
CHAPTER IV

SCREENING OF A MOVING SOURCE

In this chapter screening of a moving test source will be 

analyzed. The chapter begins with an introduction for the motivation 

for studying the screening of a moving source in QGP. Then the 

derivation of the basic equations describing the screening will be 

presented In the last section numerical solutions of the equations 

will be discussed.

4.1 INTRODUCTION: The screening of color electric fields is

important, because it is a reflection of collective behavior of the

QGP, which in turn has influence on its hadronization. As a

consequence, the screening property leads to signatures for detecting
the formation of QGP in the laboratory. For example, it was proposed*

that if the plasma is produced in heavy ion collisions, then charge

anti-correlations between pions of similar rapidity would be weakened.
2In another study, Matsui and Satz suggested that if the screening

length Aq is less than the "Bohr" radius of quark-antiquark (in

particular cc) pair, the production of JA|/ (cc) meson would be

suppressed. This can also serve as a signature of QGP in heavy ion

collision experiments. The NA38 experiment at CERN has indeed observed

suppression m J/\j/ production. However, non-plasma explanations of the
3experiments, in the form of collisional loss by a hot hadron gas , 

have also been put forward, and as yet there is no consensus that the 

observed J/y suppression is due to the screening in QGP.

It should be stressed that, these different mechanisms proposed
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for the J/vj/ suppression, lead to different results for the magnitude

and the pattern for the suppression. Therefore, it is possible, at 

least in principle, to distinguish the genuine plasma effects from 

other effects. At this juncture, it thus appears useful to study other 

dynamical effects, that can arise in the plasma, and which can affect 

the screening of a color test source. In this chapter, we study one 

such effect, viz., screening of a moving test source. It is quite 

realistic to consider such an effect, because the q-q pairs are indeed 

moving in the plasma. The problem of screening of moving test source 
has been analyzed in the Coulomb plasma literature^. The analysis show 

that the expression for the Debye shielding viz., 0 = q/rexp(-r/Aj-j) is 

not only valid for the static point source, but also valid for the 

moving particles as long as their velocity is much less than the

thermal velocity of the plasma particles. This behavior is strongly 

modified when the test particle’s velocity is greater than the thermal 

velocity of the plasma particles. Similar study for a moving source

screening has been carried out in QGP^ and not surprisingly it was 

found that, for massless particles, when the test source is moving 

with a relativistic velocity then the screened potential become

strongly anisotropic. It should be mentioned that in this study*’ the 

plasma was considered to be essentially abelian.

It is obviously of interest to examine, if some genuine

non-perturbative non-abelian effects can influence, the screening of a 

moving test source. This is because the color charge evolution 

equations of the hydrodynamic equations we derived in chapter II 

indicate that when the plasma is moving in a static color potential,

its color charge precession can occur. This can make the screening of
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the moving source in QGP different than that in a Coulomb plasma. To 

carry out the non-perturbative study of the screening we have used the 

CHD equations derived in the second chapter. As the CHD equations have 

been obtained in the cold collisionless limit we have extended them by 

adding a pressure gradient term in the momentum balance equation to 

incorporate finite temperature effects, which are crucial to the study 

of screening. Using these extended equations, and equation of state 

for a massless quark gas, we have obtained a closed set of equations, 

for the colored particles and the color field amplitudes.

In a non-abehan theory it is difficult to study the screening 

of a test charge because the charge of the test source can flow into 

the gauge fields and vice’ versa. Hence it is useful to have a gauge 

invariant definition of the charge which can be used as a measure of 

the screened charge of a test source. The definition of a gauge 

invariant charge arising from the expression for an effective Debye 

length is used to examine the non-abelian screening.

The equations goveminig the screening of a moving point source 

has a two dimensional cylindrical geometry, demanding solutions of 

coupled non-linear partial differential equations. Clearly, numerical 

work to solve them can be quite involved. Hence for simplification, 

instead of a point source we have considered the screening of an

infinitely thin slab test charge. The results, thus obtained, cannot 

be directly applied to screening of a moving point source but we 

believe they might reveal qualitatively new features of non-abelian 

screening.

It will be shown that due to the non-abelian effects, screening 

of a moving test source is significantly modified compared to the
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static source screening, even when the test source is moving with a 

non-relativistic velocity.

4.2 Basic Equations for Screening : As mentioned earlier we have 

extended the CHD equations, by including finite temperature effects in 

the form of a pressure gradient term in the force equation, and an

equation of state relating the pressure with temperature. Such finite
l

temperature effects arise, in a natural way, from a kinetic theory 

approach for deriving the hydrodynamical equations (see for example
Hemz^). The extended CHD equations in the non-relativistic limit

are,

an
+ V-<"AVA> (4.1a)

mAl3t + VAV V, glAa
-> ^

Ea + VA - Ba ^VPA (Alb)

at + vA.v Aâ^abcF-^'1'b A b Ac (4.1c)

where and P^denote the mass and the pressure of particles of specie 
A, and the fields E and B are defined by E* = F^° and B* = I

’ a a * o a n /

ijkpik In the non-relativistic limit these equations are subjected

to color neutrality conditions ^n^Q I^aQ = 0, where the suffix ’o’

denotes equilibrium values. In Eq. (4.1b) one must include a term

involving collisions between particles belonging to the two different 

species. This term is neglected in the present study and the

justification for it is given in Appendix A.

Eqs. (4 1) do not yet form a complete set of equations. They 

can be made complete by choosing an equation of state (eos) for the

plasma. Equation of state and number density for a massless massless
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ideal gas are given by

PA = Wa4 <4-2a>

"A = ds Nd TA3 <42b>

where N, is number of degree of freedom, h and d are factors which
U | o o

depends upon the choice of statistics. For a massless quark gas hg= 
7/8 (tc?90) and d$= 3/4(C(3)/rt?. For an SU(2) quark gas with a single 

flavor N^= 4. Then, we use the relation

PA = <W"ATA <4-2c>

Equations (4.1-4 2) together with the Yang-Mills equations

(see Chapter 2) form a closed set. We now simplify these equations. We

consider a plasma comprising of two species (particles and

antiparticles). Since our interest is to find out, how the color

electric field of a moving test source is screened by the plasma, we

go to a frame in which the test charge is at rest, but the plasma is

moving. We assume that when no perturbation is introduced in the

plasma the two species move with equal velocity VQ in the z-direction

and have equal equilibrium density n . The color neutrality condition

in equilibrium is then IjaQ = -I^ and the net equilibrium current is

zero. If the point test charge is at rest at origin, then the

equations for the colored fluid (Eqs. 4.1) and the Yang-Mills

equations are most conveniently described in cylindrical geometry. All

adynamical variables (n^, V^, I^a, T^, A ) depend, in general, on the 

cylindrical coordinates (z,p,0). The symmetry in the problem, however,

reduces this dependence to coordinates z and p only, so that the
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dynamic quantities are independent of the azimuthal angle 0. But for 

the case of an infinitely thin slab, the symmetry will make these 

quantities independent of p. Before we write down the equations for 

screening it is worth emphasizing again that, our interest is in 

non-abelian features of screening, and the simple 1-dimensional 

problem (as we shall see) exhibits some of them. The actual two
i

dimensional problem, of the screening of a point charge, would surely 

contain these effects with different geometrical factors, and perhaps 

some additional features, not present in the 1-dimensional geometry.

As the point source is immersed in the fluid, the colored 

fluids are polarized and color potentials - and color currents get 

generated. We restrict our attention to the steady state problem by
Q ____

setting all time derivatives ^ = 0. The coupling with the magnetic

sector may dropped if the velocity of the test source is
1 2non-relativistic i.e. V « 1 and hence we set A = A =0. In addition 

o
3we choose to work in an axial gauge with = 0. Thus, we need to 

consider only the time like component A° of the color potential.

The equations for studying screening of an infinite sheet source 

can be obtained from Eqs. (4.1) and the Yang-Mills equations. With the

flow in z-direction they are, 

d2A°
—21 = 'Si nA!Aa ' 471 8 K 6(z) (43a)
dz s

8 eabc AS az A? = «[ "A VA Ua <43b>

3z <"A VA> = 0 ^

* >Aa Si Aa = ' ^ ® PA (4M>
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(4.3e)VA h !Aa = -8 V- A? L“abc b c

Eq (4 3a) and (4.3b) are respectively, the Gauss law and Ampere’s law 

relevant to the Yang-Mills fields. In Eq. (4.3a) Ka is the color 

charge component of the test sheet source. An interesting non-abelian 

feature is seen in Eq. (4.3b) where, unlike the electrodynamic
i

(abelian) plasma, the steady state currents, affect the static

potential in the non-abelian plasmas. In writing Eq. (4.3d), we have

ignored the mean energy of each specie compared to the thermal energy
2of that specie i.e. m^V^ « T^. This is justified as thermal velocity 

of the plasma particles is comparable to the velocity of light (due to 

the choice of eos).

Eq. (4.3c) may be readily solved to yield

(4-4)

Combining (4.4) with (4 3b) we find

nl V1 n V = n-V, oo 2 2

T T _ 1 .od Ao
ha + za - iTV" eabc Ab 3z Ac 

o o
(4.5)

Eq (4.5) may be used to eliminate I^ as a variable.

The force balance equation i.e. Eq. (4.3d) can also be integrated, 

and we get,

P d.‘o ' TT^T !lbAb

so that the corresponding density is

n. = N, dc T„ A d s o

P d
1 ' ""4.H.T..!lbAb

s o

(4.6)

where is 1 for A = 1 and -1 for A = 2.
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Introducing dimensionless variables, we next substitute, A° =

aoAa’ ria = Va- ta = T0tA and x = ^AD in ^ where aQ’

iQ, Tq are some normalizing factors, and is the linear
("perturbative") Debye length defined by A'2 = ^3Nddg2/2hsj g2i^T2 We

obtain,

T~ZAa = Ia<IbAb> + l/3(PdsMhs) 1,(1, AbP
uX d ' ^ ^

“ eabcAb dxAc + HVWb -source

d
3x *aI„ = -a 11 - pd^hgLA,.

3
s b b abc b c

(4.7 a) 

term

(4.7b)

We have defined a
8 ao AD

' .n V
o o

p =
e i a 6 o o
....T' "

Eqs (4.7a-b) are the final equations describing the 

screening of a moving (V^ * 0) test sheet source in a classical QGP.

The parameter (3 = o o is essentially the ratio of "average"

potential energy per particle to the average kinetic energy. Thus, as 

for the electrodynamic plasma parameter, it may also be related to the

plasma parameter i.e (3 =
n A

. If we take Debye length A ~ 1/4 -

1/3 fm and a typical energy density ~ 2-5 Gev/fm3of the QGP then [3

10' 10'
g a0 ad

The parameter a = —y-------- characterizes the strength of
0

the non-abelian terms in Eq (lla-b). We express it in terms of other
ga a A

physical quantities that we are familiar with, i.e. a = --4)-.— = g{3( aVo
Al eJi/2(-4-),where o is the mass density and e L is the thermal

D th V q th

energy of the plasma particles. In order to have an estimate about the 

range of values that a can take, let us assume (arbitrarily) that the 

test source which moves with non-relativistic velocity Vq, has value 

Vq (max)= 0.4. We then get a > g 10"2.
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Introducing dimensionless variables, we next substitute, A0 =
3.

a A I1n = 1 I , T. = T tA and x = z/A~, in the equations, where a ,
OdidOaAOA U O

iQ, Tq are some normalizing factors, and A^ is the linear 

("perturbative") Debye length defined by A’^ = ^N^d^^h^ g^i^T^. We 

obtain,

“2Aa = 'a'W + 1/3< fW V'b V,
EabcAb“3xAc (' + Pds/4hs'bAb) 'source

(4.7 a) 

term

dx !a =

We have defined a

W/4VbAb

S ao AD
", P

£ . A, I abc b c

g a„ & o o

(4.7b)

o o o
Eqs. (4.7a-b) are the final equations describing the

screening of a moving (V^ * 0) test sheet source in a classical QGP.

o 
T

g i aThe parameter p = —^—- is essentially the ratio of "average"

o
potential energy per particle to the average kinetic energy. Thus, as 

for the electrodynamic plasma parameter, it may also be related to the

plasma parameter i.e P
n AJ

If we take Debye length A ~ 1/4

1/3 fm and a typical energy density ~ 2-5 Gev/fm3of the QGP then P

10"
10~2 The parameter a

g a_ A
Tj~—— characterizes the strength of 
v0

the non-abelian terms in Eq (lla-b). We express it in terms of other
ga o A^

physical quantities that we are familiar with, i.e. a = —-c------  = gP( on0V0
A4 e )1/2(~X~),where o is the mass density and E is the thermal

D lK v Vq j th

energy of the plasma particles. In order to have an estimate about the

range of values that a can take, let us assume (arbitrarily) that the

test source which moves with non-relativistic velocity Vq, has value

Vq (max)= 0.4. We then get a > g 10"2. -
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2 2Eq.(4.7b) has the following obvious constant of motion Ij + ^ +

= constant (4.7c)

We first demonstrate that, in the limit Vp V2 -> 0, the above 

equations reduce to the usual static test source problem. From 

equation (4 4) we note that, since n^ and nj are finite even when VQ 

0, Vo/V^ must also stay finite in this limit.If we now multiply Eq.
1

(4.5) and Eq. (4.7b) either by Vj or V2 and take the limit Vp V2 0 

we get the following constraint conditions on I , A and A ,

2

Eabc ^ 

eahc

d A b 3x Ac = 0

A, I b c 0

(4.8a)

(4.8b)

Eqs. (4.7a)-(4.7b) together with the subsidiary conditions Eqs. (4.8a) 

and (4.8b) describe screening of a static infinite sheet source in

QGP. We note that all the non-abelian terms disappear from the

equations and the screening is essentially abelian. Note also that

Eq. (4.7b) is redundant since I (a = 1,2,3) become constant. This
a

j

shows that for a static source A, ^ A and I are vectors parallel in 

color space, while for a moving test source there will be a non-zero 

angle between them. Thus for a static source all the non-abelian terms 

from in Eqs(4.7a-b) will vanish and the screening behavior becomes 

similar to that in the case for Coulomb plasma. Hence one can expect 

that with increasing a screening behavior should become more abelian 

(as that is the case with a static source).

We, thus, know the equations that need to be integrated, to 

study the screening in the plasma when VQ = 0 and VQ * 0. For both 

the cases they are difficult to solve analytically. We have therefore
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solved them numerically and the results are presented in the next

section However, without solving the equations, we first show the

non-abelian effects, in the screening of a moving test sheet source,

m the plasma. Eqs. (14a-b) may be combined to generate an equation

for I A , viz 
a a

d2

dx <w = - 6a0 I *e3 abc
A ^ a Ab a* Ac) (j + ^bV2)]

| + source term (4.9)

where 0 = (3 d^ hg.

In the static (3/at = 0 ) situation, the "potential" energy IflAa 

is gauge invariant quantity and the equation above shows that it is 

screened by a non-abelian Debye length A^^^, which is a dynamical 

quantity given by the gauge invariant expression,

DNA 'i ■ 6“9 'a eabc Ab Si* \ ' 1 + 02/3(Ib Ab)2 -2
(4.10)

The above equation shows that screening of a moving sheet source 

in QGP is strongly influenced by dynamical non-abelian effects. From 

this we define a gauge invariant charge Qr^ = I^-baGI^^A^A^,which 

takes into account exchange of color charge with the gauge fields. It 

ought to be mentioned that the expression for the gauge invariant 

charge that we have obtained is similar to that obtained in the study 

of color screening in classical Yang-Mills theories with a single 

external source. To fully investigate the novel qualitative and 

quantitative features of this we must solve Eqs.(4.7a,b)numerically. 

These are presented in the next section.

4.3 Numerical Results and Discussion :

In addition to Eq.(4.7c),we find from Eqs. (4.7a-b) the
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following conservation laws

4As2

<3ir !bAb
x4

I,A, = constant b b (4.11a)

and

3VbtV=M (4'Ub)
where, = e^A^ ^ A£ and M is a constant.

Eq. (4.11a) has a clear physical interpretation in terms of 

conservation of the sum of field energy and interaction energy of the 

particles and fields. Note from Eqs.(4.7a-b) that M ,M and M3are 

related to color charge fluctuations of the Yang-Mills field. The 

second term on the R H.S of Eq.(4.11b) is a consequence of the 

exchange of color charge between the fields and the material

particles. Eq(4.7c) implies that the magnitude of the color charge is 

constant and only its precession is permitted by Eq. (4.7b).

The numerical approach, adopted to solve the differential 

equations for screening, described in the previous section, is the

fourth order Runge-Kutta method, with variable step size. We also use, 

the conserved quantities ( Eqs. (4.11a-b) and Eq.(4.7c)) as checks on 

our numerical work The results of numerical solutions are depicted in 

Figs 1-2. In these figures, we plot the force IE = IE, on a color 

charged QGP fluid element, due to the infinite test sheet, as a

function of the distance from the source. As I E is a gauge invariant 

quantity (this is clear from the gauge transformation property of Eq.

(4.1b)), we find such a plot more physical than the conventional plots
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of potential vs. distance

To obtain solutions of Eqs.(4.7a-b) we need to specify the 

boundary conditions on the variables Afl, and I (a=l, 2, 3) at

some distance away from the source. However, all these variables are 

gauge dependent. To study the screening in gauge independent way, we 

construct useful gauge invariant physical quantities from Aa’ 35tAa and 

I such as — potential energy I Ao .force IE, the gauge invariant
& a a

charge Qim and the three conserved quantities as defined by

Eqs.(4.7c,4.1 la-b). For a screening solution the non-abelian field

strength should vanish exponentially at distances greater than the
2 2Debye length. Therefore, it is necessary to have Q -* 1^ as x -* <» 

i.e. at very large distances from the source, the gauge invariant 

charge is the invariant color charge carried by the fluid alone 

whereas the charge carried by the gauge field is vanishingly small.

Before we present the numerical results, a brief discussion

about the choice of boundary conditions is in order. Our objective is 

to study the effect of change in velocity of the moving test charge, 

on its screening. For this we must vary the parameter a. However, the 

values of gauge invariant charge Q ^ and M are seen to depend upon 

the value of a. Therefore we must vary the parameter a (keeping P

fixed) and the boundary conditions on the variables A , g^A and l& in 

such a manner that all the six physical quantities, considered above, 

remain fixed at the boundary.

Fig.(la) represents the non-abelian screening when the test 

source is moving. The upper curve corresponds to value a = 15, while 

the lower curve depicts the case a = 5 (having higher velocity

compared to the case with a = 15). If one considers e*'fall off of EE
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one finds that the screening length is larger for the smaller value of 

a. Thus the screening is weaker for the smaller values of a. Fig (lb) 

shows the non-abelian screening for a different set of boundary 

conditions (compared to Fig.(la)) and for two different values of a, a 

=10.(upper curve) and a = 5.(lower curve). Again we consider e"1 fall 

of the force, and we find that the screening length is larger for
i

lower a values.

Note that the force IE now exhibits, novel oscillatory 

behavior, over and above the usual mean screening effects. Physically, 

the oscillatory behavior arises, because of the response of 

non-abelian plasma, to a moving test source. If we compare, the 

exponential decay length of the "mean" force in the non-abelian case 

with the abelian case, we find that the former is significantly larger 

i.e. the mean non-abelian screening is weaker. This feature arises, 

due to the fact that, color dynamics is involved in the non-abelian

screening. The color charge vector of the fluid element processes, so 

that, it is not always possible for it to have an . opposite 

orientation, to the color vector of the test charge. Hence it requires 

a longer distance to screen the field of the test charge. When we 

change the parameters a and the boundary conditions, qualitative

features of screening remain the same, but some details change.

Our results show that if we increase the value of a, screening 

becomes abelian and oscillatory behaviour slowly diminishes. Moreover, 

our study shows that non-abelian screening is sensitive to the value 

of gauge invariant charge Q* . Indeed, the lower curve in Fig.(2)

depicts the screening when the boundary conditions on Aa,-^-...A&, and

I are the same as that of the upper curve in Fig.(lb) but the value
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of a is changed to 100. Hence the value of gauge invariant charge at 

the boundary(and also M) is changed. The upper curve in this figure

is the same as that in Fig(lb). This figure shows that when the gauge 

invariant charge is more at the boundary the force become more

oscillatory, and the screening is weaker in this case.

It should be emphasized that over many different sets of 

boundary conditions the numerical solutions have been studied and it

was found that the qualitative features of the solutions remains the 

same. Hence, the general features of our results are independent of

any specific choice of the parameters and the boundary conditions. The 

numerical results presented here are merely representatives of a 

larger set of parameter choices and boundary conditions.

4.3 Summary and Conclusions :We have studied the dynamic 

screening, of an infinite color sheet source, moving in quark matter. 

We find that, due to the motion of the test sheet, the screening 

behaviour is modified significantly. Further, it is clear from the 

equations that this is entirely due to the non-abelian nature of the 

plasma. The new features, we observe are,

1) non-abelian effects come into play only if the test source

is moving.

2) increase in the mean screening length - or weakening of

screening - due to dynamic non-abelian effects.

3) oscillations in the screening behaviour.

It is hard to see how perturbation theory can reveal these 

features of the non-abelian screening. The second feature may be

understood in a qualitative manner as follows. The orientation (in
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color space), of the color charge vector 1^ of the fluid element is 

not, due to precession, always exactly opposite to that of the color 

vector of the test source It, therefore, takes a larger distance, to

shield the charge on the test source. The third feature of 

oscillations, appears to be similar in nature, to the non-abelian 

longitudinal plasma oscillations, discussed in the previous chapter.
i

Also, it ought to be stressed that, non abelian screening is dependent 

on the value of gauge invariant charge Q* specified at the boundary.

We have not carried out, the two-dimensional, calculations of 

dynamic screening of a point test charge. However, it appears

plausible on physical grounds that, the various aspects of screening, 

found by us in slab geometry, would very likely persist in the full

calculation. We believe, therefore, that the contribution of 

screening of QGP, to JA|t suppression in ultra-relativistic heavy ion 

collision, would become quite complex, and needs very detailed

investigation for realistic experimental situations.
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APPENDIX-A

If two species interpenetrate, there would be some transfer 

of momentum from one specie to another. In this situation, the 

equation of motion for the two species can be (phenomenologically) 

written as

aV, VP,m ^ + mVj.VVj = glj.CVVjXiy - ^ - VVfV2> (A.1)

VP,,m ^ + mV2.VV2 = gI2a(Ea+V2xBa) - * + VW (A.2)

Here o is the collision frequency, which is related to the mean free
8 ’ <V >

path and the thermal velocity <VQ> by the formula \) = ---- . In the

equations above, one can take the length scale for the pressure

gradient term to be of the order of screening length An. Thus, we may
m<V >

neglect the collision term if P/nA^ » -----^where, is

hydrodynamic velocity.

We take the Debye length * 1/4 - 1/3 fm, and the mean
8 3free path l = 0.5 fm for a QGP with energy density e = 2 GeV/fm , so

Ap
that j— ~ 1. Now for a high temperature plasma, in which the test 

particle has a large rest mass (m^ » T) we have <VQ>/V^ » 1. Thus, 

for the model studies discussed in this work the neglect of the 

collision term is justified.
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Figure Captions

Fig. 1 The screening of the force IE(s I EJ acting on a fluid
a a

element at a distance x from the infinite sheet charge, 

x is in units of "perturbative" Debye length. The value 

of the parameter (5 is 0.1

a) The upper curve represent a = 15 case with the boundary 

conditions:

Aj = 0.796827, A2 = 0.3580845. A3 = 0.2082261,

E A1 * -°®6827' 3x A2 = -0-2580841, ^ Aj =

-0.4302261, = 0.81, I2= 0.3, I3= 0.5.

The lower curve has a = 5 and the boundary

conditions-

Aj = 0.996827, A2 = 0.5580841, A3 = -0.2357739 and the 

rest of the boundary conditions are the same as the

upper curve. Q2 = 0.996109 for both the curves.

b) The upper curve represents the case a= 10, with 
Aj = 0.9, A2 = 0.09, A3 = 0.27, ^ Aj = -0.741428

^ A2 = -0.0741428, ^ A3 = -0.22485, Ij = 1.0,

I2 = 0.1, I3 = 0.3.

The lower curve corresponds to a =5,and the boundary 

conditions:

Aj = 0 8007785, A2 = 1.090078, A3 = 0.2679821 and the

rest of the boundary conditions are the same as the

upper curve O2 = 1.1056254 for both the curves.
rs lliv
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Fig 2 Caption same as Fig(l) Two cases with different value 

of Q are compared

The upper curve is the same as that in Fig (lb).The 

lower curve corresponds to a = 100. All the 

boundary conditions are the same as the upper curve and 

Q2 = 1.13488.
inv
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