
CHAPTER I

GENERAL INTRODUCTION

A non-perturbative study of collective phenomena in classical 

quark plasma is carried out in the present work. In this chapter we 

begin with a brief introduction to quark-gluon plasma(QGP),and then a 

discussion about the aims and scope of this work will be presented. 

Finally, a summary of each subsequent chapter will be given.

1.1 Introduction : According to current understanding, all

strongly interacting particles such as nucleons and mesons (hadrons) 
have composite structure! The constituent particles of a hadron are 

called quarks. Quarks are spin-1/2 particles and carry all the 

intrinsic quantum numbers possessed by a hadron such as electric 

charge, baryon number, flavor (isospin,strangeness etc). There are at 

least five flavors of quarks called up(u), down(d), strange(s), 

charm(c) and bottom(b). Quarks carry fractional electric charges which 

have values, in the units of proton’s charge, +2/3 for u,c and -1/3 

for d,s,b. AH the quarks have baryon number 1/3 and anti-quarks have 

baryon number -1/3. In addition to all these quantum numbers, quarks 

possess a new quantum number called color which plays a very important 

role in their interaction. Each quark (anti-quark) can be found in one 

of three color states labelled as r,b,g (r,b,g). The color quantum 

number resembles in its properties electric charge in the sense that 

total color is exactly conserved and it can act as a source for the 

force fields. Hence color quantum number is often referred as color 

’charge’. The major difference between color and electric charge of a 

quark is that the former is a triplet where as the latter is a scalar.
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Quarks interact among themselves via exchange of spin-i 

particles called gluons. Gluons also carry color charge and therefore

interact among themselves. The Lagrangian of a system of interacting

colored particles can be determined from the principle of SU(3) local 

gauge invariance. The theory is called quantum chromodynamics 
(QCD)^and its Lagrangian is

- mpy, -'gty/A^P -l/2Tr(F(lvF|lv} (1.1)

where f denotes the flavor of quark, \jff is a three component column 

matrix in color space in addition it has the usual four Dirac 

components. mf is the mass of a quark of flavor f and g is the

dimensionless coupling constant. A (p = 0,1,2,3) are the components of 

the gluon (gauge) fields. F is the gluon field tensor defined as
r*' v

Fpv= apAv ' avAp + iStAp’Av] (L2)
The first term in the parenthesis of Eq.(l.l) represents the

"kinetic" energy term of the free quark while the second term

corresponds to interaction energy between the quarks and gluons. The

last term is the pure gauge field Lagrangian containing the gluon self

interaction. The QCD Lagrangian is strikingly similar to that of

quantum electrodynamics (QED). The major difference between the two

Lagrangians lies in the definition of F . Eq.(1.2) clearly shows that
M*v

unlike the field tensor of photons the gluons field tensor is 

non-linear in the gauge fields A . This indicates that gluons interact
r

among themselves.

It should be noted that A and F are 3 x 3 matrices in SU(3)
r r*

color space and they can be expanded in terms of the group generators 

as: A.^A.^T and F,, =F* ,T where, a summation over the index a (a=
P P a pV PV a

1,2,..,8) ts implied. Tg are the generators of SU(3) group satisfying
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commutation relations :
[T ,Tb] = if (1.3)

where, a summation over the index e is implied, f L are the
abc

completely antisymmetric structure constants of the SU(3) group.

The Lagrangian in Eq.(l.l) is invariant under local color gauge 

transforniations i.e

% =.uvf

A,I = u'V “ ** U\ U
(1.4a)

(1.4b)

where, U is 3x3 unitary matrix and is a function of space and time.

One can show that F remains form invariant under these
H' v

transformations i.e.:

F,iv = u Fnv U (1.5)

It should be noted that due to the self interaction of gluons 

QCD differs significantly from quantum electrodynamics (QED). The 

major differences are: (i) Asymptotic Freedom and (ii'j (Confinement.

(i) Asymptotic Freedom : At small distances (« 1 fermi) or at 

high momentum transfers quarks exhibit free particle behavior. This 

characteristic of quark-gluon interaction is called asymptotic 

freedom, and it can be clearly seen from the expression of running 
coupling constant^ g2(Q2) (order 1-loop level):

g2(Q2)
QCD

g2(H2)

1 +-rrp—(33 - 2Nf)ln(QV)
(1.5)

where Nf is number of flavors and \i is a scale parameter which can be

determined experimentally .Thus for high momentum transfer Q2-* and N{ 

2< 16, gQ£j-) -* 0. The running coupling constant in QED shows exactly
2 2opposite behavior i.e gqgj-) + 00 as Q -» <». Thus, due to asymptotic 

freedom the perturbative methods may be used to study quark-gluon
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interactions at small distances or at high momentum transfers. Indeed, 

deep inelastic scattering of leptons from nucleons have revealed that 

the particles within a nucleon behave essentially as free particles. 

This observation is a major success of QCD as a fundamental theory of 

strong interaction.

(ii) Confinement : We have seen that for Q2 above the momentum
t

scale p2 the coupling constant becomes small. However, to learn what 

happens below this scale (or at large distances si fermi) is very 

difficult, because, at present, there are no analytical techniques

available to solve the field equations in this regime. This is a 

consequence of the fact that the running coupling constant increases 

as the momentum transfer Q2 decreases below p.2. This behavior is 

consistent with the fact that free quark states, have not been 

observed so far. This experimental fact implies that the binding force 

between quarks, due to the exchange of gluons, increases without limit 

as the separation between them increases. Therefore, it is not 

possible to "ionize" a nucleon and break-up the bound state formed by 

the quarks and observe free quarks in the laboratory. Secondly, as no 

long range force exists between the hadrons, they must be color 

neutral. This means that color charge is confined absolutely within a 

hadronic volume. It should be mentioned that extensive numerical 

calculations confirm this expectation.

Thus, to summarize, asymptotic freedom and confinement are the 

two most important features of quark interaction which QCD exhibits. 

The picture of hadron as a composite particle can have profound 

consequences on the behavior of nuclear matter at high density or at 

high temperature. The boundaries of the nucleons overlap at high
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temperature or at high density and bring quarks from different hadrons 

in the immediate neighbourhood of each other. There is then no way to 

ascertain which quarks were partners inside a hadron. Further, the 

long range of forces in such a many body system are expected to be 

screened, and hence the confinement forces may not be very significant 

within the medium. The concept of a hadron loses all its meaning in 

this situation. In this new state of matter quarks and gluons are no 

longer confined within a hadron but they can move freely in the larger 

("macroscopic") volume occupied by the nuclear matter. As a 

consequence of their (confinement) interaction quarks and gluons 

cannot be observed outside this volume in their free state. This state 

of matter is called quark-gluon plasma(QGP).

Transition from a strongly interacting pion gas to QGP may

be considered as the transition from a color insulating state to a

color conducting state. Although in this respect it is analogous to

the transition from atoms to ions, the nature of the phase transition

in QCD is not yet completly clear. There are ,however, evidences,

from the numerical simulation of QCD, that the phase transition is of

Ist- order in pure gauge theory and for massless quark species of more

than three flavors^ Recent numerical results indicate that for heavy

4quarks the phase transition might be continuous. However, irrespective 

of the order of the phase transition the plasma phase is fundamentally 

different from the hadronic phase. This is because m QGP quarks and 

gluons constitue physical degrees of freedom and determine the 

dynamics of the plasma whereas in the hadronic phase quarks and gluons 

are not suitable for an economic description of the hadronic matter.

In order to obtain the critical values of thermodynamic
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parameters one should evaluate the partition function using the QCD 

Lagrangian (Eq.(l.l)). However, it is not possible to evaluate the 

partition function, in general, analytically. It is possible only in 

the weak coupling limit (g« 1). Actually we need to know it in the 

strong coupling limit (g> 1), as our prime interest is in the phase 

transition going from the strongly interacting nuclear matter to the
t

weakly interacting plasma. Hence, in order to estimate the critical 

parameters either simple QCD based phenomenological models are used 

instead of the actual QCD Lagrangian or they are evaluated numerically 

using the full QCD Lagrangian.

Indeed, the QCD based models exhibit the phase transition from 

the nuclear matter to QGP and provide an estimate for the critical 

temperature and the density for the QGP.

Consider pion gas at temperature T » m^ where, is the 

mass of the pions In this limit, we can neglect the mass of pions and 

obtain the energy density of the relativistic pion gas as

= gK(n2/30) T4 (1.6)

where, g =3, counting three charged states for the pions.

If we suppose that there is a phase transition from the pionic 

gas to the deconfmed quark-gluon state (QGP) then we can write the 

energy density of the QGP as:

eQ = gQ (n2/30) T4 + B (1.7)

where gQ=(2x8+7/8x2x2x2x3) represents the total number of degree of 

freedom for the QGP and B is the phenomenological constant which takes 
into account the confinement effects. Its value can be taken as B1^4 ss 

190 MeV from hadron spectroscopy. In gq the first term takes into

6



account contribution from the gluon sector, they come in 8-colors with 

two different spin polarizations. The second term in gQ is from the 

quark sector where 7/8 is the Fermi-Dirac factor, three factors of two 

represent particle-antiparticle, spin and flavor degrees of freedom 

respectively,while the factor 3 stands for the color degree of 

freedom
i

For a massless gas (when chemical potential(i=0) the pressure and 

the internal energy are related by:

P=T.S-e (1.8)

where, S is the entropy density of the gas which is given by

S = 4/3 ga (n2/30) T3 (1.9)

where, ga=gn or gq. Then using Eqs.(1.7) and (1.8) pressure for the 

pion gas and the QGP are found to be:

= 1/3 en (U0>

PQ = l/3(eQ - 4B) (1.11)

Due to the bag pressure term B, the pion gas is the favored state

(P^Pq) at lower temperature. When the temperature is higher (Pq>P^)

the QGP state is favored. At the critical temperature T = Tc the

pressure in the two phases are equal and hence one can determine T^ by

equating Eqs.(l.lO) and (1.11) at T = T£:

T = f(gQ - g^Xn^O) B ] (U2)

One finds for the above mentioned value of B T s 136 MeV.
C

Comparing the energy densities one can see that there is a sudden jump 

at T = T and hence a first order phase transition. In addition, a
C

comparison of entropy density for both the phases (Eq.(1.9)) reveals 

that the entropy density of QGP phase is an order of magnitude higher 

than that of the pion gas. Thus in view of these considerations, it
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appears that at high temperature (>T ) color deconfined state of 

nuclear matter (QGP) can be more favored.

In such a phenomenological approach, where the two phases are 

treated differently, if there is a phase transition it is always of 

Ist* order. However, finite temperature "lattice" QCD does not have

such shortcomings of the phenomenological models. More direct
i

information (using the QCD Lagrangian) about the phase transition can

be obtained from numerical studies of lattice QCD. In lattice QCD it 

is very difficult with the present techniques to consider fermions in 
a realistic situationf i.e with two nearly massless quarks and one 

massive quark. The results, with two or four flavors, are found to be 

dependent on the mass and the number of flavors of quarks. No

consensus has yet been reached about the lattice results with

fermions. However, pure gauge theory as compared to full QCD is easier 

to study on lattice and has been studied extensively in the past to

investigate the phase diagram of QCD.

The phase transition is also clearly seen, while studying the

partition function of pure gauge theory Lagrangian on a lattice 

(replacing the space-time continuum by discrete points). The energy 

density which can be calculated from the partition function, (as a 

function of temperature ) in one such calculation is depicted in

Fig. 1. This plot indicates a jump in energy density around a critical 

temperature T^~ 200MeV and suggests a I-order phase transition. There 

is also a jump in entropy density. It is estimated that energy density 

values between 2-2.5 GeV/(fermi)3 are necessary for this deconfinement 

transition. However, the estimate of the latent heat is not firmly

established, the results vary from Ae=0.9 to 1.9 GeV/(fermi)3.
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After finding the phase transition in numerical simulations of 

lattice QCD, it is natural to ask for the importance of studying QGP. 

The experimental and theoretical investigations of QGP are important 

due to the following reasons.

1. QCD predicts that under certain extreme conditions nuclear 

matter will exist in the QGP phase, and therefore a search
t

for QGP can serve as a test of QCD in such extreme conditions.

2. According to the standard model of cosmology, temperature

of the universe might have exceeded the critical temperature

for the phase transition at time < 20psec after the Big Bang.

It has been suggested that the presence of QGP phase in the 
early universe can affect the primordial nucleo-synthesis?

There is also a possibility that, the density of nuclear matter 

in the core of heavy neutron stars may exceed the critical

value required for the formation of QGP.

3 The most interesting possibility is that, the critical

density > 2 GeW(fermi)3 may be reached in relativistic

heavy-ion collision (RHIC) experiments so as to create QGP in 
£the laboratory? Already there are some experiments at CERN and

at Brookhaven to search for QGP. Many signatures have been 
proposed to test the creation of QGP in these experiments.

There are evidences but no conclusive evidence proving the
existence of QGP?

A very important feature of any many particle system including 

the QGP is it’s collective behaviour. As color is no longer confined

to hadronic volume in QGP, it is possible to have macroscopic color 

fluctuations. However, due to the absolute color confinement globally

the plasma still must be color neutral. This may constrain color
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particles to combine to be color neutral before they leave the volume 

occupied by the plasma. These fluctuations can cause collective 

behaviour in the medium and such behaviour can have impact on overall 

dynamics of the system e.g. collective behaviour can affect the 

eventual hadronization of QGP. It can also influence the 

thermalisation of QGP. Moreover, the spectra of particles coming out,
t

of QGP may show some of the effects of collective behaviour on them.
oIn fact Matsui and Satz have suggested that production of JA|/ mesons 

in relativistic heavy-ion collisions may get suppressed due to the 

presence of hot QGP environment. Any clear signature resulting from 

color collective behaviour can serve as an unique proof of this color

deconfined transition.
AIMS AND SCOPE OF THIS STUDY

In order to study collective properties of QGP methods of quantum 

field theory (QFT) ought to be used. There are two somewhat different 

field theoretic approaches that are available to study the quark-gluon 

plasma.

l.Finite Temperature perturbative QFT:According to the asymptotic 

freedom property of QCD, when two quarks come close to each other the 

strength of interaction between them decreases. Thus, for high 

temperature or for high density one expects the coupling constant to 

be small and hence the interaction among the plasma particles can be 

regarded as a perturbation over the free particle gas behaviour. In 

such a situation, perturbation theory can be applied to calculate the 

color electric and magnetic properties of the medium. But it turns out 

that for collective properties, infra-red(k->0) contributions from 

higher orders in perturbation theory also become important, and thus 

cast doubts about the validity of the perturbative treatments. Also

10



the perturbative treatment can break down near the critical

temperature and this can have important consequences as it is 

generally expected that the plasma produced in the collision 

experiments would be close to T.
C

2.Finite Temperature Lattice QCD:This is a numerical treatment of 

finite temperature QCB which allows one to treat the QGP
i

non-perturbatively i.e. taking the full interaction into account. As 

already mentioned, the critical temperature for deconfinement as well 

as some thermodynamic properties have been calculated in this 

approach. The major difficulty with such an approach is that, the 

present techniques can only consider equilibrium properties of QGP. 

They can not give information about non-equilibrium or time dependent 

phenomena in QGP. Also, the lattice QCD results indicate that even at 

T s 2Tc there are still substantial deviations from the ideal gas 

behavior

To remove the doubts from lower orders in perturbation theory it 

is desirable to do calculations using the non-perturbative approach. 

One might expect that lattice QCD, atleast for a thermal equilibrium 

state, can throw some light on this. But the recent calculations on 

the finite temperature lattice QCD indicate that certain quantities 

(like pressure) are very sensitive the lattice size and therefore they 

are very sensitive to the infra-red cut off. Thus the lattice

calculations, at this juncture, cannot prove the validity of lower 

orders in perturbation theory!*

In addition, there are quite general arguments to say that

massless ideal gas equation for state PV = 1/3 £ does not imply that
12quarks and gluons interact weakly . Such behavior might arise due to
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the relevant quasi-particles. Thus the massless ideal gas behavior, in 

the lattice calculations (Fig. 1) does not justify the use of 

perturbative QCD at high temperature.

Hence on the one hand there are reasons to believe that 

essentially non-perturbative effects may determine the QGP properties 

even at high temperature while on the other hand there is no suitable
l

quantum field theoretic treatment available to deal with the dynamics 

of the quark-gluon plasma non-perturbatively. Due to this we have 

adopted a classical non-perturbative approach to examine the 

collective time dependent properties of the plasma. Ideally speaking, 

QGP should be described by QCD only. But whether a classical approach 

is valid or not depends upon the kind of observables and kinematic 

regimes we want to describe. It seems that to describe collective 

behaviour (like oscillations and screening) classical approach is 

good. This is because, finite temperature perturbative QCD (at one 

loop level) gives the same values for plasma frequency and screening 

length as those obtained by the lowest order in perturbation using the 

classical equations. However, the quantum effects may play important 

role, when the discrete particle aspects of the plasma need to be 

considered. In our opinion, classical non-perturbative study may give 

reliable information about QGP in the situation when both - classical 

and quantum perturbation theories in the lowest order yield the same 

result. Hence, we expect the classical studies to provide

qualitatively novel features of the QGP. Further, we should mention 

that classical approaches have already used to study various 

collective phenomena in the QGP [e.g. Ref. 14 ]. But in these 

approaches the plasma is considered to be essentially abelian and only
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linear perturbations are studied. Our studies reveal that

non-perturbative effects bring about qualitatively new features to the 

standard abelian (Coulomb) plasma behavior.

In the present work we have used classical color

hydrodynamic(CHD) equations to study the collective QGP dynamics.

Hydrodynamics approach is preferred over the kinetic one v because the
t

hydrodynamic equations are simpler to study and they can describe 

almost all the collective modes that can be studied by the kinetic 

approach. Further for simplicity, SU(2) gauge group is used instead of 

SU(3).

Finally, we would like to add that, the classical methods have 

also been applied in other quantum many particle systems such as 

molecules and nuclei to study collective behaviour. For example, 

liquid drop model describes binding energy and fission phenomena. 

There are instances, as suggested by experiments, where the classical 

considerations fail e.g. for the observed binding energy systematics 

and mass distribution of fission fragments shell corrections (quantum 

effects) are vital. But experience in quantum many particle system to 

study collective phenomena shows us that qualitative features obtained 

by classical considerations are mostly correct. We expect this to be 

the case with our classical study of QGP.

The thesis is organized into six chapters. A summary of each one, 

excluding the introductory chapter, is given below.

CHAPTER II : In this chapter we present a derivation of CHD from 

the classical kinetic equation by taking appropriate moments. The CHD 

equations were first obtained through heuristic arguments by Kajantie 

and Montonen(ref.l5 ) in cold collisionless plasma limit.
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It should be pointed out that there are, in the literature, two 

kinds of kinetic equations

1. In the first kind, the single particle (distribution 

function) phase space for quarks is augmented to take color 

degree of freedom into account. As a consequence this kinetic 

equation has a drift term in color space due to color exchange
i

of quarks with the gluon fields. The kinetic equation also 

contains a drift term in momentum space (like a Vlasov 

equation) due to the action of color force.

2. The second kind of kinetic equation does not have an 

augmented phase space but the single particle distribution 

function has a matrix structure in color space. The kinetic 

equation also has a matrix structure in the color space. 

CHD equations are obtained, in cold collisionless limit, from both

the kinetic equations by taking appropriate moments. In the first case 

we found that when the distribution function is separable in color and 

momentum variables then, the moment equations are identical to the CHD 

equations of ref 15. In the second case we do not require such an 

assumption.

The CHD equations have some similarity with hydrodynamic 

equations of the electrodynamic plasma in the sense that both of them 

have four flux conservation and energy-momentum equations. But the 

most important difference between them is that CHD equations contain 

color charge evolution equations, showing that color charge can be 

exchanged with the gluon fields.

It should be mentioned that the hydrodynamical equations derived 

in this chapter correspond to quark-plasma only. One would expects the
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gluons to thermalise as they interact among themselves. Hence there 

would be a set of equations to describe the hydrodynamical evolution 

of the thermal gluons. But this has not been worked out to date. One 

of the difficulties may be in determining the nature of the collision 

term in the corresponding kinetic equation.

The hydrodynamical equations derived in this chapter will be used
t

together with the Yang-Mills equations (providing the dynamics of the 

gluon fields) to study various physical situations in the subsequent 

chapters.

CHAPTER III: We first use the CHD equations described in chapter

II to study longitudinal oscillations of QGP. The study of

longitudinal oscillations is important because it is one of the

simplest manifestation of collective behaviour of the system.

Moreover, even though they are stable they can contribute to energy 

density and pressure of the plasma. They can also influence the

spectra of emitted particles.

For simplicity, we consider the plasma to comprise of two species 

(particle and antiparticle). The color density fluctuations in such a 

system can cause longitudinal oscillations. The basic equations 

describing the oscillations are a set of coupled non-linear partial 

differential equations. In the linear limit (when the strength of the

non-abelian term is very small) they will reduce to abelian plasma 

oscillation equations and give rise to the usual plasma oscillation

frequency. For simplicity we setup the oscillation problem in 1-space

and 1- time dimension. The partial differential equations are reduced 

to ordinary differential equations by using a stationary wave ansatz 

(^=x+pt). The equations contain a parameter e which characterizes the
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strength of non-abelian term(arising due to the inherent non-linearity 

of color fields). For certain values of e it was found that the

oscillations have two distinct modes: (i)the usual plasma mode for

which the oscillations are at plasma frequency and the amplitude is 

nearly constant, (ii)a non-linear mode arising due to non-abelian 

terms with frequency higher than the abelian mode. Also, the amplitude
t

is greatly modified in this mode. It is not clear when the transition 

from the abelian mode to the non-abelian mode and vice versa will take 

place but the transition is sudden. For large values of e the

oscillations show chaotic behaviour. It is difficult to see how this 

novel feature could have been obtained by the use of perturbation 

theory. A detailed derivation of the equations will be given together 

with discussion of numerical results. This work is published in 

Phys.Rev.D,39,646(1989).

As we have already mentioned, the oscillations show chaotic 

behaviour for some values of e. It is likely that in such a parameter 

regime, if one does a full x-t problem, the oscillations may get

damped and contribute to the thermalisation of QGP.

CHAPTER IV: This chapter examines the screening of a moving test

sheet source in QGP at finite temperature. Screening can be used for
17finding a signature of the QGP. In fact, Matsui and Satz have 

suggested that the screening of the color potential in QGP can 

suppress the binding of quark-antiquark (qq) pairs.This is because the 

qq pair cannot form a bound state in the plasma if it’s binding radius 

is greater than the Debye length in the plasma. It turns out that the 

production of JA|/ (cc) meson will be suppressed in the plasma and it 

can serve as a signature of QGP in RHIC experiments. Indeed, the JA|/
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suppression is observed in NA38 experiment at CERN which was performed 

after the suggestion was made. However, there are other mechanisms 

which can also explain the suppression of J/y. The different 

mechanisms actually lead to different results in magnitude and pattern 

for the suppressions. Hence a detailed investigation of QGP screening 

in a very realistic situation is necessary.

We would like to mention that the CHD equations derived in Chapter 

II are valid in cold collisionless limit only. For the study of 

screening properties they are augmented by introducing a pressure 

gradient term in the CHD force equation to take effects of finite 

temperature into account. Equation of state for relativistic free 

quark-gas at temperature greater than the critical temperature and 

also the equation of state near the critical temperature, as obtained 

from the lattice calculations, are used to close the CHD equations.

The screening of a moving test source in QGP has already been 
19studied earlier. It was found that when the source has a relativistic 

velocity, its static potential is modified owing to its coupling with 

the magnetic sector. However, in this study the plasma was considered

to be abelian. Our study reveals that even when the test source is 

moving with a non-relativistic velocity, the static field potential is 

significantly modified. This modification arises primarily because of 

the non-abelian nature of the plasma interaction. To be specific, our

results indicate that with an increasing source velocity the screening 

becomes weaker as compared to the static source case. Moreover, the

screening behaviour shows an oscillatory structure over and above the

mean screening. An expression for a gauge invariant "effective" Debye 

length is found which depends upon gluon field terms.
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Derivation of the basic equations of the screening, the results of

calculations and their implications on J/vjr suppression will be

discussed.

CHAPTER V: This chapter deals with the filamentation instability 

in QGP comprising of two counter streaming species. The motivation of 

such a study comes from RHIC experimental situation. When two heavy
t

nuclei collide at very high energy, it is expected that they become 

transparent to each other. This can be visualized as two fluxes of 

color fields streaming against each other and partially decelerating 

each other. We study the stability of such a system against the

perturbations. The geometry is very similar to that of filamentation 

instability in the electrodynamic plasma.

The filamentation instability in the QGP was first studied by
19Yu.Pokrovsky et al . We have derived the dispersion relation for the 

instability, using the linearized color hydrodynamical equations. The 

growth time of the instability is found to be smaller than the the 

total interaction time of the two colliding nuclei. Further the 

non-linear state reached after the instability develops is analyzed 

in the stationary frame ansatz. Our analysis shows that a considerable 

fraction of initial energy of the plasma fluxes goes into energy of 

waves and into energy random motion. Thus, the directed velocity of 

the beams becomes smaller and this effect enhances the stopping power 

of the nuclei. The derivation of dispersion relation and the 

non-linear equations(in the stationary frame) , will be presented. The 

numerical solutions of the non-linear equations and an analysis of 

time series for estimating the stopping power will be discussed.

CHAPTER VI: This chapter contains summary and conclusions.
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Fig.l

The energy density of SU(3) Yang-Mills matter as a function of 

temperature. The dashed line shows the corresponding ideal gas value.
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