
Chapter 6

Interacting Particle Bivarite GT 
Strength Densities in SAT-LSS 
and /?-Decay Rates for Some 
A > 60 fp-Shell Nuclei Relevant 
for Presupernova Stars

6.1 Introduction

Given a one plus two-body hamiltonian (H) and a transition operator (0), in 

SAT-LSS the smoothed form of the IP transition strength densities (I§(Et, Ef)) 

in general takes a bivariate convolution form [Fr-87a, Fr-88b] with the NIP 

strength density being convoluted with a spreading bivariate Gaussian due to 

interactions. The construction of IP bivariate strength densities, allows one 

to address a wide variety of nuclear physics and nucler astrophysics problems; 

earlier applications, of the convolution form, in nuclear physics are given in 

[Fr-87a, Fr-88b, Po-91]. Applying the construction, explicitly in terms of the 

(partial) bivariate moments, of the IP bivariate strength densities, for the first
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time to the problems of interest in nuclear astrophysics (it is well known [Wo- 

80a, Wo-80b, Ra-84, Pi-94], that knowledge of level densities, partition func­

tions, orbit occupancy numbers, /3-decay strength densities and other related 

statistical quantities is essential for a quantitative study of various problems 

in nuclear astrophysics — therefore SAT-LSS is ideally suited for applications 

in this important area of physics), this chapter deals with the construction 

of /3-decay Gamow - Teller (GT) strength distributions and in particular for 

A > 60 neutron excess fp-shell nuclei that are of interest in presupernova evo­

lution calculations. The /5-decay rates for thesevnuclei play a very important 

role [Be-79, Au-90] in determining the structure of the core of massive presu­

pernova stars and hence on their subsequent evolution towards gravitational 

collapse and supernova explosion phases.

The earlier calculations of /?- decay rates at zero temperature mainly used 

the “gross theory” (which is indeed a statistical theory of /Tdecay) due to Taka- 

hashi and Yamada [Ta-69] and the microscopic quasiparticle random phase ap­

proximation (QRPA) [Kl-84]; shell model calculations are feasible and available 

for lighter (A < 40) nuclei [Br-85]. Fuller, Fowler and Newman [Fu-80] (here­

after referred as FFN) for the first time dealt with in detail the problem of 

calculating /3-decay rates (and also other steller weak interaction rates which 

include electron capture rates, neutrino energy loss rates etc.) at non-zero 

temperatures appropriate for presupernova evolution studies and tabulated 

the rates for 226 ds and fp-shell nuclei with 21 < A < 60. They (FFN) have 

used experimental data for energy levels and transition matrix elements (com­

parative half lifes tog(ft)if) where available and for the unmeasured matrix 

elements, zeroth order shell model calculations and also detailed shell model 

results (for GT strengths) wherever available are employed; recently Oda et al
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[Od-94] extended for ds-shell nuclei the FFN tabulations by using the results 

of complete shell model calculations with WildenthaPs interaction [Wi-84]. 

Steller evolution calculations including FFN rates showed that the FFN rates 

affect significantly the evolution of presupernova stars - they led to greater 

reduction of electron fraction throughout the core [We-85], However more 

recently Aufderheide et al [Au-90] pointed out that the calculation of presu­

pernova evolution generates neutron rich cores and therefore emphasized the 

need for reliable /3-decay rates for neutron rich A > 60 /p-shell nuclei; they 

tentatively conclude that /3-decay of neutron rich nuclei (particularly 63Co; 

they in fact studied 6°.62.63.64C,0 isotopes) prevents the decrease of overall elec­

tron fraction and affects substantially the post-core-silicon-burning behavior. 

With this observation, the calculation of /3-decay rates for A > 60 neutron 

excess nuclei has acquired new impetus. Calculations of the rates involve 

the construction of the bivariate GT strength densities. So far only [Au-90, 

Au-94, Ka-91] dealt with the neutron excess A > 60 /p-shell nuclei; in Ref. 

[Au-90, Au-94] Aufderheide et al used methods similar to that of FFN and in 

Ref. [Ka-91] Kar, Sarkar and Ray (hereafter referred as KSR) introduced a 

method, combining the ideas of the “gross theory” with a zeroth order SAT 

result (described ahead in Sect. 6.4.3). In this chapter a method is developed 

for /3-decay rates calculations where GT bivariate strength densities are ex­

plicitly constructed, starting with an effective nucleon - nucleon interaction, 

using the bivariate convolution form (Eq. (6.2) ahead) for I^gt) • The theory 

for constructing NIP GT strength densities, which enter into the IP theory as 

one of the convolution factors, is given in the preceding chapter. We will now 

give a preview.

Sect. 6.2 gives the IP theory for constructing GT strength densities and
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Sect. 6.3 gives the formalism for calculating /3-decay rates where and the 

state density IH(E) enter explicitly. In Sect. 6.4 the calculational procedure 

is described. Sect. 6.5 deals with GT NEWSR strength. Sect. 6.6 gives the 

results of /3-decay rates at densities and temperatures typical of presupernova 

stars. Finally a summary is given in Sect. 6.7. The results given in this 

chapter are first reported in [Ko-94b].

6.2 IP strength densities for Gamow - Teller 
transition operator

Given H = h + V the IP strength densities I^=h+V(ii,', E/) produced by a 

transition operator O, as derived in [Fr-87a, Fr~88b], will take a bivariate 

convolution form with the two convoluting functions being the NIP strength 

density 1^ and a normalized spreading bivariate Gaussian (pBlv-g) due to V 

(interactions),

I$*h+V(Ei,Ej) = $ ® pIbiv^cJA, Ef] (6-1)

In large spectroscopic spaces, just as in the case of state densities (Chapter 

3, Eqs. (3.3, 3.4)), one can use an extended version of (6.1) with some plau­

sible approximations [Fr-87a, Fr-88b, Ko-89] by decomposing the space into 

5-subspaces and unitary configurations. For the GT(/5±) operator, using pn 

unitary configurations and noting that GT operator does not connect (5.3) 

two different ,5'-subspaces, the IP strength density with partitioning, following 

[Fr-87a, Fr-88b, Ko-89] together with an additional approximation described 

ahead, is,
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’£7) - Yj 1l

h:[m^in;,],[m^mi
lO(GT)

V;[m^my,(ui^m/1]r,, 
Po(GT) /]> (6.2a)

Po(GT) {*,y)

Po(GT);Biv-g(x, V, 0,0, <rv([mj,, mjj), <rv([m', m£]), C) (6.26)

In (6.26) one is assuming that for ’m"^,np’m"£, the marginal centroids are

Mw = <<!?tc?V)£inp’m«V (0tc?)K-mn]5 Moi = <O0tv)£mp-m"ty(00t)£m*'m"],

and the marginal variances are -M2o = {O^0V2)lmp’m"l/(C)t ^})[mp.mn]_{M10}2, 

Mm = {OC?ty2)N|.m-]/ (OOt)fm^m"] - {Moi}2 and they in turn are as­

sumed to be close to the corresponding state density centroids and variances. 

This approximation is extremely well satisfied by fp-shell interactions. In 

5 = 0 spaces, with one unitary orbit each for protons and neutrons and 

(mp, mn) —y (mp ± l,mn 1) for ff* transitions, the above approxima­
tions are equivalent to assuming that Mjo = (C>tOY)mp’mnj0}Tnp,Trln ~

(y)mp,m" = o, Moi = (otvo)mr’ran/ (o\o)mp'mn = {c?e>tv)mp±i>m»:f:i/

(QQ\)mP±l<m»Tl ~ ^Yjmp±l,m„Tl __ ^20 _ (p\QV^mp,mn j Q^mp,m„

- Mlo ~ (V2)™*-™" and M02 = (oW20)mfm” / {q\- M2X
— (poW2)mr±l'mn*1 j ( QQ\}mp±l,mn^l _ jy-2^ ^ (y2jmp±l,mn?l fQr

GT(P^) operators; see also (2.38). Using (2.58, 2.71, 2.73), one can calculate 
{O^C?V2)£ni£ and (C?t(9)fml traces and test the above approximations. We 

have verified explicitly that for the fp-shell interactions MWH2 [Mc-70] and 

FPM13 [Ri-91], the centroid shifts are ^ 0.1 MeV and variances differ from 

(V2) by £ 3%.

Besides the assumptions for the marginal centroids and variances, which
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are well justified for fp-shell nuclei, (6.2) also assumes that the bivariate cor­

relation coefficient £ = £ is independent of the configurations involved. At 

present, because of the complexities in the proper definition of £ as a function 

of the initial and final configurations, one has to make this assumption [Fr- 

88b]. From NIP calculations in ds and fp-shells (carried out using the results 

of Chapter 5), one sees that 0.6 < £ < 0.9. For example for 0(GT(J3~)) in 

ds-shell with 170 energies, £ = 0.78 for (mp = 4,mn = 4) and £ = 0.8 for 

(mp = 6,mn = 6). Similarly in fp-shell with ilCa energies, £ = 0.84 for 

(mp = 6, mn = 16), and £ = 0.87 for (mp = 6,mn = 10). In addition it 

is known from [Dr-77b, Fr-88b, Sa-93] that for various other operators, with 

realistic ds-shell interactions 0.6 < £ < 0.9. Moreover in the two-body EGOE 

model [Fr-88b], which extends the £ ~ 1 — 1/m result given in Chapter 5 for 

random one-body hamiltonians, one has the result £ ~ 1 — 2/m where m is 

the number of active nucleons. Thus in EGOE, £ ~ 0.8 for m = 10 with a 

one-body transition operator and a two-body hamiltonian. Therefore in the 

present calculations, (6.2) is used with £ a free parameter whose value will be 

determined by demanding that certain experimental data is reproduced by the 

theory but with the constraint 0.6 < £ < 0.9.

In this chapter, as we are dealing with fp-shell nuclei, (6.2) is used for 

constructing iv q and 1^*,^'T. i\r ~

6.3 Formalism for /2-decay rates at finite tem­
perature

The /2-decay rate Tp(E, —» Ef) is the number of /2-decays per second from a 

given initial state |E,) of the parent nucleus to the final nuclear state \Ej) and
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Tp(Ei Ef) oc [glBF(Et -+ Ej) + g\Bar{El -> Ef)\, where gv and gA are 

respectively the vector and axial vector coupling constants and Bp and Bar arc 

the Fermi and Gamow - Teller transition strengths respectively. Including the 

phase space factor / that incorporates the dependence of the rate on nuclear 

charge Ze and the available /3-decay energy (phase space available for the 

leptons), Tp takes the form Tp(E, -* Ej) = Cf(Z, Q, - Ef)[g2vBF(Et -» Ef) + 

g\Bar{Ei —» Ef)] where C is a constant and with Q the Q-value for /3-decay 

from GS, Qt = Q+E{. Fixing the value of C [Br-77, Wu-66] by using the tog ft 

values (ft — (£n2)f/Tp) for pure Fermi transitions, one can write down the 

expressions for ground state half lifes and /3-decay rates at finite temperature. 

Before going further it is important to note that in practice in /3-decay rates 

calculations for /p-shell nuclei the Bp term is neglected as the Fermi strength 

is concentrated in a narrow energy domain (width Q.l57ZA-V3MeV) and 

high up in energy (centroid ~ lAAZA~ll3MeV) [Ta-69, Ta-73]. With this, 

by writing Bqt in terms of GT strength density Io(gt) an^ the state density 

I?(E), the expression for GS half lifes is,

rQ 9a
k9v,

M

t1/2(GS) = {6250 (a)} x

^-0(GT){^GSi Ef)
f(Z,Q — E/)dEj (6.3)

Ih(Egs)

In (6.3), the factor 3 comes due to our definition of I* in Chapter 5 1 and £ is 

the so called quenching factor which is required because the calculated (shell

model) GT sum rule strength is always found to be larger than the observed 
strength [Ho-83]. The usual value of 0.6^£ [Ho-83] and ^ =1.4 as given

Bn discrete version BGT(JiEi - JjEj) = (2/,- + l)"1 Em,MAG 
\E{which in the continuous version becomes {/(£.', )}”* Ea£B, 0€Ej,/i \(Eja 
I(^gt)* I Ei0)|2. Noting that Ea \E*a) —^ |J5,)7(jB,) and replacing the sum with I^GT^ 

using (2.37), gives rise to factor 3 in (6.3).
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in [Br-77] are adopted. Our primary concern in this chapter is to calculate 

/?-decay rates X(T) at finite temperature and they are defined by the thermal 

average (with weight factor e~E/kllT 1(E)) of the rates from all parent nucleus 

states [Fu-80]. Then the expression for A(T) is,

A(T)
6250

j e-Et/kBTjH^dEt -1
X

9aj dEte~E'lkBTIH(E{) JT * dEf j f J-1 3£

nH$(GT)(EuEfy
JH(Ei) .

f(Z, T, Q, — Ef)

ln2(s~l)
6250

y e~E'/kBTIH(Et)dEt
x

f dE.c I g,CT,(£„-E/)/(z,r,0,

(6.4)

The second equality in (6.4) shows that in order to calculate /?-decay rates one 

needs to construct explicitly the bivariate GT strength densities I^Gr^ and 

the stae densities IH(E). The phase space factor f(Z,T,Q, — Ef) appearing 

in (6.4) is given by the integral [Au-90, Fu-80, Wu-66],

f(Z,T,E0 = Qi - Ej) = r
J1

F(Z,e.K(^-l)^(eo-e.)2 

{1 + exp[(jie - c„)/(kBT),}]
(6.5)

In (6.5) eo = E0/me, pe = fi/me and (kBT)e = kBT/me where me is the rest 

mass of the electron in MeV. For the Coulomb factor F(Z, e), the Schenter 

and Vogel [Sc-83] expression is used,

F(Z,e) = -j==exp[a(Z) +/3(Z)y/T=l};
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a(Z) = -0.811+4.46(-2)Z + 1.08(-4)Z2

= —8.46(—2) + 2.48(-2)Z + 2.37(-4)Z2 

P(Z) = 0.673 - 1.82(-2)Z + 6.38(—5)£2 

= 1.15(—2) + 3.58(—4)Z — 6.17(—5)Z2

(e- 1) < 1.2

(e-1) > 1.2 

(e-1) < 1.2 
(e- 1) > 1.2

It should be mentioned that / in (6.3) follows from (6.5) by dropping the 

denominator in the integral in the R.H.S. of (6.5). The only unknown quantity 

left to be determined is the electron chemical potential p. In the case of 

presupernova core where the density ~ 108 gms/cc, the electrons are close to 

being relativistic and hence p is found by inverting the expression for the lepton 

number density. Given the density pr (p in units of 107 gms/cc), temperature 

T (T in MeV is denoted by T) and the electron fraction Ye in the presupernova 

star, there are hierarchy of approximate expressions that can be used for p (see 

[Au-90, Ra-92]) and in the present calculations Eq. (14) of [Au-90] is used,

i + (___) (^n)2/3p = i.ii(p7re)1/3 (6.7)

Using (6.4 - 6.7) /?-decay rates can be calculated by constructing state densities 

IH(E) and the strength densities Io(gt)(j®», ^l)- The procedure for calculation 

of these densities is given in the following section together with comments on 

some of its variants. As an example, the results for five neutron excess fp-shell 

nuclei 61,62Fe, 62-64Co (61Fe -+ 61Co, 62Fe -4 62Co, B2Co -* 62Ni, B3Co 

63Aft, mCo —> 64Ni) are given in Sect. 6.6.

6.4 Calculational procedure

Our primary concern in this chapter is to demonstrate that the theory for 

/1-decay rates calculation given by (6.3 - 6.7) combined with (6.2) and the
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methods of Chapters 3-5 (i.e. SAT-LSS) is applicable in practice. Because 

of this limited aim, we followed simpler methods for constructing state and 

strength densities unlike the more elaborate procedure used for example in 

Chapter 4 in the case of level densities, and they are described in Sect. 6.4.1 

and 6.4.2 respectively. Some useful comments are given in Sect. 6.4.3.

6.4.1 State Densities

For the calculation of state densities IH(E) the following procedure is adopted. 

The s.p. orbits are chosen to be the five orbits I/7/2, 2/>3/2, I/5/2, %Pi/2 and 

1.99/2 with s = 0,0,0,0 and 1 respectively. Following the calculations in Chap­

ter 4 for fp-shell level density data analysis, the traceless SPE for the four 

/p-orbits are chosen to be —2.664 MeV, —0.644 MeV, 3.526 MeV and 1.366 

MeV respectively and the (fp) — g$/2 separation &(fP)-g;>/Q is chosen to be 

6MeV] for 64Co however it is taken to be 7 MeV. The calculations are per­

formed in .S' = 0 © 1 © 2 spaces using pn unitary configurations with (fp) 

and g9/2 orbits as unitary orbits; /h is constructed using the above SPE (i.e. 

no renormalizations due to the interactions are included - their main effect 

is assumed to be in fixing the value of A(/P)-S9/2) and spherical orbits. The 

density pg is constructed by calculating the spreading variances using surface 

delta interaction (SDI) with strength G — 20/A MeV (this value follows from 

Chapter 4). The GS is fixed by demanding that the total level density h(E) 

at 8 MeV excitation is same as the value given by the (a, A) values that follow 

from Dilg et al smoothed expression (C.15). This choice is made because for 

the nuclei under consideration (61“62Fe, 6J~mCo, 62-64Ni) , the low - energy 

spectrum is not known with certainty to be complete. For example, with Dilg 

et al values for (a, A) together with the back shifted LLC Fermi gas formula
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(C.3, C.4), for 62Fe, 61Co and 64Co, the h{E) (in MeV~l) values at (4, 8) 

MeV are (13, 455), (61, 1452) and (180, 3765) respectively. In general it is 

found that with the calculated GS, the density at 4 MeV is quite close (within 

30%) to the value predicted by Dilg et al (a, A) values. It is also verified that 

the calculated spin-cutoff factors ((Xj(E)) are quite close to the values given by 

(C.10). For example for 62Fe, 61 Co ,64Co and 62Ni nuclei the calculated and 

Dilg et al values at 8 MeV are (3.9, 3.99), (3.72, 4.15), (4.24, 4.40) and (3.40, 

3.99) respectively. Also for even-even and odd-odd nuclei for positive parity 

states and for odd-A nuclei negative parity states, the 5 = 2 intensities in the 

GS domain are < 30% of the 5 = 0 intensities (thus the g9/2 orbit is seen to 

be important). In addition to these tests, the GT NEWSR as predicted by 

the present calculations are compared with shell model results as described in 

Sect. 6.5 ahead. The level density calculations here are carried out in the same 

spirit as in [Fr-88b] and it is seen that as long as the densities are constructed 

well upto 8 MeV (the /?--decay Q-values and Eqs. (6.3, 6.4) show that densi­

ties only upto ~ 8 MeV are needed in the present exercise), the details of the 

SPE and interaction V do not alter the final results significantly. It should be 

stressed that, as in the studies of [Fr-89a, Fr-89b, Ko-91, Ko-93a, Fr-94] and 

Chapter 4, there are many other variants of the above procedure which can be 

used in practice.

6.4.2 Strength densities

The GT strength densities I§(gt)(Ei, Ef) are constructed for the GT{fi~) op­

erator using (6.2) with ( as a free parameter. In the present study the coulomb 

correction to GT centroids and the variances [Ta-69] are ignored and it is as­

sumed that the parametrization of ( takes care of the same . ■' : • ; they
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can be easily put back. Io{gt)(Eii E/) is constructed using the results of Chap­

ter 5. In the first calculation ( is determined for each nucleus by demanding 

the observed half lifes are reproduced within the constraint 0.6 < ( < 0.9. 

The deduced values of ( are 0.6, 0.7, 0.61, 0.68 and 0.72 and the correspond­

ing half lifes (in seconds) are 244, 69.4, 88.8, 31 and 0.3 for 61 Fe, 62Fe, 62Co, 

63Co and 64Co respectively. The half lifes are calculated using (6.3). These C 

values change quite substantially (also fluctuates) as we go from 61 Fe (( = 0.6) 

to MCo (( = 0.72) while the (valence) particle number m changes only by 3 

units. The EGOE form ( ~ o-f b/m immediately shows that it is not possible 

to reproduce the above variation within the framework of SAT. Therefore the 

above values of ( are not acceptable in a SAT calculation. The plausible alter­

native is to seek a best fit solution to the observed half lifes of the nuclei under 

consideration (in the present exercise they are m~62Fe, 62~64Co isotopes) by 

assuming the form of ( to be Co + Ci/m where m is the number of valence 
nucleons/holes, i.e. by minimizing (^°9(Tl/2)cai — £°g(Tl/2)expt)2■ The

i—nuclei
resulting C values and the corresponding calculated half lifes are given in Ta­

ble 6.1. The C values are around 0.67 (changing from 0.68 for 61Fe to 0.668 for 

64Co). It should be obvious that the calculated half lifes, with these ( values, 

are the predictions of SAT-LSS. The differences between the calculated and 

experimental values are of the same order of magnitude as in other models 

[Ta-69, Kl-84, Ka-91]. Before going further it should be pointed out that in 

general for a given nucleus, as ( decreases the calculated half life increases and 

sometimes the increase is fast.

Using the C values given in Table 6.1, the IP strength densities Iq(GT) are 

constructed using (6.2). Using these densities, state densities IH(E)

and Eqs. (6.4 - 6.7), the /0-decay rates are calculated.
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Table 6.1. Calculated and experimental f3~-decay half lifes. The method of 

determining the correlation coefficient ( is given in the text. The calculated 

half lifes are given in the fourth column. The Q-values and experimental data 

for half lifes are taken from [Le-78]. The KSR results are from [Ka-91, Ra-92] 

and the QRPA result, which is available only for mCo in the set of nuclei 

considered in the table, is from the first reference of [Kl-84].

Nucleus Q
(MeV) c

half life (s)
Calc. Expt. KSR QRPA

64Co 7.307 0.668 1.9 0.3 3.5 10.0

63Co 3.662 0.671 52.7 27.5 52.1 —

e2Co 5.315 0.675 16.5 90 15.1 —

62 Fe 2.327 0.675 267.2 68 183.4 —

61 Fe 3.890 0.680 23.0 360 34.5 —

6.4.3 Comments

Firstly, it is useful to recognize that the formalism, for /?-decay rates calcu­

lations, given by (6.2 - 6.7) together with the procedure outlined above for 

calculating state and bivariate GT strength densities, allows one to investi­

gate the effects of nucleon-nucleon interaction on the /Fdecay rates as I^gt) 

and IH are constructed explicitly in terms of hamiltonian parameters.

Secondly, it should be pointed out that in going from (2.37) to (6.1) and 

then to (6.2a, 6.2b), in order to construct IP strength densities, involve some 

general principles/approximations and some of them are yet to be understood 

well; for example the correlation coefficient is assumed to be independent of 

the configurations involved.
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Thirdly, with the final interest is in calculating /?-decay rates for nuclear 

astrophysics studies, it is plausible that one may adopt a phenomenologi­

cal/empirical viewpoint in applying (6.2 - 6.7), i.e. in the construction of 

Io(GT) an<^ • This is what was done earlier by KSR: The KSR method of

constructing Io(gt) and IH is based on a simpler version of (6.2), in parts 

it is an extended version of the “gross theory” given in [Ta-69] and in addi­

tion it uses experimental data also. The basic difference beetween the present 

method and KSR method is that the KSR method assumes single unitary orbit 

in applying (6.2) so that the summation in (6.2) disappears. Without several 

unitary orbits the agreements found for level densities, as given in [Ko-91, 

Fr-94, I<o-93a, Chapter 4], and Sect. 6.4, could not have been obtained and 

it is well known that the assumption of single unitary orbit is unsatisfactory 

[Ha-76, Fr-88b, Fr-89a, Fr-89b, Ko-89, Ko-91, Ko-93a, Fr-94] - however this is 

ignored. With a single unitary orbit Io(gt) = Io(gt) ® Po(GT)-,g wiH be a bi­

variate Gaussian with CLT applied to Ih. Then the ratio IHJIH in (6.4) is the 

conditional density P2i-o(gt)(Ej\Et) (see (2-23)) which will be a Gaussian (as 

is a bivarite Gaussian) with normalization given by GT NEWSR strength 

Mo(gt)(E)- The NEWSR strength is calculated using an expression similar to 

(6.8) given ahead. The conditional density P21 ;0(GT)-g(&/1 A,) *s constructed 

by parametrizing its centroid and variance and in order to correct for the 

departures from this single Gaussian approximation in some cases KSR add 

[Ra-92, Ka-94] Edgeworth corrections with (71, 72) values chosen such that 

|7i| < 0.3 and [72] < 0.3. As can be seen from (2.42) the conditional centroid 

ec changes linearly with energy, ec(E,) = e0 + (E{ and the conditional width is 

a constant, ac = cr0( 1 — C2)1/2 where a0 ~ 07/ = (<?{( + cry)1/2. The centroid 

ec is parametrized (assuming ( = 1) and the value of <rc is fixed, after adding
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Coulomb correction as in [Ta-69], by minimizing square of the difference in the 

logarithm of the calculated and experimental half lifes exactly as in the “gross 

theory”. In addition, instead of calculating lu{E) and carrying out integration 

over all E{ s in applying (6.4), KSR use the experimental energies and spins 

(wherever observed) so that the calculation of state densities is completely 

avoided. In the formalism presented in Sects. 6.2 - 6.3 and 6.4.1 - 6.4.2, the 

densities and IH are explicitly constructed and used alongwith (6.4) within 

a single framework unlike in the KSR method where the explicit construction, 

with interactions, is avoided as described above. It should be added that the 

s.p. spectrum and the V used in Sect. 6.4 give = er{( + <7y ~ 8 MeV and 

the expression <rc = cr#( 1 — f2)1/2 gives, with ( ~ 0.67, ac a 6 MeV which is 

compatible with the value of ac deduced by KSR. In summary KSR approach 

is a semiempirical approach taking lightly into account some aspects of SAT, 

and their approach to the construction of strength densities is in the same 

spirit as the approach to state densities proposed in [Ha-82b]. In addition, the 

KSR method is a limiting case of the present method.

Finally a biproduct of (6.2) and the results of Chapter 5 is that they give 

a formalism for calculating GT NEWSR strengths. This is described in the 

next section before giving the results for /Tdecay rates.

6.5 GT NEWSR strength

Using (6.2) and the explicit form for Io(gt) as given in Chapter 5, a simple 

expression for NEWSR strength Mo(gt){E) for 0(GT) can be written down,
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1 { aj3 iV0Jtf,((mp,m„)

Na - ma(mp

X

N„
>”V>) j .

jH,( mp,m„)^ = d(mp, mn)pg(E] eh(mp, ran), ov(mp, mn)) 

(mpimn)e(mpimn)
(6.8)

In (6.8) caf} define 0(GT) and a and /? are proton and neutron spherical orbits 

respectively for GT{(3~) and vice versa for GT(/?+). The formula (6.8) whose 

origin lies in the NIP expression (5.10) for Io(or)5 is quite similar to the sum 

rule formulas used in earlier studies (though derived using different methods) 

[Ma-86, Ka-91; Appendix A of [Au-90]] of fp-shell nuclei; thus (6.8) provides 

a proper justification and corrections to the formulas given in [Ma-86, Ka- 

91; Appendix A of [Au-90]]. The corrections to (6.8) come from the centroid 

shifts and the variance corrections to pg as discussed below (6.2) and they 

are small for fp-shell nuclei. In order to test the applicability of (6.8) for fp- 

shell nuclei, the GT{{3~) NEWSR strengths are calculated for 54>se>mFe and 

58,60Ni isotopes by first carrying out level density calculations and determining 

the ground state, exactly as described in Sect. 6.4. These nuclei are chosen 

as there are corresponding shell model results available in literature [Bl-85, 

Ra-83], though calculated using different interactions and including only fp- 

orbits (i.e. without the g9/2 orbit). The results shown in Table 6.2 clearly 

demonstrate that (6.8) gives results that are in close agreement with shell 

model values. Thus (6.8), which is easy to apply, can be used in future studies 

of GT NEWSR and quenching of GT strengths. The calculated sum rule 

strengths (from GS) with quenching factor £ = 0.6 for 61 Fe, 62Fe, 62Co, mGo
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and 64Co nuclei are 20, 18.9, 18.8, 19.7 and 20.8 respectively. The 61-62Fe 

sum rule strengths are compatible with the 60Fe results given in Table 6.2. 

We conclude from these results that the various choices made in Sect. 6.4 are 

quite reasonable.

Table 6.2. Calculated and shell model (SM) results for GT({3 ) NEWSE.

Nucleus NEWSR
Calc. SM

54Fe 17.8 15.1“
s6Fe 22.6 22.1“
60Fe 31.6 33.56
5SNi 20.2 16.6“
60Ni 24.2 24.6“

a) [Ra-83], b) combining GT{(i+) NEWSR value 9.47 given in [Bl-85] with the 

sum rule result Sp- — Sp+ — 3(N — Z).

6.6 Results for (3-decay rates at finite tem­
perature

Using the formalism given in Sects. 6.2, 6.3 and the procedure outlined in 

Sect. 6.4, which is described in the flow chart in Fig. 6.1, /?-decay rates for 

the five nuclei 61Fe, 62Fe, 62Co, mGo and 65Co are calculated at densities 

p = 109 gm/cc, 10s gm/cc, 107 gm/cc, temperatures T — 3 x 109, 4 x 109, 

5 x IQ9 °K (T = 4 x 109 °K compared to 0.345 Me.V) and electron fractions 

Ye = 0.5, 0.47 and 0.43. The results are given in Table 6.3. It is observed that 

the excitation energy (of the parent nucleus) contribution to the decay rate is 

quite significant upto about (6 — 8) x kgT and beyond that their importance 

(~ 10 — 15%) goes down rapidly; note that with F, = 5kgT, e~E'!kBT ~ 1/150.
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It is also observed that for a given nucleus the rates go down as the correlation 

coefficient ( decreases. For example for 64Co, with ( — 0.668, A(7') = 0.3'15 ,s-1 

while with ( — 0.72, A(T) = 1.33 s-1 for p — 108 gm/cc, T = 4 x 109 °K and

Table 6.3. 0 -decay rates for 64Co, 63Co, 62Co, 62Fe and 61 Ft nuclei

Nucleus p(gms/cc)
Ve

Temperature (°K)
3 x 109 4 x 109 5 x 109

Rate (s x)
MCo 109 0.50 0.85 x 10"1 1.04 x 10"1 1.30 x 10-1

0.47 0.91 x 10_l 1.11 x 10"1 1.38 x 10"1
0.43 1.00 x 10-1 1.21 x HT1 1.49 x 10-1

108 0.50 3.10 x 10-1 3.43 x lO"1 3.84 x lO”1
0.47 3.14 x 10'1 3.47 x 10"1 3.87 x 10“x
0.43 3.19 x 10-1 3.52 x 10"1 3.93 x lO"1

107 0.50 3.83 x 10-1 4.14 x 10-1 4.54 x lO"1
0.47 3.83 x 10"1 4.14 x lO"1 4.54 x lO-1
0.43 3.84 x 10-1 4.15 x 10"1 4.55 x 10"1

mCo 109 0.50 0.12 x 10~3 0.65 x 10"3 2.26 x lO”3
0.47 0.15 x 10-3 0.76 x 10~3 2.54 x 10~3
0.43 0.21 x 10~3 0.94 x 10“3 2.98 x lO'3

108 0.50 0.85 x 10“2 1.31 x 10“2 2.09 x 10-2
0.47 0.88 x 10“2 1.35 x lO"2 2.14 x 10"2
0.43 0.93 x 10~2 1.41 x 10“2 2.21 x 10-2

107 0.50 1.63 x 10~2 2.17 x 10“2 3.06 x 10-2
0.47 1.64 x 10“2 2.18 x 10~2 3.07 x lO"2
0.43 1.65 x 10-2 2.19 x 10~2 3.08 x lO"2

62 Co 109 0.50 0.29 x 10"2 0.50 x 10~2 0.84 x 10-2
0.47 0.34 x 10"2 0.56 x 10“2 0.92 x 10~2
0.43 0.41 x 10"2 0.65 x 10~2 1.04 x 10"2

108 0.50 3.06 x 10-2 3.64 x 10"2 4.41 x 10“2
0.47 3.12 x 10-2 3.71 x 10"2 4.48 x 10“2
0.43 3.22 x 10-2 3.80 x 10“2 4.58 x 10“2

107 0.50 4.41 x 10"2 4.97 x 10"2 5.74 x lO"2
0.47 4.42 x 10“2 4.99 x 10“2 5.76 x lO"2
0.43 4.44 x lO"2 5.00 x 10~2 5.77 x 10-2
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Table 6.3 (cont’d)

Nucleus p( grns/cc)
Ve

Temperature (°K)
3 x 109 4 x 109 5 x 109

Rate (s 4)
62 Fe 109 0.50 0.04 x 10“4 1.16 x 10"4 9.99 x 10“4

0.47 0.06 x 10"4 1.42 x 10-4 11.50 x 10"4
0.43 0.09 x 10~4 1.88 x 10-4 14.00 x lO"4

108 0.50 2.40 x 10“3 6.56 x 10"3 1.62 x 10"2
0.47 2.57 x 10"3 6.86 x 10"3 1.67 x 10“2
0.43 2.83 x 10~3 7.29 x 10"3 1.73 x 10-2

107 0.50 8.11 x 10“3 1.43 x 10-2 2.71 x 10“2
0.47 8.19 x 10"3 1.44 x 10-2 2.72 x 10“2
0.43 8.30 x 10"3 1.46 x 10~2 2.74 x 10"3

61 Fe 109 0.50 0.36 x 10“3 1.51 x 10~3 4.52 x 10~3
0.47 0.45 x 10“3 1.76 x 10“3 5.07 x 10“3
0.43 0.62 x 10“3 2.18 x 10“3 5.93 x 10~3

108 0.50 1.89 x 10“2 2.71 x 10~2 3.98 x 10"2
0.47 1.96 x 10-2 2.78 x 10-2 4.07 x 10~2
0.43 2.06 x 10-2 2.89 x 10~2 4.19 x 10“2

107 0.50 3.44 x 10~2 4.33 x lO'2 5.72 x lO"2
0.47 3.46 x 10-2 4.35 x lO"2 5.74 x 10“2
0.43 3.48 x 10“2 4.37 x 10"2 5.76 x lO"2

Ye = 0.5 and for the same set of (p, T, Ye) values, for 62Co, A(T) = 3.64 x 10~2 

s-1 for £ = 0.675 and A(T) = 0.46 x 10~2 s_1 for ( = 0.610. By comparing 

the rates in Table 6.3 with the results given by Aufderheide et al [Au-90], 

one observes that the numbers for 63Co are quite similar (in [Au-90] the rates 

are tabulated for p = 108 gm/cc, 107 gm/cc, T = 3 x 109, 4 x 109, 5 x 109 

°K and Ye — 0.5) while for 62 Co the numbers in Table 6.3 are smaller by a 

factor 5 and that for MCo by a factor 8. The numbers given in Table 6.3 are 

much closer to KSR results [Ka-91, Ka-94] and this should not be surprising 

as the method employed by KSR derives from (6.2). More importantly, the 

variation in A(T) with T as can be seen from our results in Table 6.3 is not 

to be found in the first KSR tabulation [Ka-91] but similar variation is found
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in their latest compilation of the rates [Ka-94]. For example for 63Co nucleus 

with p = 109 gm/cc, Ye — 0.5, for T = 3 x 109 °K, 4 X 109 °K, 5 x 109 °K the 

rates A(T) from [Ka-94] and Table 6.3 are (in s-1) (0.37 x 10“3, 0.94 x 10“3,

2.07 x 10"3) and (0.12 x 1CT3, 0.65 x 10“3, 2.26 x 10~3). Similarly for e3Co with 

p — 108 gm/cc, Ye = 0.5 the numbers are (3.6 x 10-2, 4.11 x 10-2, 4.66 x 10~2) 

and (3.06 x 10-2, 3.64 x 10“2, 4.41 x 10-2) respectively. In the case of 62Fe 

with p = 108 gm/cc, Ye = 0.47 the numbers are (5.79 x 10"3, 7.31 x 10-3, 

9.46 x 10~3) and (2.57 x 10~3, 6.86 x 10“3, 16.7 x 10-3) respectively. Thus it is 

plausible to conclude that the method proposed in this chapter, where IP state 

and strength densities are constructed and used for the first time in /l-decay 

rates calculations, is reliable. The goodness of the present method, which is 

based on the smoothed form for GT densities, derives partly from the fact that 

the /?-decay rates involve an averaging (thermal average to be precise). In the 

present method, as the densities are constructed by superposing unitary orbit 

densities, it is easy to go beyond 0Uw spaces.

6.7 Summary

In this chapter a method based on smoothed forms, derived using the principles 

of SAT-LSS, for GT strength densities is developed for calculating /3-decay 

rates. This method is simple as the earlier methods [Au-90, Ka-91] but at 

the same time it incorporates much more microscopic informations as the 

desities Io(GT) an<^ IH(E) are explicitly constructed with interactions and used. 

The present exercise represents a first application of the bivariate convolution 

form for strength densities in nuclear astrophysics problems. A different and 

new result that is derived from the /?-decay rates calculations is that they
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determine a value for the bivariate correlation coefficient (between the nuclear 

hamiltonian and GT operator) Ci C — 0*67. In addition, an expression for GT 

NEWSR strength is deduced. Applications are carried out for some A > 60 

neutron excess fp-shell nuclei.
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