. At this position, the beam will become well collimated and 

the real fringes will disappear from the screen. This position is noted (yi). The test 

lens is moved further away from the focusing lens and the circular fringes will appear 

again. The test lens is then moved to a position so that it coincides with the focus 

of the focusing lens. Here also the reflected beam from the front surface of the test 

lens will be collimated by the focusing lens and the real fringes will disappear from 

the screen. This position is also noted (y2). The radius of curvature is given by the 

difference between these two positions and is

R = V2~yi (3.7)

The radius of curvature of the other surface is also found using the same method.

3.2.4 Refractive index calculation

The refractive index n of the lens can be found using the lens maker’s formula con­

sidering thin lens approximation. It is given by

n ■ 1 +
Ri R'i (3.8)

f(R2 - Hi)

where Ri and R2 are the radius of curvature of the two surfaces of the lens and / is 

its measured focal length Here R2 is negative from the sign convention.

3.2.5 Error Analysis

The error in measurement of the refractive index dn depends upon the error dR in 

radius of curvature and the error df in focal length measurement. The error can be 

determined by differentiating Eqn. (3.4) partially with respect to R and /.

dn = ±
dR_R^

2/ 2 p
(3.9)
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Substituting for E from Eqn. (3.8), one can re-write Eqn (3 9) as

~dR (n - 1)
dn = ±

2/ 2/
'df (3 10)

For example, if /=40Q mm, df = 0.14 mm and d,R = 0.18 mm (all are experimental 

values), then the predicted error m measurement of refractive index is dn — ±0 0002

3.2.6 Results and discussion

To measure the refractive index and to study dispersion m lenses, three laser sources 

having wavelengths 632 8nm (red), 611nm (yellow) and 594 Inm (orange) respectively 

are used as sources in the setups shown m Figures 3.12 and 3.14. First the focal lengths 

of the lenses are measured using the setup shown in Fig 3 12. Biconvex lenses of 

various focal lengths made up of BK7 glass are used in the experiment. The path 

length difference — h is kept at 5 cm. The lenses are mounted on the translation 

stage and the position where the real fringes disappear is determined. This gives 

the focal length of the lenses The obtained fringe patterns for a lens of focal length 

200 mm is shown in Fig 3.15 using 632.8 nm source. The figure shows the noise 

removed and contrast enhanced image. It can be seen that there is no fringe m the 

field of view when the beam is exactly collimated

(a) x=98mm (a) x=at focus (a) x= 102mm

Figure 3 15. Change in the interference pattern with lens position x for 100mm focal 
length lens using A = 632.8 nm

The fringe system for a lens of 300 mm is shown in Fig. 3.16 (A = 632 8 nm) The 

error in determining the collimation position (A/) is found by disturbing the lens 

from the collimation position, through a minimum distance of translation over which 

the collimation (lack of real fringes) is observable
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(a) x=198mm (b) x=at focus (c) x=202mm

Figure 3.16: Change in the interference pattern with lens position x for 200mm focal 
length lens A = 632.8 nm

The obtained focal length values (average of several measurements) and the errors 

are given in Tables 3.2, 3.3 and 3.4 along with the error in measurement for different 

laser wavelengths. It can be seen that the error is more for long focal length lenses. 

This can be understood from the fact that the change in the wavefront is small for a 

long focal length lens than for a short focal length lens. The experiment is repeated 

using all the sources several times and the average of the focal length is used for the 

refractive index calculations.

The radius of curvatures are measured using the experimental setup shown in Fig. 

3 14. A 500 mm focal length lens is used as the focusing lens. The difference in 

positions where there is a lack of real fringes yields the radius of curvature. The 

change in fringe pattern with distance of the test lens from the focusing lens (y) for a 

200 mm lens is shown in Fig. 3.17. Radius of curvatures was measured using all the

Table 3.2: Measured focal length and error using 594.1 nm laser

Focal length in 
mm at 587.6nm 

light (manufacturer)

F
(mm)

(measured)

A/
(mm)

/
(mm)

(theoretical)

Deviation
(mm)

% Error

200 200.14 0.04 200.10 0.04 0.02

300 300.09 0.08 300.16 0.07 0.02

400 400 07 0.12 400.21 0.14 0.03
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Table 3.3. Measured focal length and error using 611 nm laser

Focal length in 
mm at 587.6nm 

light (manufacturer)

F
(mm)

(measured)

A/
(mm)

/
(mm)

(theoretical)

Deviation
(mm)

% Error

200 200.42 0.05 200.36 0.06 0.03

300 300.55 0.09 300.54 0.01 0.01

400 400 54 0.12 400.72 0.18 0.05

Table 3.4: Measured focal length and error using 632.8 nm laser

Focal length in 
mm at 587 6nm 

light (manufacturer)

F
(mm)

(measured)

A/
(mm)

/
(mm)

(theoretical)

Deviation
(mm)

% Error

200 200.71 0.04 200.66 0.05 0.03

300 300.92 0.08 301.00 0.08 0.03

400 401.15 0.14 401.33 0.18 0.04

sources and average was calculated. This is given in Table 3.5 along with the error in 

the measurement. The table also gives the radius of curvatures calculated using the 

manufacturers data.

Next, refractive indices are calculated using the Eqn. (3.8) and the results are given 

in Table 3.6. The refractive indices given in Table 3.6 are the average of several 

measurements. The errors are the deviation from the data given in Ref Even with 

the thin lens approximation accurate values for refractive indices are obtained. The 

refractive indices can be measured up to an accuracy of ±0.0004. This is comparable 
with the results obtained with other methods^’

The change in refractive index n with wavelength A is a straight line for all the 

transparent glass materials for the range of wavelengths used. This is shown in
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(a) y=200min (b) 3'=y1=293.39mm (c) y=400mm (d) y=y2=500mm

Figure 3.17: Change in the interference pattern with lens position from the focusing 
lens y for 200 mm focal length lens using A = 632.8 nm

Table 3.5: Measured radius of curvature and error in measurement

Focal length in 
mm (as specified 
by manufacturer)

Calculated radius 
of curvature from 

manufacturer data (mm)

Measured R 
(mm)
Ravg

Deviation
(mm)

% Error

200 206.72 206.59 0.13 0.06

300 310.08 310.26 0 18 0.06

400 413.44 413.61 0.17 0.04

Table 3.6: Measured refractive index and error in measurement

Focal Measured refractive indices and errors at various wavelengths lengths
length A = 594.1 nm A = 611 nm A = 632.8 nm
(mm) me as. lit Error meas. lit Error meas. lit. Error

200 1 51611 1.51653 0.00042 1 51539 1 51587 0.00048 1 51465 1.51509 0.00044

300 1.51694 1.51653 0 00041 1.51615 1.51587 0.00028 1.51552 1.51509 0 00043

400 1 51692 1.51653 0.00039 1.51632 1.51587 0.00045 1.51553 1 51509 0 00044

Fig. 3.18 for the Schott glass type BK7 using literature data^J. This is true for 

other glass types also. Fig. 3.19 shows the change in measured refractive index with 

wavelength using the present method for 200 mm focal length lens. The change is
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Figure 3.18: Change in refractive index with wavelength for BK7 glass for the region 
of interest (~580-640 nm)

linear. A linear fit to the plot is also shown. The dispersion relation of transparent 

materials for wavelengths in the visible and infrared region is given by the Sellmeier 
dispersion formula^’ ^4. 95]

n(A)

1
k

i + E
3 =1

Bj A2

a2 - q
(3.11)

where A is the wavelength in micrometers and B’s and Cs are the characteristic 

material constants.

For satisfactory fitting of refractive index data, k = 3 is sufficient for almost all mate­
rials in their main transparent region^’ 97] From the linear fit for the measured 

refractive index (Fig. 3.19), the dispersion constants can be determined by fitting 
the Sellmeier dispersion equation $4, 99] -phe obtained dispersion constants

are given in Table 3.7. The dispersion curve for BK7 glass using the measured re­

fractive indices and calculated dispersion constant is shown in Fig. 3.20, also shown 
is the dispersion curve using the available data^l The curves closely match thus 

validating the results -
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Figure 3.20. Refractive index change with wavelength for BK7 glass ( x Sellmeier 
formula fitting, — literature)

Wavelength (nm)

Figure 3.19- Measured change in refractive index with wavelength for BK7 glass (A 
experimental,— linear fit)
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Table 3.7: Obtained material parameters

Material Parameter From fitting Literature % error

B1 1 0505729 1.0396121 1.05

B2 0.2247192 0.2317923 3.05

B3 1.0647185 1.0104695 5.37

Cl 0.0056143 0.0060007 6.44

C2 0 0223143 0.0200179 11.47

C3 105.6412010 103.5606530 2.01

3.2.7 Conclusion

A method using Michelson Interferometer is developed for refractive index measure­

ment and for studying the dispersion in thin biconvex lenses. The refractive index is 

found by measuring the focal length and the radius of curvature of the lens. Thm lens 

approximation is used for the refractive index calculation. This may introduce some 

error in the refractive index measurement But even with this approximation, accu­

rate results are obtained. Using laser sources of differing wavelengths, the material 

parameters of the lens glass material is also determined. The dispersion curves match 

well with the literature data. The method can be used for other type of transparent 

materials also.

3.3 Testing of linear dichroic sheet polarizers with 
Michelson interferometer

Linear polarizers are used for producing linearly polarized light from incident unpo­

larized light. If natural (unpolarized) light is incident on an ideal linear polarizer, 

only the light in the plane, having orientation parallel to the transmission axis of the
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polarizer should be transmitted The most commonly used linear sheet polarizers 

are based on dichroism which refers to the selective absorption of one of the two 
orthogonal polarization components® ^ ^ The dichroic polarizer is made up of 

anisotropic material, which strongly absorbs one of the orthogonal field components, 
while being transparent to the other® Sheet type dichroic polarizers are man­

ufactured from organic materials by imbedding them into a plastic sheet and then 

stretching the plastic sheet to align the molecules and causing them to be birefrin- 

gent. This is then dyed so that the dye molecules attach themselves to the aligned 

polymer molecules. The conduction electrons of the dye can move along the poly­

mer chain The electric field component in the incident wave that is parallel to the 

molecules drives the electrons and hence does work and is therefore absorbed. The 

transmission axis of the polarizer is perpendicular the direction in which the film 
is stretched® ® This type of polarizers are extensively used especially in low 

power and visual applications^. When such a pair of polarizers with perpendicular 

polarization directions are used, the output intensity should be zero ideally. But due 

to non absolute absorption of one of the orthogonal components, this quantity will 
always be greater than zero^O].

The parameter that determines the leakage of the absorbed component is the extinc­
tion ratio^l Usually the extinction ratio is determined by passing unpolarized light 

through a pair of polarizers having perpendicular polarization directions and mea­

suring the output using photo-detector. But at low intensities the extinction ratio 

is impossible to measure using this method as the output would be immeasurable 

with conventional photo-detectors even with high amplification. In the case of inter­

ference, the visibility (or contrast) of the fringe system depends upon the direction 
of polarization of the two interfering beams also®. If two beams having perpendic­

ular polarizations interfere, there will not be any fringe formation, resulting m zero 

visibility Any deviation from this results from the non-zero extinction ratio of the 

polarizers Here a method to measure the extinction ratio using Michelson interfer­

ometer is discussed. By this method the open transmittance, the polarizers can also 

be measured.
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3.3.1 Experimental setup and Theory

The experimental setup used is shown in Fig 3 21, using Michelson interferometer 

geometry, A 10 mW He-Ne (632.8 nm, unpolarized, Uniphase) laser is expanded 

using spatial filtering (SF) assembly. This is split into two by a 50:50 beamsplitter 

The transmitted and reflected beams are made to interfere at the detector plane by 

mirrors Ml and M2 respectively. Two polarizers Prcf (reference polarizer) having an 

extinction ratio of 1 x 10-4 and Ptest (test polarizer) are kept on the transmission and 

reflection arms respectively. They are kept at a small angle with the normal to the 

mirrors to avoid reflections from them interfering at the detector plane. The mirrors of 

the interferometer are adjusted to get real fringes at the detector plane. The output 

is measured using a photodiode mounted on a translation stage having 0.01 mm 

resolution. A small rectangular aperture is placed just in front of photodiode to limit 

its exposure area to get accurate results. The output of the detector is amplified 

and is measured by a sensitive digital meter. The spherical test and reference beams 

arriving at the detector plane can be written as

_ ~ikn

n
(3.12)

_ ^2 £—tk T2
(3 13)

where E\ and E2 is the amplitudes of the test and reference beams respectively, k is 

the propagation vector and rj,rl are the position vectors of the two wave fronts. The 

total intensity at the detector plane can be written as,

I=[ETpEt) =-A + -f +---- ----- £ cos(J) (3.14)
v / rf rf ri r2

where

S — k • fi~k -r2 (3.15)

is the phase difference between the two waves reaching the detector plane. By sub­

stituting

J0 = Ef/rj + Eljr\ = h + h (3-16)

as the uniform illumination, the intensity equation (Eqn. (3.12)) can be re-written 
as[3]-[5]

I = l1 + l2 + cos (9) cos (S) = I0(1 + V cos (5)) (3 17)
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M2

where

V =
I max

I max "P In
2VhT2
I\ +12

cos (9) — M cos (9) (3.18)

is the visibility of the interference fringes with 9 as the angle between the plane of 

polarization of the two interfering beams. Prom Eqn. (3.18) it can be seen that as 9 

increases, the visibility of the interference fringes decreases, reaching zero when 9 = 

90° The variation in visibility (V) with the angle between the planes of polarizations 

of two interfering beams (9) is shown in Fig. 3.22. The range of 9 is chosen from 0° 

to 360° corresponding to a full rotation of the polarizer. From Fig. 3.22 it can be 

seen that if the polarization states of any one of the interfering beams is changed, 

then the visibility also changes Therefore visibility can be used as a parameter to 

test linear polarizers.
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Figure 3.22 Visibility of the interference fringes for different angle between the po­
larizers

The extinction ratio of a pair of polarizers is defined as the transmission of the pair 
when the polarizers have perpendicular polarization direction^. An ideal polarizer 

pair should have an extinction ratio of zero. But due to non-absolute absorption of 

the desired orthogonal component, it will always be greater than zero. If the relative 

intensity between the interfering beams is kept a constant then the visibility of the 

interference fringes depends only on the state of polarization of the beams. So by 

rotating one of the polarizers, the minimum (Vmm) and maximum (Vmax) visibility can 

be determined Maximum visibility corresponds to 9 — 0° and minimum visibility 

corresponds to 9 = 90° The transmittance of a dichroic polarizer for a linearly 
polarized incident beam is given by^

T = ai cos2 0 + a2 sin2 9 (3.19)

where 0 is the angle between the plane of polarization of incident light and the 

polarizer, ai and 02 are the principal transmittance of the polarizer. Ideally Gi = 1 

and 0,2 — 0 (there is no transmittance when 9 = 90°) But practically ax is always 
greater than 1 and a2 always has some finite valued. If the incident beam is un- 

polanzed as in the present case, angle is defined as the angle between the planes of 

polarizations of the pair of polarizers. Transmittance of such pair of polarizers is

given by[85]

Lpair ax 02 sm2 (0) 4~ - (a\ + o|) cos2 (9) (3.20)
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This equation takes into account the fact that the interfering beams pass through the 

polarizers twice. The visibility of the fringes depends on the transmittance of the pair 

of polarizers. The maximum visibility (Vmax) is observed when the transmittance is 

maximum i.e. when the polarizer pair is parallel and minimum visibility (Vmm) is 

observed when the transmittance is minimum i.e. when the polarizer pair is crossed. 

Therefore Eqn. (3.20) can be re-written as

T —J-patr —
hjnax Finn sm2 (») + i [K2

max
+ KiL„) cos2 (6) (3.21)

The extinction ratio is the transmittance/transmitted intensity through a pair of 

crossed polarizers (0 = 90°). From Eqn. (3 20), the extinction ratio can be written 

as
Hgo = Tpair (90°) = ^Fmax Fmm (3.22)

The open transmittance is the transmittance of a pair of parallel (0 = 0°) polarizers 

and is given by
He = Tpatr (0”) = i (K|„ + 1C.) ■ (3.23)

Therefore by measuring the maximum and minimum fringe visibilities of the real 

fringe system, the extinction ratio and the open transmittance of the polarizer pair 

can be determined.

3.3.2 Results and Discussion

Three dichroic polarizers working in the wavelength region 400-670 nm are tested 

using this technique (Pi, P2 and P3). All the tested polarizer pairs have a manu­

facturer specified extinction ratios of 1 x 10-4 and open transmittance of >24%. In 

all the measurements one of the polarizer is rotated (Ptest) while keeping the other 

polarizer (Pre/) at the same position. The intensities of the two interfering wave 

fronts at the detector plane are made equal using neutral density filters in the arms 

of the interferometer. This ensures that the visibility depends only upon the angle 

between the polarization directions of the two polarizers (Eqn. 3.18). Visibility is 

measured by scanning the interferogram both horizontally and vertically at several 

places. The average of the maximum and minimum intensity values yield the visibil-
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ity. Theoretically, visibility varies with angle between the polarizers as shown in Fig 

3.22.

The reference polarizer is kept in the transmission arm of the interferometer and the 

test polarizer is kept in the reflection arm Initially, polarization direction of both 

the polarizers are kept parallel (9 = 0°) and the corresponding visibility is measured 

(KuuO- This is the maximum obtainable visibility. Then the test polarizer is rotated 

m steps of 1° and the corresponding visibilities are measured. When 9 = 90° a 

visibility of zero is expected as there is no interference between the two beams because 

the polarization directions of the two beams are perpendicular to each other, resulting 

in a uniform intensity distribution across the detector plane. But due to leakage there 

is a measurable fringe visibility (Kim)-

Tables 3.8 to 3 13 give the measured fringe visibilities for different polarizer pairs along 

with the theoretical values and the deviation from the theoretically calculated values. 

The experimental values are the average of several measurements. The theoretical 

values are obtained from Eqn. (3.18) with M = 1. A graphical representation of 

the results in Tables 3.8 to 3.13 is shown in Figures 3.23 to 3.28. Change in the 

fringe visibility is captured using a CCD camera for P2 — Pref (Pi) pair for different 

polarizer angles is shown in Fig. 3.29. At 9 ~ 90°, the fringe pattern cannot be 

resolved by the CCD camera. Only the scanning using photodiode yielded the fringe 

visibility. A small shift as well as distortion appeared m the fringe patterns with 

the change in polarizer angle. This can be seen in Fig. 3.29. This might be due 

to the non uniformity of the polarizer material or the glass material used as the 

sandwiching material. It can be seen from the tables and graphs that for all the 

tested polarizer pairs the visibility is never zero when the polarizer pair is crossed (at 

9 = 90° and 9 = 270°) indicating finite leakage from the polarizers. The extinction 

ratio, which depends upon the leakage, is calculated from the experimental values 

using Eqn (3.22) Table 3.14 gives the extinction ratios of the tested polarizer pairs 

along with the open transmittance calculated using Eqn. (3.23). From the table it 

can be seen that Pi — P3 pair is having the lowest extinction ratio. All the pairs have 

open transmittance ~ 24% as specified by the manufacturer.
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Table 3.8: Change in visibility with polarizer angle for Pl(ref) and P2(test) polarizer 
pair

No. Q (deg) Visibility (a.u.)
Theoretical Experimental Deviation

1 0 1 0000 0.9847 0.0153
2 30 0.8660 0.8719 0.0059
3 60 0.5000 0.5092 0.0092
4 90 0.0000 0.00022 0.0002
5 120 0.5000 0.4897 0.0103
6 150 0.8660 0.8742 0.0082
7 180 1.0000 0.9859 0 0141
8 210 0 8660 0.8761 0.0101
9 240 0.5000 0.5102 0.0102
10 270 0.0000 0.00023 0.0002
11 300 0.5000 0.4902 0.0098
12 330 0.8660 0.8607 0.0053
13 360=0 1.0000 0 9847 0.0153

Table 3.9- Change in visibility with polarizer angle for Pl(ref) and P3(test) polarizer 
pair

No. 9 (deg) Visibility (a.u.)
Theoretical Experimental Deviation

1 0 1.0000 0.9804 0.0196
2 30 0.8660 0.8601 0.0059
3 60 0.5000 0.4921 0.0079
4 90 0.0000 0.00023 0.0002
5 120 0.5000 0.4979 0.0021
6 150 0.8660 0.8952 0.0292
7 180 1.0000 0.9812 0.0188
8 210 0.8660 0.8613 0.0047
9 240 0.5000 0.5104 0.0104
10 270 0.0000 0.00022 0.0002
11 300 0 5000 0.5326 0.0326
12 330 0.8660 0.8576 0.0084
13 360=0 1.0000 0.9804 0.0196
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Table 3 10: Change in visibility with polarizer angle for P2(ref) and Pi (test) polarizer 
pair

No. 0 (deg) Visibility (a.u.)
Theoretical Experimental Deviation

1 0 1.0000 0.9842 0.0158
2 30 0.8660 0.8716 0.0056
3 60 0.5000 0.4873 0.0127
4 90 0.0000 0.00022 0.0002
5 120 0.5000 0.5142 0.0142
6 150 0.8660 0.8572 0.0088
7 180 1.0000 0.9845 0 0155
8 210 0.8660 0.8644 0.0016
9 240 0.5000 0.4906 0.0094

10 270 0.0000 0.00023 0.0002
11 300 0.5000 0.4826 0.0174
12 330 0.8660 0.8481 0.0179
13 360=0 1.0000 0.9842 0.0158

Table 3.11: Change in visibility with polarizer angle for P2(ref) and P3(test) polarizer 
pair

No. 6 (deg) Visibility (a.u.)
Theoretical Experimental Deviation

1 0 1.0000 0.9862 0.0138
2 30 0.8660 0.8636 0.0024
3 60 0.5000 0.4880 0.0120
4 90 0.0000 0.00024 0.0002
5 120 0 5000 0.5098 0.0098
6 150 0.8660 0.8536 0.0124
7 180 1.0000 0.9854 0.0146
8 210 0.8660 0.8897 0.0237
9 240 0.5000 0.4962 0.0038

10 270 0.0000 0.00023 0.0002
11 300 0.5000 0.5142 0.0142
12 330 0.8660 0.8436 0 0224
13 360=0 1.0000 0.9862 0.0138
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Table 3.12: Change in visibility with polarizer angle for P3(ref) and PI (test) polarizer 
pair

No. 9 (deg) Visibility (a.u.)
Theoretical Experimental Deviation

1 0 1.0000 0 9807 0.0193
2 30 0.8660 0.8709 0.0049
3 60 0.5000 0.4917 0.0083
4 90 0.0000 0.00022 0.0002
5 120 0.5000 0 4917 0 0083
6 150 0.8660 0.8483 0.0177
7 180 1 0000 0.9815 0.0185
8 210 0.8660 0.8701 0.0041
9 240 0.5000 0.5074 0.0074

10 270 0.0000 0.00022 0.0002
11 300 0.5000 0.5279 0.0279
12 330 0.8660 0.8594 0.0066
13 360=0 1.0000 0.9807 0.0193

Table 3.13: Change in visibility with polarizer angle for P3(ref) and P2(test) polarizer 
pair

No. 9 (deg) Visibility (a.u.)
Theoretical Experimental Deviation

1 0 1.0000 0.9857 0.0143
2 30 0 8660 0.8574 0.0086
3 60 0.5000 0.4907 0 0093
4 90 0.0000 0.00023 0.0002
5 120 0.5000 0.5027 0.0027
6 150 0.8660 0.8617 0.0043
7 180 1.0000 0.9858 0.0142
8 210 0.8660 0.8829 0.0169
9 240 0.5000 0.4931 0.0069

10 270 0.0000 0.00023 0.0002
11 300 0.5000 0.5207 0.0207
12 330 0 8660 0.8529 0.0131
13 360=0 1.0000 0.9857 0.0143
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Table 3.14. Calculated extinction ratios and open transmittance of different polarizer 
pairs

Pb,S PrVest Extinction Ratio (a. u.)xl04 Open transmittance (%)

PI P2 1.1084 24.27

PI P3 1.0789 24.04

P2 PI 1.1077 24.23

P2 P3 1.1583 24.29

P3 PI 1.0792 24.06

P3 P2 1 1336 24.30

Figure 3 23: Change m visibility with polarizer angle for P\(Ref) and P2(fest) 
polarizer pair
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Figure 3.24: Change in visibility with polarizer angle for Pi(Ref) and P3(test) 
polarizer pair

Polarizer angle (deg)

Figure 3.25: Change in visibility with polarizer angle for P^{Ref) and (test) 
polarizer pair

The expected maximum visibility is 1, but the obtained maximum visibility is always 

less than 1 (Table 3.14). This may be due to the non similar transmission/absorption 

of the two polarizers.
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Figure 3.26: Change in visibility with polarizer angle for P2(Ref) and P3(test) 
polarizer pair

Figure 3.27: Change in visibility with polarizer angle for F3(i2e/) and P\{tesi) 
polarizer pair
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K) 60 90 120 150 180 210 240 270 300 330 360
Polarizer angle (deg)

Figure 3.28; Change in visibility with polarizer angle for Ps(Ref) and P2(test) 
polarizer pair

(a) 0=0° (b) 0=60° (c) 0=85°

Figure 3.29: Change in the fringe visibility with polarizer angle for P\(Ref) and 
P2 (test) polarizer pair

3.3.3 Error Analysis

The error in measurement of the extinction ratio Hg0 and open transmittance H0 

depends upon the error in measurement of the maximum and minimum visibility Vmax 

and Vmm respectively. The error can be determined by differentiating Equations Eqn. 

(3.22) and Eqn. (3.23) partially with respect to Vmax and Vmin.

H<MdVmm + VlndVmBX
dm90 (3.24)
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Suppose the error in finding Vmax and Vmm is 2.5 % and Vmm = 0.9850 and 
Vmm = 0.00022 and the expected H90 = 1 x 10-4, then the error in finding H90 is 

~ 0.07 x 10-4. Differentiating Eqn. (3 23) partially with respect to Vmax, the error 

in determining the open transmittance can be determined. The second term m Eqn. 
(3 23) can be safely ignored as Vmin <C Vmax.

dHo = (3.25)

For example if the error in finding Vmax is 2.5% and Vmax = 0.9850 then the error in 

finding the open transmittance H0 is 0.012.

3.3.4 Conclusion

Michelson interferometer is used to test linear polarizers very accurately both quali­

tatively and quantitatively. The qualitative study of the polarizer pair can be made 

by analyzing the resulting fringe systems. It is found that in some cases the fringe 

pattern shifted with polarizer angle. This can be attributed to the non-uniformity 

of either the polarizer or the glass material sandwiching it. Since the fringe quality 

depends upon the polarizers, this method gives the quality of the polarizer materials, 

making it more advantageous than other methods. Quantitatively speaking, the ex­

tinction ratios and the open transmittance of the polarizer pairs are found using this 
method very accurately. The error in finding Hqq is ~ 7% and the error in finding Hq 

is ~ 1%.

3.4 Beamsplitter testing with Michelson Interfer­
ometer

Beamsplitters play an important role in most of the sensitive optical experiments like 

interferometry, holography, phase conjugation etc. For all these experiments, proper 

splitting of the incident beam into required beam ratios is very essential and for that 

proper design of a beamsplitter is important. The beamsplitters consist of a thin 

window, on each side of, which is deposited, a different type of coating. The first 

surface is coated with an all-dielectric film having partial reflection properties either
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in the visible, ultraviolet or the near-infrared spectrum and the second surface has 
an antireflection coating optimized for 45°(Fig. 3.30)^> 101] . One can also de­

sign non polarizing beamsplitters, where the polarization characteristics of incident 

laser radiation is maintained in the reflected and transmitted beams and it also splits 

the incident laser energy into either 50.50 or 75:30 regardless of the incident state 

of polarization. In such non-polarizing beamsplitters if the coatings (reflection and 

antireflection) are proper then 50% or 70% of the incident beam should be transmit­

ted and the remainmg 50% or 30% should be reflected. On the other hand, if the 

reflection and anti reflection coatings are not proper then such (non polarizing) com­

mercially available beamsplitters, split the incident beam from the laser source into 

more than one along transmission direction and reflection direction each, thus result­

ing in unequal and unspecified (neither 50:50 or 70:30) distribution of incident laser 

energy (Fig. 3.31). The effect of such splittings will not be prominent unless sensitive 

optical experiments like photorefractive effect, phase conjugation etc are done where 

the energy of laser beams plays an important role. Also, it is very difficult to notice 

this effect unless an unexpanded laser beam is allowed to fall on such a beamsplitter 

before spatial filtering However, in a Michelson Interferometric experimental set up 

if a diverging laser beam falls on such a beamsplitter, then for unequal arms length 

two or more sets of circular fringes, instead of one set of circular fringes are obtained.

In many of the commercial beamsplitters the reflection and anti-reflection coatings 

are not proper and due to this the splittings of incident laser beam for a 50:50 or 70:30 

type beamsplitter may not be strictly one along transmission and reflection directions 

respectively. Earlier a method was developed to test the quality of beamsplitters using 
temporal coherence^’ 1^2] of a laser beam m a Michelson Interferometer experi­

mental set-up^ 03] Another method to test beamsplitter using photorefractive effect 

was also developed^^ In this method diffraction efficiencies of the induced gratings 

were used to find out the beams ratios^*^ But here measurement of the ratios of 

all the beams from the beamsplitter was not possible. So an accurate quantitative 

method to test beamsplitters has to be developed. In this section a modification to 

the beamsplitter testing using Michelson interferometer is proposed to yield the beam 

ratios of all the beams interfering at the detector plane. The beam ratios of the in­

terfering beams are calculated from the visibility of the resulting interference fringes
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Partially reflection 
coated

Figure 3.30: Ideal beamsplitter

The visibility of the fringe systems is determined by scanning the fringe pattern with 

a photodiode.

3.4.1 Experimental Procedure and Theory

Consider a typical Michelson Interferometric set-up with a laser source as shown in 

Fig. 3.32. The laser beam (10 mW, A = 632.8 nm), is spatially filtered and is 

allowed to fall on the beamsplitter which, is to be tested The beamsplitter splits 

this diverging laser beam into two. The partially transmitted beam travels to the 

mirror Ml and the partially reflected one from the beamsplitter travels to mirror 

M2. These two beams will be reflected back to the beamsplitter by the respective 

mirrors which, finally interfere at the detector plane nearer to the beamsplitter to 

give real circular fringe pattern. For an ideal beamsplitter (Fig. 3.31), the Michelson 

interferometric theory holds well since, the interference takes place between only 

two time-delayed wave fronts (one along transmission and the other along
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Figure 3.31: Improperly coated beamsplitter

reflection). On the other hand, if the beamsplitter splits the incident beam into 

more than one along transmission and reflection directions respectively as shown in 

Fig. 3.31, then the theory has to be modified. Assume that a spherical wavefront 

(amplitude varies inversely with the radius R of the wavefront) from the pinhole of the 

spatial filtering assembly falls on such imperfectly coated beamsplitter which splits 

the incident laser beam into two along transmission and two along reflection. Let 

us assume that (Eq/R) e1^ is a diverging laser beam incident on such a beamsplitter. 

Then (Eri/Rri) e^lr and (AV2/-R7-2) e^r2 are the beams reflected towards the direction 

of mirror Ml and (Eti/Rti) (i?<2/f?i2) e^t2 are the beams transmitted by the 

beamsplitter towards the direction of mirror M2 (^’s represents the phases of the 

diverging beams). The mirrors Ml and M2 will reflect back these wave fronts to 

the beamsplitter and now at the detector plane the total intensity of the interference 

pattern becomes,

It =
^t1 g»0rl

Rri + fti
Ell p*4>r2r> c +

Ef2

Rt2
(3.26)
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M2

Figure 3.32: Experimental setup for the testing of the beamsplitter
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It — Iri + hi + IT2 + In + 2 y Ir\Iti COS (flrltl

+2 s[j^Xn COS '-fr'in + “2\/Irlh'2 COS (prm + 2yflr2Itl COS <Pr2tl (3.27)

Where <£>’s are phase differences between the time delayed interfering beams Prom 

Eqn. (3.27) it can be seen that many interference patterns can exist simultaneously 

because of the shift of the two interfering beams due to shearing of the wave front. 

Eqn. (3 27) can be re-written in terms of the visibility of the interference fringes as

It — Ib (1 + Vi cos <pi + V2 cos <p2 + V3 cos <p3 + V4 cos tp4) (3.28)

where Ig = lr\ + Iti + IT2 + In is the background intensity.

■r r 2VIrlltl T r 2y/Ir2l* T r ‘Isjl^ln xr 2'/lriJn ,0
vi = —> l2 — ——— , v3 = —— ---- , v4 — —7---- (p.zyj1B IB *B 1b

are the visibilities of the individual fringe systems. Where one fringe system is present, 

the intensity distribution due to other acts as the background intensity, reducing the 

visibility. The experimental geometry shown in Fig. 3.32 will yield real fringes when 

a point source is used. These real fringes can be observed on a screen. By scanning 

the interference fringes with a photodiode the visibility can be determined. Visibility 

of the fringes gives the intensity ratios of the interfering beams.

3.4.2 Results and Discussion

Three broad band non-polarizing beamsplitters with 50:50 splitting specifications 

are investigated using this method. The setup in Fig. 3.32 is used with different 

beamsplitters. The mirrors are adjusted to obtain circular fringes at the screen. The 

distance between the beamsplitter and mirror Ml is kept at 700 mm. Mirror M2 is 

moved to change the path length difference (Arc) between the two beams. In two 

of the investigated beamsplitters (BS-A, BS-B), the incident beam is split into two 

overlapping beams along the reflection direction (because of back reflection from the 

second surface) and one along the transmission direction resulting m two individual 

fringe systems The third beamsplitter (BS-C) is having a wedge and so the beams 

do not overlap at the detector plane and resulting in a single fringe system.
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The obtained fringe systems are spatially separated. This can be understood from 

the fact that the interference occurs between 1) the spherical wave front from the 

reflection and transmission 2) spherical wave front internally reflected (sheared) and 

the transmitted wave front. Figures 3.33a to 3.33c shows the change in the fringe 

systems for BS-A with change in path difference when a He-Ne source of 632.8 nm 

is used. Two fringe systems existing simultaneously can be seen in Fig. 3.33a and 

3.33b. It can also be seen that as the path difference is decreased the spatial separation 

between the fringe systems increase and finally when the path difference ~ 0 only one 

of the fringe systems occupy the field of view. By adjusting the mirrors the second 

fringe system can be brought into the field of view. Fig. 3.34 shows the two fringe 

systems for BS-A when x = 5 mm. It can be seen that the visibility of the secondary 

fringe system (due to In and /r2) is less indicating interfering beam ratios <C1. This 

happens because the second reflected beam is of very low intensity and reflected beam 

from the front surface acts as a background illumination reducing the visibility.

Fig. 3.35 shows the variation in fringe system with path difference for BS-C. It can be 

seen that even for large path differences, there is only a single fringe system indicating 

that there is no overlap. The separation between the fringe systems are measured 

as a function of path difference. Fig. 3.36 shows the plot for the change in fringe 

separation with path difference of the interfering beams for BS-A and BS-B. The 

screen is placed 650 mm from the beamsplitter. The separation at x=0 is obtained 

by extrapolating the data for large path differences. From these plots, it can be seen 

that the separation increases with decrease in path difference.

(a) Ax=75mm (b) Ax=50mm (c) Ax=5mm

Figure 3.33: Interference patterns for different path differences for BS-A
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(a) Interference between Itl and /rl (b) interference between Itl and 7r2

Figure 3.34: Two separate interference fringe systems at the detector plane when Ax 
= 5 mm

(a) Ax=5mm (b) Ar=25mm (c) Ax=75mm (d)Ax=100mm

Figure 3.35: Interference patterns for different path differences for BS-C

3.4.3 Beam ratio calculations

Visibilities of the two resulting fringe systems when Ax ~ 0 is used to calculate the 

intensity ratios of the three beams resulting in interference at the detector plane. For 

a beamsplitter splitting the beam into two along the reflection and one along the 

transmission direction, the intensity equation (Eqn. 3.28) can be rewritten as

It — Itl + Ir 1 + Ir2 + 2\jIrlhl COS iprltl + 2\JT2T1 COS tpr2tl (3.30)

The visibility of the two individual fringe systems is then

Vi =
2y/IrlItl

(3.31)
Itl + Irl + Ir2

v2 =
2y/IT2ltl

(3.32)
Itl + hi + Ir2

with lt\ + Iri + h2 as the background illumination

The visibilities of the fringe systems depend upon the beam intensities of the two 

interfering beams as well as on the intensity of the third beam. The presence of
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Figure 3.36: : Change in fringe separation for with path difference

the third beam therefore reduces the fringe visibility (Eqn. (3.31) and Eqn. (3.32)). 

The visibility of the beams is measured by scanning each of the fringe system with a 

photodiode and finding the minimum and maximum intensities. Dividing Eqn. (3.31) 

by Eqn. (3 32), the beam ratios of the two reflected beams can be obtained.

Using Eqn (3.33) in (3.31) and (3.32), the beam ratios of the transmitted and 

reflected beams can be calculated. Table 3.15 gives the calculated beam ratios for all 

the tested beamsplitters. It can be seen that for BS-A and BS-B, the fringe visibility 

is low compared to BS-C, where only one reflected and transmitted beam interfere 

at the detector plane. Assuming that there is no energy loss at the beamsplitter i.e. 

the beam is split into three only, the percentage of the reflected and the transmitted 

beams at the detector content can be calculated. Table 3.16 gives the percentage of 

the reflected and transmitted beams at the detector plane. It can be seen that BS-C 

has beam ratios closest to the manufacturer specified values. BS-B does split the 

beam slightly better than BS-A as its primary beam ratio (Iti : Iri) is nearer to 1 and 

its secondary beam ratio (lti : Ir2) is higher compared to BS-A. Primary beam ratio 

nearer to 1 and high secondary beam ratios yield better visibility of the interference
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fringes. The energy loss due to multiple reflections m the beamsplitter is more m 

BS-A

Table 3.15- Calculated beam ratios

Beamsplitters Visibilities of individual Beam ratios of different beams 
fringe systems (a.u.)

Vi v2 Ia/In Itl/Ir2 In/A 2

BS-A 0.908 0 385 1.64 9.17 5 56

BS-B 0.938 0 329 1.39 11.35 813

BS-C 0.998 — 1.13 ■— —

Table 3.16- Calculated beam percentages at the detector plane

Beamsplitters % of the total
It i In la

BS-A 58 15 35.46 6.39

BS-B 55 31 39.79 4 90

BS-C 53 06 46.94 —

3.4.4 Conclusion

A method is developed to calculate the beam ratios of interfering beams from a 

beamsplitter. The method developed is very accurate as the beam ratios are derived 

from the interference fringes formed by the beams, rather than directly measuring the 

beam intensities. Direct measurement will only yield the total intensity of the over­

lapped beams rather than their individual intensities. The method can also be used 

to determine the loss of energy due to multiple reflections inside the beamsplitter.
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