Chapter 6

Interacting Particle Bivarite GT
Strength Densities in SAT-LSS
and p-Decay Rates for Some

A > 60 fp-Shell Nuclei Relevant
for Presupernova Stars

6.1 Introduction

Given a one plus two-body hamiltonian (H) and a transition operator (O), in
SAT-LSS the smoothed form of the IP transition strength densities (1% (E,, E;))
in general takes a bivariate convolution form [Fr-87a, Fr-88b] with the NIP
strength density being convoluted with a spreading bivariate Gaussian due to
interactions. The construction of IP bivariate strength densities, allows one
to address a wide variety of nuclear physics and nucler astrophysics problems;
earlier applications, of the convolution form, in nuclear physics are given in
[Fr-87a, Fr-88b, Po-91]. Applying the construction, explicitly in terms of the

(partial) bivariate moments, of the IP bivariate strength densities, for the first
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time to the problems of interest in nuclear astrophysics (it is well known [Wo-
80a, Wo-80b, Ra-84, Pi-94], that knowledge of level densities, partition func-
tions, orbit occupancy numbers, §-decay strength densities and other related
statistical quantities is essential for a quantitative study of va,rious‘ problems
in nuclear astroi)hysics — therefore SAT-LSS is ideally suited for applications
in this important area of physics), this chapter deals with the con;truction
of f-decay Gamow - Teller (GT') strength distributions and in particular for
A > 60 neutron excess fp-shell nuclei that are of interest in presupernova evo-
lution calculations. The f-decay rates for these’nuclei play a very important
role [Be-79, Au-90] in determining the structure of the core of massive presu-
pernova stars and hence on their subsequent evolution towards gravitational

collapse and supernova explosion phases.

The earlier calculations of f-decay rates at zero temperature mainly used
the “gross theory” (which is indeed a statistical theory of §-decay) due to Taka-
hashi and Yamada [Ta-69] and the microscopic quasiparticle random phase ap-
proximation (QRPA) [KI-84]; shell model calculations are feasible and available
for lighter (A < 40) nuclei {Br-85]. Fuller, Fowler and Newman [Fu-80] (here-
after referred as FFN) for the first time dealt with in detail the problem of
calculating S-decay rates (and also other steller weak interaction rates which
include electron capture rates, neutrino energy loss rates etc.) at non-zero
temperatures appropriate for presupernova evolution studies and tabulated
the rates for 226 ds and fp-shell nuclei with 21 < A < 60. They (FFN) have
used experimental data for energy levels and transition matrix elements (com-
paré,tive half lifes £og(ft);;) where available and for the unmeasured matrix
elements, zeroth order shell model calculations and also detailed shell model

results (for GT strengths) wherever available are employed; recently Oda et al
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[Od-94] extended for ds-shell nuclei the FFN tabulations by using the results
of complete shell model calculations with Wildenthal’s interaction [Wi-84].
Steller evolution calculations including FFN rates showed that the FFN rates
affect significantly the evolution of presupernova stars - they led to greater
reduction of electron fraction throughout the core [We-85]. However more
recently Aufderheide et al [Au-90] pointed out that the calculation of presu-
pernova evolution generates neutron rich cores and therefore emphasized the
need for reliable §-decay rates for neutron rich A > 60 fp-shell nuclei; they
tentatively conclude that SB-decay of neutron rich nuclei (particularly %*Clo;
they in fact studied 5°%%6384C¢ jsotopes) prevents the decrease of overall elec-
tron fraction and affects substantially the post-core-silicon-burning behavior.
With this observation, the calculation of §-decay rates for A > 60 neutron
excess nuclei has acquired new impetus. Calculations of the rates involve
the construction of the bivariate GT strength densities. So far only [Au-90,
Au-94, Ka-91] dealt with the neutron excess A > 60 fp-shell nuclei; in Ref.
[Au-90, Au-94] Aufderheide et al used methods similar to that of FFN and in
Ref. [Ka-91] Kar, Sarkar and Ray (hereafter referred as KSR) introduced a
method, combining the ideas of the “gross theory” with a zeroth order SAT
result (described ahead in Sect. 6.4.3). In this chapter a method is developed
for f-decay rates calculations where GT bivariate strength densities are ex-
plicitly constructed, starting with an effective nucleon - nucleon interaction,
using the bivariate convolution form (Eq. (6.2) ahead) for Ig(GT). The theory
for constructing NIP GT strength densities, which enter into the IP theory as
one of the convolution factors, is given in the preceding chapter. We will now

give a preview.

Sect. 6.2 gives the IP theory for constructing GT strength densities and
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Sect. 6.3 gives the formalisin for calculating §-decay rates where lg(m‘) and the
state density I¥(E) enter explicitly. In Sect. 6.4 the calculational procedure
is described.” Sect. 6.5 deals with GT' NEWSR strength. Sect. 6.6 gives the
results of f-decay rates at densities and temperatures typical of presupernova
stars. Finally a summary is given in Sect. 6.7. The results given in this

chapter are first reported in [Ko-94b].

6.2 IP strength densities for Gamow - Teller
transition operator

Given H =h 4V the IP strength densities IZ=B+V(E, E/,) produced by a
transition operator O, as derived in [Fr-87a, Fr-88b], will take a bivariate
convolution form with the two convoluting functions being the NIP strength
density I§ and a normalized spreading bivariate Gaussian (ppv_g) due to V

(interactions),
15 (B: By) =15 ® popiv-gl B Byl (6.1)

In large spectroscopic spaces, just as in the case of state densities (Chapter
3, Egs. (3.3, 3.4)), one can use an extended version of (6.1) with some plau-
sible approximations [Fr-87a, Fr-88b, Ko-89] by decomposing the space into
S-subspaces and unitary configurations. For the GT(#*) operator, using pn
unitary configurations and noting that GT operator does not connect (5.3)
two different S-subspaces, the IP strength density with partitioning, following
[Fr-87a, Fr-88b, Ko-89] together with an additional approximation described
ahead, is,

240
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ﬂo((;'r) (z,y) =
pg(GT);BIV—Q(x’y;O’O ov([m;, m})), ov(Im], mf}),() (6.28)

+ /
In (6.2b) one is assuming that for PO(E;;‘) ns) g na) , the marginal centroids are

Mo = (Ot ovympmil (ot oympmil ar, = (00T vymimll (oot ml]
and the marginal variances are My, = (OTOVZ) (m; ’“1:']/((9]t O)ympmal _{M012,
Mo = (O C’)fvz) m,,,m,,}/ (C’(’)Jf){’mim — {Mpu}? and they in turn are as-
sumed to be close to the corresponding state density centroids and variances.
This approximation is extremely well satisfied by fp-shell interactions. In
S = 0 spaces, with one unitary orbit each for protons and neutrons and
(mp,my) — (my, £ 1,m, F 1) for ¥ transitions, the above approxima-
tions are equivalent to assuming that Mo = ((’)TOV)"‘P”“"/ ((’)T(’))m”’m" o
(V)mome = 0, Moy = (OTVOymeme ] (O1O)meime = (OOTV)mrttmnztf
(OOtymstmaFl o (VymplmaFL = 0 My = (OTOV2)memn | (0T O)mpimn
~ M2 ~ (VBmemn and Moy, = (O1V2O)mema | (0t Oymema _ pr2
= (00t VHymtlons1 ) ( OOtymetlmFl _ p2 o~ (VEymeEimeFEL for
GT(BT) operators; see also (2.38). Using (2.58, 2.71, 2.73), one can calculate
(@tOVz){m] and (OtO)Im] traces and test the above approximations. We
have verified explicitly that for the fp-shell interactions MWH2 [Mc-70] and
FPM13 [Ri-91], the centroid shifts are < 0.1 MeV and variances differ from
(V% by < 3%.

Besides the assumptions for the marginal centroids and variances, which
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are well justified for fp-shell nuclei, (6.2) also assumes that the bivariate cor-
relation coefficient ¢ = ( is independent of the configurations involved. At
present, because of the complexities in the proper definition of { as a function
of the initial and final configurations, one has to make this assumption [Ir-
88b]. From NIP calculations in ds and fp-shells (carried out using the results
of Chapter 5), one sees that 0.6 < ¢ < 0.9. For example for O(GT(f7)) in
ds-shell with 7O energies, ¢( = 0.78 for (m, = 4,m, = 4) and ¢ = 0.8 for
(m, = 6,m, = 6). Similarly in fp-shell with ¥Ca energies, ( = 0.84 for
(mp = 6,m, = 16), and ¢ = 0.87 for (m, = 6,m, = 10). In addition it
is known from [Dr-77b, Fr-88b, Sa-93] that for various other operators, with
realistic ds-shell interactions 0.6 < ( < 0.9. Moreover in the two-body EGOE
model [Fr-88b], which extends the { ~ 1 — 1/m result given in Chapter 5 for
random one-body hamiltonians, one has the result { ~ 1 — 2/m where m is
the number of active nucleons. Thus in EGOE, ¢ ~ 0.8 for m = 10 with a
one-body transition operator and a two-body hamiltonian. Therefore in the
present calculations, (6.2) is used with { a free parameter whose value will be
determined by demanding that certain experimental data is reproduced by the

theory but with the constraint 0.6 < ¢ < 0.9.

In this chapter, as we are dealing with fp-shell nuclei, (6.2) is used for

constructing PX(GT);B v_g and Ig(GT);B v

6.3 Formalism for 3-decay rates at finite tem-
perature

The fB-decay rate Tg(FE, — Ejy) is the number of §-decays per second from a

given initial state |E;) of the parent nucleus to the final nuclear state |Ey) and
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To(E; — Ef) o [¢2Bp(E, — E;) + ¢4 Bgr(E, — Ey)], where gy and g4 are
respectively the vector and axial vector coupling constants and Br and Bgr are
the Fermi and Gamow - Teller transition strengths respectively. Including the
phase space factor f that incorporates the dependence of the rate on nuclear
charge Ze and the available f-decay energy (phase space available for the
leptons), T takes the form T3(E; — E;) = Cf(Z,Q, — Ef)g% Br(E, — E;)+
94 Ber(E; — Ej)] where C is a constant and with @ the Q-value for S-decay
from GS, @, = @+ E;. Fixing the value of C [Br-77, Wu-66] by using the fog fi
values (ft = (¢n2)f/Tp) for pure Fermi transitions, one can write down the
expressions for ground state half lifes and [-decay rates at finite temperature.
Before going further it is important to note that in practice in f-decay rates
calculations for fp-shell nuclei the Br term is neglected as the Fermi strength
is concentrated in a narrow energy domain (width ~ 0.157ZA~Y*MeV) and
high up in energy (centroid ~ 1.44ZA~3MeV) [Ta-69, Ta-73]. With this,
by writing Ber in terms of GT strength density Ig(GT) and the state density
IH(E), the expression for GS half lifes is,

t12(GS) = {6250 (s)} x

(0 [ oo Ptz - man)” o0

In (6.3), the factor 3 comes due to our definition of I" in Chapter 5 ! and £ is

the so called quenching factor which is required because the calculated (shell

model) GT sum rule strength is always found to be larger than the observed

for 2
strength [Ho-83]. The usual value of 0.64£ [Ho-83] and (-‘(Z-’i) = 1.4 as given

av

IIn discrete version BGT(J;E; -+ JIE!) = (2.’,‘ + 1)”1 ZM.,M! 0 I(E]J]Mjl (OGT);E‘
|E;JiM;)}? which in the continuous version becomes {I(E,)}”" D owcE, peE,u [(Era
l(OGT)f, | Eip)|?. Noting that . _|E,a) = |E,)I(E,) and replacing the sum with Ié‘,(GT)
using (2.37), gives rise to factor 3 in (6.3).
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in [Br-77] are adopted. QOur primary concern in this chapter is to calculate
p-decay rates A(T') at finite temperature and they are defined by the thermal
average (with weight factor e=5/%5T [(E)) of the rates from all parent nucleus
states [Fu-80]. Then the expression for A(T) is,

_ tn2(s7") ~E./kgT 1H -
,\(T)..——é—igo—[[ e i (E,)dE,] x

/ dE,e B /% T [H( ) { /0 * dE, { (%) 2 31:}

n2(s7") —B,/kgT H }_l
= 76250 U ¢ FAE)IE| X

2
/OQ- dE, { (%) 3.8} 1 ery (B EN)f(2,T,Q, ~ E,)}
(6.4)

s

The second equality in (6.4) shows that in order to calculate §-decay rates one

needs to construct explicitly the bivariate GT strength densities Ig(GT) and
the stae densities I”(E). The phase space factor f(Z,T,Q, — E;) appearing
in (6.4) is given by the integral [Au-90, Fu-80, Wu-66],

© F(Z,€)e(€? — 1) (e — €,)*
1 {1+ exp[(p. — )/ (ksT).]}

f(Z,T,E=Qi— Ef)= de.. (6.5)
In (6.5) € = Eo/me, p. = p/m, and (kgT)e = kT /m. where m, is the rest
mass of the electron in MeV. For the Coulomb factor F(Z,¢), the Schenter

and Vogel [Sc-83] expression is used,

F(Z,¢) = expla(Z) + B(Z)Ve—1};

€
Vet —1
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a(Z) = —0.811+ 4.46(—2)Z + 1.08(—4)2? (e—1)<1.2

= —8.46(—2) + 2.48(—2)Z + 2.37(—4)2? (e—1)>12
B(Z) = 0.673—1.82(=2)Z + 6.38(—5) 2> (e—1)< 1.2
= 1.15(=2) + 3.58(—4)Z — 6.17(~5)2? (e—1)>1.2

(6.6)

It should be mentioned that f in (6.3) follows from (6.5) by dropping the
denominator in the integral in the R.H.S. of (6.5). The only unknown quantity
left to be determined is the electron chemical potential x. In the case of
presupernova core where the density ~ 10® gms/cc, the electrons are close to
being relativistic and hence p is found by inverting the expression for the lepton
number density. Givén the density pz (p in units of 107 gms/cc), tempera,ture.
T (T in MeV is denoted by T') and the electron fraction Y, in the presupernova
star, there are hierarchy of approximate expressions that can be used for u (see

[Au-90, Ra-92]) and in the present calculations Eq. (14) of [Au-90] is used,

- -1/3
g = 1.11(p;Y,)!/ 1+( il )2 L . (6.7)
€ 1.11 (p7Y;)2/3

Using (6.4 - 6.7) f-decay rates can be calculated by constructing state densities
TH(E) and the strength densities I5cr)(Eis Ey). The procedure for calculation
of these densities is given in the following section together with comments on
some of its variants. As an example, the results for five neutron excess fp-shell
nuclei #162 Fe, 62-64C¢ (61Fe — 81Co, 2 Fe — ®2Co, %2Co — 52Ni, %Co —

83N4i, %4Co — ® N7) are given in Sect. 6.6.

6.4 Calculational procedure

Our primary concern in this chapter is to demonstrate that the theory for

p-decay rates calculation given by (6.3 - 6.7) combined with (6.2) and the
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methods of Chapters 3 - 5 (i.e. SAT-LSS) is applicable in practice. Because
of this limited aim, we followed simpler methods for constructing state and
strength densities unlike the more elaborate procedure used for example in
Chapter 4 in the case of level densities, and they are described in Sect. 6.4.1

and 6.4.2 respectively. Some useful comments are given in Sect. 6.4.3.

6.4.1 State Densities

For the calculation of state densities ¥ (E) the following procedure is adopted.
The s.p. orbits are chosen to be the five orbits 1f7/, 2pssa2, 1fs/2, 2p1/2 and
1ge/2 with s = 0,0,0,0 and 1 respectively. Following the calculations in Chap-
ter 4 for fp-shell level density data analysis, the traceless SPE for the four
fp-orbits are chosen to be —2.664 MeV, —0.644 MeV, 3.526 MeV and 1.366
MeV respectively and the (fp) — go/2 separation Ay, ,, is chosen to be .
6MeV; for 4 Co however it is taken to be 7 MeV. The calculations are per-
formed in § = 0@ 1 ® 2 spaces using pn unitary configurations with {fp)
and go/, orbits as unitary orbits; I h js constructed using ﬁhe above SPE (i.e.
no renormalizations due to the interactions are included - their main effect
is assumed to be in fixing the value of Ay, ,) and spherical orbits. The
density pg is constructed by calculating the spreading variances using surface
delta interaction (SDI) with strength G = 20/A MeV (this value follows from
Chapter 4). The GS is fixed by demanding that the total level density I,(E)
at 8 MeV excitation is same as the value given by the (a, A) values that follow
from Dilg et al smoothed expression (C.15). This choice is made because for
the nuclei under consideration (8'~¢2Fe, 1-%Co, ¢2-54 Ni) | the low - energy
spectrum is not known with certainty to be complete. For example, with Dilg

et al values for (a, A) together with the back shifted LLC Fermi gas formula
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(C.3, C4), for %Fe, 1Co and ®*Co, the [,(E) (in MeV ') values al (4, 8)
MeV are (13, 455), (61, 1452) and (180, 3765) respectively. In general it is
found that with the calculated GS, the density at 4 MeV is quite close (within
30%) to the value predicted by Dilg et al (a,A) values. It is also verified that
the calculated spin-cutoff factors (¢ ;(E)) are quite close to the values given by
(C.10). For example for ¥ Fe, ®Co 5 Co and ®2Ni nuclei the calculated and
Dilg et al values at 8 MeV are (3.9, 3.99), (3.72, 4.15), (4.24, 4.40) and (3.40,
3.99) respectively. Also for even-even and odd-odd nuclei for positive parity
states and for odd-A nuclei negative parity states, the § = 2 intensities in the
GS domain are < 30% of the S = 0 intensities (thus the gg/ orbit is seen to
be important). In addition to these tests, the GT NEWSR as predicted by
the present calculations are compared with shell model results as described in
Sect. 6.5 ahead. The level density calculations here are carried out in the same
spirit as in [Fr-88b] and it is seen that as long as the densities are constructed
well upto 8 MeV (the B~ -decay @-values and Egs. (6.3, 6.4) show that densi-
ties only upto ~ 8 MeV are needed in the present exercise), the details of the
SPE and interaction V do not alter the final results significantly. It should be
stressed that, as in the studies of [Fr-89a, Fr-89b, Ko-91, Ko-93a, Fr-94] and
Chapter 4, there are many other variants of the above procedure which can be

used in practice.

6.4.2 Strength densities

The GT strength densities Ig(GT)(E,, Ey) are constructed for the GT(87) op-
erator using (6.2) with ¢ as a free parameter. In the present study the coulomb
correction to GT centroids and the variances [Ta-69] are ignored and it is as-

sumed that the parametrization of  takes care of the same . - . ; they
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can be easily put back. Ig(GT)(E,, E/) is constructed using the results of Chap-
ter 5. In the first calculation ¢ is determined for each nucleus by demanding
the observed half lifes are reproduced within the constraint 0.6 < ¢ < 0.9.
The deduced values of  are 0.6, 0.7, 0.61, 0.68 and 0.72 and the correspond-
ing half lifes (in seconds) are 244, 69.4, 88.8, 31 and 0.3 for ®' Fe, 2 Fe, ¢2Co,
83Co and 4 Co respectively. The half lifes are calculated using (6.3). These {
values change quite substantially (also fluctuates) as we go from  Fe (¢ = 0.6)
to %Co (¢ = 0.72) while the (valence) particle number m changes only by 3
units. The EGOE form ¢ ~ a + b/m immediately shows that it is not possible
to reproduce the above variation within the framework of SAT. Therefore the
above values of { are not acceptable in a SAT calculation. The plausible alter-
native is to seek a best fit solution to the observed half lifes of the nuclei under
consideration (in the present exercise they are 1-%2Fe, 62-%1Co isotopes) by
assuming the form of ¢ to be (o + ¢;/m where m is the number of valence
nucleons/holes, i.e. by minimizing Y (fog(r{)eat — £09(T}/5)expt)’. The

- i=nuclei
resulting { values and the corresponding calculated half lifes are given in Ta-

ble 6.1. The { values are around 0.67 (changing from 0.68 for ® Fe to 0.668 for
84C0). It should be obvious that the calculated half lifes, with these { values,
are the predictions of SAT-LSS. The differences between the calculated and
experimental values are of the same order of magnitude as in other models
[Ta-69, K1-84, Ka-91]. Before going further it should be pointed out that in
general for a given nucleus, as  decreases the calculated half life increases and

sometimes the increase is fast.

Using the { values given in Table 6.1, the IP strength densities Ig(GT) are
constructed using (6.2). Using these Ig(GT} densities, state densities I (E)

and Egs. (6.4 - 6.7), the g-decay rates are calculated.
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Table 6.1. Calculated and experimental §~-decay half lifes. The method of
determining the correlation coefficient { is given in the text. The calculated
half lifes are given in the fourth column. The @-values and experimental data
for half lifes are taken from [Le-78]. The KSR results are from [Ka-91, Ra-92]
and the QRPA result, which is available only for ®¥Ce in the set of nuclei
considered in the table, is from the first reference of [K1-84].

Nucleus Q half life (s)
(MeV)| (¢ | Calc. | Expt. | KSR | QRPA
%Co 7.307 | 0.668| 1.9 0.3 3.5 10.0

63Co | 3.662 |0.671| 52.7 | 275 | 52.1 -
62Co | 5.315 | 0.675] 165 | 90 | 15.1 —

e 2.327 | 0.675 | 267.2| 68 | 183.4 -

%1 Fe 3.890 | 0.680 ( 23.0 | 360 | 34.5 -

6.4.3 Comments

Firstly, it is useful to recognize that the formalism, for B-decay rates calcu-
lations, given by (6.2 - 6.7) together with the procedure outlined above for
calculating state and bivariate GT' strength densities, allows one to investi-
gate the effects of nucleon-nucleon interaction on the S-decay rates as Ig(GT)

and I¥ are constructed explicitly in terms of hamiltonian parameters.

Secondly, it should be pointed out that in g(;ing from (2.37) to (6.1) and
then to (6.2a, 6.2b), in order to construct IP strength densities, involve some
general principles/approximations and some of them are yet to be understood
well; for example the correlation coefficient is assumed to be independent of

the configurations involved.
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Thirdly, with the final interest is in calculating S-decay rates for nuclear
astrophysics studies, it is plausible that one may adopt a phenomenologi-
cal/empirical viewpoint in applying (6.2 - 6.7), i.e. in the construction of
Ig(GT) and I, This is what was done earlier by KSR: The KSR method of
constructing 1§y and I" is based on a simpler version of (6.2), in parts
it is an extended version of the “gross theory” given in [Ta-69] and in addi-
tion it uses experimental data also. The basic difference beetween the present
method and KSR method is that the KSR method assumes single unitary orbit
in applying (6.2) so that the summation in (6.2) disappears. Without several
unitary orbits the agreements found for level densities, as given in [Ko-91,
Fr-94, Ko-93a, Chapter 4], and Sect. 6.4, could not have been obtained and
it is well known that the assumption of single unitary orbit is unsatisfactory
[Ha-76, Fr-88b, Fr-89a, Fr-89b, Ko-89, Ko-91, Ko-93a, Fr-94] - however this is
ignored. With a single unitary orbit Ig(GT) = I}c‘)(GT) ® pX(GT);g will be a bi-
variate Gaussian with CLT applied to I*. Then the ratio I /¥ in (6.4) is the
conditional density p.fl;o(GT)(Ef]E;) (see (2.23)) which will be a Gaussian (as
I¥ is a bivarite Gaussian) with normalization given by GT' NEWSR strength
Moer)(E). The NEWSR strength is calculated using an expression similar to
(6.8) given ahead. The conditional density pg;O(GT)_g(Ef]E,) is constructed
by parametrizing its centroid and variance and in order to correct for the
departures from this single Gaussian approximation in some cases KSR add
[Ra-92, Ka-94] Edgeworth corrections with (1, 72) values chosen such that
I11] £ 0.3 and |y;] < 0.3. As can be seen from (2.42) the conditional centroid
€. changes linearly with energy, €.(E;) = o + (E; and the conditional width is
a constant, . = go(1 — (*)/? where 0y ~ o = (0} + 0%)"/2. The centroid

€. is parametrized (assuming ¢ = 1) and the value of o, is fixed, after adding
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Coulomb correction as in [Ta-69], by minimizing square of the difference in the
logarithm ol the calculated and experimental hall lifes exactly as in the “gross
theory”. In addition, instcad of calculating 17 (I2) and carrying out integration
over all E;’s in applying (6.4), KSR use the experimental energies and spins
(wherever observed) so that the calculation of state densities is completely
avoided. In the formalism presented in Sects. 6.2 - 6.3 and 6.4.1 - 6.4.2, the
densities I and I" are explicitly constructed and used alongwith (6.4) within
a single framework unlike in the KSR method where the explicit construction,
with interactions, is avoided as described above. It should be added that the
s.p. spectrum and the V used in Sect. 6.4 give o}, = of + 0%, ~ 8 MeV and
the expression o, = og(l — (?)!/? gives, with { ~ 0.67, 0. =~ 6 MeV which is
compatible with the value of ¢, deduced by KSR. In summary KSR approach
is a semiempirical approach taking lightly into account some aspects of SAT,
and their approach to the construction of strength densities is in the same
spirit as the approach to state densities proposed in [Ha-82b]. In addition, the
KSR method is a limiting case of the present method.

Finally a biproduct of (6.2) and the results of Chapter 5 is that they give
a formalism for calculating GT NEWSR strengths. This is described in the

next section before giving the results for f-decay rates.

6.5 GT NEWSR strength

Using (6.2) and the explicit form for Ig(GT) as given in Chapter 5, a simple
expression for NEWSR strength Moer)(E) for O(GT) can be written down,
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s(my, m,,) N

H;(m,,,m,,)
Mor)(E) = ( > )m{32[€aﬁ(o(GT))]

Ny — ma(mp,mn)} )

N,
IHv(mP'm")(E) = d(mp,mn)Pg(E; eh(mp’m”)’JV(mp’mn))
I}'{,(mp,mn)(E) — Z ]H'(mP’m")(E) (68)

(mp,my) € (mp.ma)
In (6.8) €,p define O(GT') and a and S are proton and neutron spherical orbits
respectively for GT'(f~) and vice versa for GT(f*). The formula (6.8) whose
origin lies in the NIP expression (5.10) for IO(GT), is quite similar to the sum
rule formulas used in earlier studies (though derived using different methods)
[Ma-86, Ka-91; Appendix A of [Au-90]] of fp-shell nuclei; thus (6.8) provides
a proper justification and corrections to the formulas given in [Ma-86, Ka-
91; Appendix A of [Au-90]]. The corrections to (6.8) come from the centroid
shifts and the variance corrections to pg as discussed below (6.2) and they
are small for fp-shell nuclei. In order to test the applicability of (6.8) for fp-
shell nuclei, the GT(#~) NEWSR strengths are calculated for %% Fe and
58,60 N'{ isotopes by first carrying out level density calculations and determining
the ground state, exactly as described in Sect. 6.4. These nuclei are chosen
as there are corresponding shell model results available in literature [BI-85,
Ra-83], though calculated using different interactions and including only fp-
orbits (i.e. without the go/; orbit). The results shown in Table 6.2 clearly
demonstrate that (6.8) gives results that are in close agreement with shell

model values. Thus (6.8), which is easy to apply, can be used in future studies
of GT NEWSR and quenching of GT strengths. The calculated sum rule
strengths (from GS) with quenching factor £ = 0.6 for 1 Fe, 2 Fe, $2Co, ®Co
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and ®Co nuclei are 20, 18.9, 18.8, 19.7 and 20.8 respectively. The 61752 F¢
sum rule strengths are compatible with the %°Fe results given in Table 6.2.
We conclude from these results that the various choices made in Sect. 6.4 are

quite reasonable.

Table 6.2. Calculated and shell model (SM) results for GT'(6~) NEWSR.

Nucleus NEWSR
Calc. | SM
“Fe 17.8 | 15.1°
56 22.6 | 22.1°
0Fe 31.6 | 33.5°
BN 20.2 | 16.6°
SON3 24.2 | 24.6%

a) [Ra-83], b) combining GT(#*) NEWSR value 9.47 given in [BI-85] with the
sum rule result Sg- — Sp+ = (N — 7).

6.6 Results for G-decay rates at finite tem-
perature

Using the formalism given in Sects. 6.2, 6.3 and the procedure outlined in
Sect. 6.4, which is described in the flow chart in Fig. 6.1, ﬁ~(iecay rates for
the five nuclei 1 Fe, ®2Fe, %2Co, %*Co and %Co are calculated at densities
p = 10° gm/cc, 10® gm/cc, 10" gm/cc, temperatures T' = 3 x 10°, 4 x 10,
5 x 10° °K (T = 4 x 10° °K compared to 0.345 MeV) and electron fractions
Y. = 0.5, 0.47 and 0.43. The results are given in Table 6.3. It is observed that
the excitation energy (of the parént nucleus) contribution to the decay rate is
quite significant upto about (6 —8) x kpT and beyond that their importance
(~ 10—15%) goes down rapidly; note that with E, = 5kgT, e~ %/*8T ~ 1/150.
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It is also observed thal for a given nucleus the rates go down as the correlation
coefficient ¢ decreases. For example for ®Co, with { = 0.668, A(1') = 0.345 s™!
while with ¢ = 0.72, A(T) = 1.33 57! for p = 10% gm/cc, T' = 4 x 10° °K and

Table 6.3. f~-decay rates for %4 Co, %Co, 52Co, 62Fe and ® Fe nuclei

Nucleus

p(gms/cc)

Y,

Temperature (°K)

3 x 10°

[ 1107

5 x 109

Rate (s771)

$1Co

10°

108

107

0.50
0.47
0.43
0.50
0.47
0.43
0.50
0.47
0.43

0.85 x 10~1
0.91 x 107!
1.00 x 107!
3.10 x 107!
3.14 x 1071
3.19 x 1071
3.83 x 1071
3.83 x 107!
3.84 x 107!

1.04 x 1071
1.11 x 1071
1.21 x 1071
3.43 x 107!
347 x 1071
3.52x 1071
4.14 x 101
4.14 x 107!
4.15 x 101

1.30 x 1071
1.38 x 107!
1.49 x 107!
3.84 x 107!
3.87x 107!
3.93 x 10!
4.54 x 107!
4.54 x 1071
4,55 x 1071

SBCo

10°

108

107

0.50
0.47
0.43
0.50
0.47
0.43
0.50
0.47
0.43

0.12 x 1073
0.15 x 103
0.21 x 103
0.85 x 1072
0.88 x 10~
0.93 x 1072
1.63 x 10~2
1.64 x 1072
1.65 x 10~2

0.65 x 103
0.76 x 10~2
0.94 x 1073
1.31 x 102
1.35 x 1072
1.41 x 10~2
217 x 1072
2.18 x 1072
2.19 x 1072

2.26 x 1073
2.54 x 1073
2.98 x 103
2.09 x 1072
2.14 x 107
2.21 x 1072
3.06 x 107*
3.07 x 1072
3.08 x 1072

6200

10°

103

107

0.50
0.47
0.43
0.50
0.47
0.43
0.50
0.47
0.43

0.29 x 10~*
0.34 x 1072
0.41 x 1072
3.06 x 1072
3.12 x 1072
3.22 x 1072
4.41 x 1072
4.42 x 1072
4.44 x 1072

0.50 x 1072
0.56 x 10~2
0.65 x 1072
3.64 x 102
3.71 x 1072
3.80 x 102
4.97 x 1072
4.99 x 1072

5.00 x 1072

0.84 x 1072
0.92 x 1072
1.04 x 1072
4.41 x 1072
4.48 x 1072
4.58 x 1072
5.74 x 1072
5.76 x 1072
5.77 x 10~2
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Table 6.3 (cont’d)

Nucleus

p(gms/cc)

Y.

Temperature (°K)

3 x 10°

4 x 10°

|

5% 10°

Rate (s71)

82

10°

108

107

0.50
0.47
0.43
0.50
0.47
0.43
0.50
0.47
0.43

0.04 x 104
0.06 x 10~*
0.09 x10~¢
2.40 x 1073
2.57 x 1073
2.83 x 1073
8.11 x 10~3
8.19 x 10-3
8.30 x 103

1.16 x 10~
1.42 x 104
1.88 x 1074
6.56 x 1073
6.86 x 1073
7.29 x 1073
1.43 x 1072
1.44 x 1072
1.46 x 10?

9.99 x 10~1
11.50 x 107"
14.00 x 10~
1.62 x 1072
1.67 x 1072
1.73 x 1072
2.71 x 1072
2.72 x 1072
2.74 x 1073

61F€

10°

108

107

0.50
0.47
0.43
0.50
0.47
0.43
0.50
0.47
0.43

0.36 x 103
0.45 x 1073
0.62 x 103
1.89 x 102
1.96 x 1072
2.06 x 10~?
3.44 x 102
3.46 x 1072
3.48 x 10~*

1.51 x 10~3
1.76 x 10~2
2.18 x 1073
2.71 x 1072
2.78 x 10~2
2.89 x 1072
4.33 x 1072
4.35 x 10~2
437 x 1072

4.52 x 1073
5.07 x 1073
5.93 x 1073
3.98 x 1072
4.07 x 1072
4.19 x 1072
5.72 x 107*
5.74 x 1072
5.76 x 1072

Y. = 0.5 and for the same set of (p, T, Y;) values, for %?Co, \(T) = 3.64 x 10~?
57! for { = 0.675 and A(T) = 0.46 x 10~? s~1 for { = 0.610. By comparing
the rates in Table 6.3 with the results given by Aufderheide et al [Au-90],
one observes that the numbers for ®Co are quite similar (in [Au-90] the rates
are tabulated for p = 10% gm/cc, 107 gm/cc, T = 3 x 10°, 4 x 10°%, 5 x 10°
°K and Y. = 0.5) while for %2Co the numbers in Table 6.3 are smaller by a
factor 5 and that for #Co by a factor 8. The numbers given in Table 6.3 are
much closer to KSR results [Ka-91, Ka-94] and this should not be surprising
as the method employed by KSR derives from (6.2). More importantly, the
variation in A(T") with T as can be seen from our results in Table 6.3 is not

to be found in the first KSR tabulation [Ka-91] but similar variation is found
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in their latest compilation of the rates [Ka-94]. For example for ®*Co nucleus
with p = 10° gm/cc, Y, = 0.5, for T = 3 x 10° °K, 4 x 10° °K, 5 x 10° °K the
rates A(T') from [Ka-94] and Table 6.3 are (in s7) (0.37 x 1072, 0.94 x 1073,
2.07x1073) and (0.12x 1073, 0.65x 1073, 2.26 x 10~3). Similarly for **Co with
p = 108 gm/cc, Y, = 0.5 the numbers are (3.6 x 1072, 4.11 x 1072, 4.66 x 107%)
and (3.06 x 1072, 3.64 x 1072, 4.41 x 10~2) respectively. In the case of ®Fe
with p = 10® gm/cc, Y. = 0.47 the numbers are (5.79 x 1073, 7.31 x 1073,
9.46 x 10-3) and (2.57 x 1073, 6.86 x 1073, 16.7 x 10~3) respectively. Thus it is
plausible to conclude that the method proposed in this chapter, where IP state
and strength densities are constructed and used for the first time in A-decay
rates calculations, is reliable. The goodness of the present method, which is
based on the smoothed form for GT' densities, derives partly from the fact that
the fB-decay rates involve an averaging (thermal average to be precise). In the
present method, as the densities are constructed by superposing unitary orbit

densities, it is easy to go beyond 0hw spaces.

6.7 Summary

In this chapter a method based on smoothed forms, derived using the principles
of SAT-LSS, for GT strength densities is developed for calculating j-decay
rates. This method is simple as the earlier methods [Au-90, Ka-91] but at
the same time it incorporates much more microscopic informations as the
desities Ig(GT) and I (E) are explicitly constructed with interactions and used.
The present exercise represents a first application of the bivariate convolution
form for strength densities in nuclear astrophysics problems. A different and

new result that is derived from the B-decay rates calculations is that they
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determine a value for the bivariate correlation coefficient (between the nuclear
hamiltonian and GT operator) ¢; ¢ ~ 0.67. In addition, an expression for GT

NEWSR strength is deduced. Applications are carried out for some A > 60

neutron excess fp-shell nuclei.
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