Annexure II-A: Filter Design Calculation For Electronics Ballast:

	Remarks	SELECT Resonance . Cap	
	ballast current	0.265	
	Fundamental	0.1837	
	%THD	104.2	
	Tuned factor (N)	3.0	
	Xcr	4681.0	
	Reso. Cap X _{cr}	0.0000068	
	Q reso.	12.0	
	Reso. res	43.3	
	Reso. Ind. L,	1.656	
	Reso. React. X _{Lr}	520.11	
	Source res. Rs	39.270	
	Q of Zs	8.0	
	Source ind Zs in henery	1.00	

		ก-Xª	>	61.9	205.9	0.0	39.1	0.0	19.1	10.7	3.4	0.7	1.8	2.9	2.1		
ltage	ann da chuir a le ann an Annaichte ann an A	U-X _I	>	6.9	205.9	0.0	108.6	0.0	103.7	96.6	45.2	13.2	45.2	91.7	83.2	507.0	
supply vo		U _B (%)	%	143.7	14.9		181.6	0.0	221.3	224.3	109.3	32.6	113.3	232.0	211.8	201.7	
distorted		'n	>	55.0	5.7	0.0	69.5	0.0	84.7	85.9	41.8	12.5	43.4	88.8	81.1	41.1	
vork with		-	%	100.0	3.5	0.0	25.5	0.0	22.2	17.5	7.0	1.8	5.3	9.6	7.8	DF(B)	=%
t in a netv		2	A	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-	
ant circui			A	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	104.2	-
ries reson			%	100.0	73.8	0.0	46.0	0.0	35.8	27.3	27.3	10.7	8.0	14.4	11.8	DF(A)	=%
rs of a se		-	amp	0.2	0.1	0.0	0.1	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0		
armonic orde		Impedance Zs	Ohms	316.6	943.3	1257.3	1571.3	1885.4	2199.5	2827.7	3456.0	4084.3	4712.6	5340.9	5969.2		
aracteristeric l	· · · · · · · · · · · · · · · · · · ·	Impedance Z _f	Ohms	4161.1	43.3	911.2	1664.9	2340.9	2972.4	4161.1	5295.9	6401.6	7489.8	8566.7	9635.9		
rents at ch		X ₁ +(-X _c)	Ohms	-4160.9	0.0	910.2	1664.4	2340.5	2972.1	4160.9	5295.7	6401.4	7489.6	8566.6	9635.8		
es and cur		Ŗ		43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.3		
ces, voltage		X _{tr}	Ohms	520.1	1560.3	2080.5	2600.6	3120.7	3640.8	4681.0	5721.3	6761.5	7801.7	8841.9	9882.2		•
of impedan		×	Ohms	4681.0	1560.3	1170.3	936.2	780.2	668.7	520.1	425.5	360.1	312.1	275.4	246.4		
l results (Å.	hm	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3		
- Numerica		×. X	Ohms	314.2	942.5	1256.6	1570.8	1885.0	2199.1	2827.4	3455.8	4084.1	4712.4	5340.7	5969.0	-	_
Table 1		۲		1	m	4	2	9	7	6	11	13	15	17	19		

Annexure II-B

P-Q THEORY WITH ZERO SEQUENCE CURRENT

It is possible to extend the instantaneous reactive power theory developed for three phase circuit including zero phase sequence components. The instantaneous space vectors ea, eb, and ec are transformed to $0-\alpha-\beta$ coordinates as follows:

$$\begin{bmatrix} e_{0} \\ e_{\alpha} \\ e_{\beta} \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & \frac{-1}{2} & \frac{-1}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{-\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} e_{a} \\ e_{b} \\ e_{c} \end{bmatrix}$$

(AIIB-1)

like wise, the instantaneous space vectors i_{σ} , i_{α} , and i_{β} on the 0- α - β coordinates are given as follows:

$$\begin{bmatrix} io\\i\alpha\\i\alpha\\i\beta \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & \frac{-1}{2} & \frac{-1}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{-\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} ia\\ib\\ic \end{bmatrix}$$

(AIIB-2)

another instantaneous power p_o which is defined as the product of instantaneous space vectors, e_o and i_o on the zero axis:

$$p0 = e0 * i0$$

 $\begin{bmatrix} p0\\ p\\ q \end{bmatrix} = \begin{bmatrix} eo & 0 & 0\\ 0 & e\alpha & e\beta\\ 0 & -e\beta & e\alpha \end{bmatrix} \begin{bmatrix} i0\\ i\alpha\\ i\beta \end{bmatrix}$

(AIIB-4)

(AIIB-3)

$$\begin{bmatrix} i0\\i\alpha\\i\beta \end{bmatrix} = \begin{bmatrix} eo & 0 & 0\\0 & e\alpha & e\beta\\0 & -e\beta & e\alpha \end{bmatrix}^{-1} \begin{bmatrix} p0\\0\\0\\0 \end{bmatrix} + \begin{bmatrix} eo & 0 & 0\\0 & -e\beta & e\alpha \end{bmatrix}^{-1} \begin{bmatrix} 0\\p\\0 \end{bmatrix} + \begin{bmatrix} eo & 0 & 0\\0 & -e\beta & e\alpha \end{bmatrix}^{-1} \begin{bmatrix} 0\\0\\q\\q \end{bmatrix}$$
$$\begin{bmatrix} i0\\i\alpha\\i\beta \end{bmatrix} = \begin{bmatrix} i0\\0\\0\\0 \end{bmatrix} + \begin{bmatrix} 0\\i\alpha p\\i\beta p\\i\beta p \end{bmatrix} + \begin{bmatrix} 0\\i\alpha q\\i\beta q\\i\beta q\\i\beta q \end{bmatrix}$$
(AIIB-5)

from equation (e) the instantaneous currents on the a-b-c coordinates are divided in the following three components, respectively:

$$\begin{bmatrix} ia\\ib\\ic \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{\sqrt{2}} & 1 & 0\\ \frac{1}{\sqrt{2}} & \frac{-1}{2} & \frac{\sqrt{3}}{2}\\ \frac{1}{\sqrt{2}} & \frac{-1}{2} & \frac{-\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} i0\\0\\0 \end{bmatrix}$$
$$+ \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{\sqrt{2}} & 1 & 0\\ \frac{1}{\sqrt{2}} & \frac{-1}{2} & \frac{\sqrt{3}}{2}\\ \frac{1}{\sqrt{2}} & \frac{-1}{2} & \frac{-\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 0\\icp\\i\betap \end{bmatrix}$$
$$+ \sqrt{\frac{2}{3}} \begin{bmatrix} \frac{1}{\sqrt{2}} & 1 & 0\\ \frac{1}{\sqrt{2}} & \frac{-1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{1}{\sqrt{2}} & \frac{-1}{2} & \frac{\sqrt{3}}{2} \\ \frac{1}{\sqrt{2}} & \frac{-1}{2} & \frac{\sqrt{3}}{2} \\ \frac{1}{\sqrt{2}} & \frac{-1}{2} & \frac{-\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 0\\icq\\icq\\i\betaq \end{bmatrix}$$

$$= \begin{bmatrix} ia0\\ib0\\ic0 \end{bmatrix} + \begin{bmatrix} iap\\ibp\\icp \end{bmatrix} + \begin{bmatrix} iaq\\ibq\\icq \end{bmatrix}$$

Page No All.B.2

((AIIB-6))

where

$$ia0 = ib0 = ic0 = \frac{i0}{\sqrt{3}}$$

let the a, b, c phase instantaneous powers be p_a , p_b , and p_c respectively. by applying the equation (f), following is obtained:

[pa]		[ea * ia0]		ea * iap		ea * iaq
pb	=	eb * ib0	+	eb * ibp	+	eb*ibq
pc		ec * ic0		ec*icp		ec * icq

pa		[<i>pa</i> 0]		[pap]		[paq]	
pb	=	pb0	+	pbp	+	pbq	
pc		pc0		pcp		pcq	

the instantaneous reactive power in each phase P_{aq} , p_{bq} and p_{cq} make no contribution to the instantaneous power flow in the three phase circuit which is represented by p_o and p, because the sum of the instantaneous power is always zero.

Annexure II-C Results of Shunt Active Power Filter

RESULT

The simulations as well as experimental results are given here.

Simulation results

A complete model of the shunt active filter for 5 amps, 800V DC with input voltage of 440V and 5-amp load was implemented MATLAB (SIMULINK) and the most important results will be presented to compare actual and simulated results. The fundamental frequency of the system is 50 Hz. The wave-form of source voltage, source current, load current and compensating current is observed for a-phase, b-phase, & c-phase using scope available in the simulation tools. These results show that total harmonic current required by the load is supplied by the shunt active filter and absent from the source. Result are shown at the end of this chapter

ACTIVE FILTER SIMULATION BLOCK DIAGRAM

Page No All.C.3

ACTIVE FILTER POWER CIRCUIT DIAGRAM FOR SIMULATION

THREE PHASE TO ALPHA-BETA TRANSFORMATION

POWER CALCULATION AND COMPENSATING REFERANCE CURRENT GENERATION

HYSTERISIS CURRENT CONTROLLER

SOURCE -VOLTAGE, SOURCE –CURRENT, LOAD-CURRENT AND COMPENSATING-CURRENT FOR A-PHASE

SOURCE -VOLTAGE, SOURCE -CURRENT, LOAD-CURRENT AND COMPENSATING-CURRENT FOR C-PHASE

p-ACTIVE POWER, q-REACTIVE POWER, p_0 AND P_{dc} FOR ACTIVE POWER FILTER

EXPERIMENTAL RESULTS:

CONTROL WAVEFORM FOR v-ALPHA AND i-

ALPHA

CONTROL WAVEFORM FOR v-BETA AND i-BETA

CONTROL WAVEFORM FOR pac AND p (POWER)

CONTROL WAVEFORM FOR qac AND q

(REACTIVE POWER)

CONTROL WAVEFORM FOR ic-ALPHA & ic-BETA

CONTROL WAVEFORM FOR ica, & icb

CONTROL WAVEFORM FOR ica, AND icc

ACTUAL WAVEFORM FOR SOURCE VOLTAGE AND LOAD CURRENT FOR A-PHASE

ACTUAL WAVEFORM FOR SOURCE VOLTAGE AND LOAD CURRENT FOR B-PHASE

ACTUAL WAVEFORM FOR SOURCE VOLTAGE

AND LOAD CURRENT FOR C-PHASE

ACTUAL WAVEFORM FOR SOURCE VOLTAGE AND COMPENSATING CURRENT FOR A-PHASE

ACTUAL WAVEFORM FOR SOURCE VOLTAGE AND COMPENSATING CURRENT FOR B-PHASE

ACTUAL WAVEFORM FOR SOURCE VOLTAGE AND COMPENSATING CURRENT FOR C-PHASE

ACTUAL WAVEFORM FOR SOURCE CURRENT AND SOURCE VOLTAGE FOR PHASE-A

ACTUAL WAVEFORM FOR SOURCE CURRENT AND SOURCE VOLTAGE FOR PHASE- C

ACTUAL WAVEFORM FOR Vce AND COMPENSATING CURRENT FOR A-PHASE UPPER IGBT

ACTUAL WAVEFORM FOR Vce AND COMPENSATING CURRENT FOR A-PHASE LOWER

IGBT

ACTUAL WAVEFORM FOR SOURCE CURRENT AND SOURCE VOLTAGE FOR PHASE-B

FFT ANALYSIS OF SOURCE CURRENT WITHOUT COMPENSATING

(CT PROBE RATIO 10)

Fundamental	50Hz	
Harm no.	Voltage magnitude Volts	Voltage %
1.	0.2478	100.00
2	0.0001	0.04
3	0.0054	2.18
4	0.0002	0.08
5	0.0517	20.86
6	0.0001	0.04
7	0.0228	9.20
8	0.0001	0.04
9	0.0008	0.32
10	0	0.00
11	0.018	7.26
12	0 .	0.00
13	0.0115	4.64
14	0	0.00
15	0.0003	0.12
16	0.0001	0.04
17	0.0079	3.19
18	0	0.00
19	0.0056	2.26
20	0	0.00
21	0.0002	0.08
22	0.0001	0.04
23	0.0035	1.41
24	0	0.00
25	0.0026	1.05
	THD%=	24.85

FFT ANALYSIS OF SOURCE CURRENT WITH COMPENSATION.

(CT PROBE RATIO 10)

Fundamental Frequ	ency= 50 Hz	
Harm no.	Voltage magnitude Volts	Voltage %
1	0.2554	100.00
2	0.0035	1.37
3	0.0046	1.80
4	0.0014	0.55
5	0.0136	5.32
6	0.0019	0.74
7	0.0058	2.27
8	0.0025	0.98
9	0.0004	0.16
10	0.0015	0.59
11	0.0051	2.00
12	0.0006	0.23
13	0.0014	0.55
14	0.0008	0.31
15 .	0.0024	0.94
16	0.0011	0.43
17 .	0.0027	1.06
18	0.0005	0.20
19	0.0008	0.31
20	0.0007	0.27
21	0.0013	0.51
22	0.0003	0.12
23	0.0028	1.10
24	0.0005	0.20
25	0.0006	0.23
	THD%=	7.02

