
Chapter 1 

Introduction

Atomic nuclei are endowed with a large variety of structures and a major 

classification of these is in terms of single particle, collective (representing co­

operative motion among the nucleons) and statistical (representing a type of 

random or chaotic motion) features. These three structures are distinctly seen 

in some selective nuclei in selective energy domains; for example the low energy 

spectrum of (40K, 42Ca)f levels upto about 2.5 MeV excitation in 168Er and 

resonances at neutron separation energy in 238U respectively, clearly show the 

above three features. These three structures led to the development of the 

nuclear shell model by Mayer and Jensen [Ma-65j, geometric models by Bohr 

and Mottelson [Bo-69, Bo-75] and statistical mechanical methods / random 

matrix models by Bethe and Wigner [Be-36, Wi-55].

Recognizing that the statistical features extend throughout the spectrum of 

a complex nucleus [Br-81], the scope of statistical approach to nuclear structure 

was enlarged by French [Fr-67, Fr-69a, Ch-71, Fr-72, Mo-75, Dr-77a, Dr-77b, 

Fr-79], by combining shell model ideas with Bethe and Wigner’s treatment of 

statistical properties of nuclei, by introducing and developing the subject of
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statistical nuclear spectroscopy. Before proceeding further it should be stressed 

that statistical spectroscopy provides a path for understanding the deeper con­

nections between symmetries, statistical behavior and quantum chaos on one 

hand and information propagation on the other in complex nuclei (in general 

in complex many body systems); see Fig. 1.1. Statistical spectroscopy divides 

into two parts, spectral average being one part and fluctuation (around the 

averages) being the other with little communication between the two. The 

origin and nature of the separation is understood analytically by using en­

semble of hamiltonian matrices [Mo-75] and two good numerical examples are 

also available [Br-81, La-90]. The separation gives a permit to deal with aver­

ages and fluctuations separately and by using different methods. The model 

for energy level and strength fluctuations is the so called GOE (Gaussian or­

thogonal ensemble of random matrices) model. It is well known that GOE 

describes fluctuations in slow neutron resonance domain to a very high degree 

of precision [Ha-82a] and also GOE is closely connected with ‘quantum chaos’ 

[Bo-84, Bo-88]. The Dyson Mehta [Dy-63] spectral rigidity ensures that spec­

tral fluctuations are small and they essentially carry no information except 

for symmetries (Ref. [Fr-88a, Fr-88b] gives a good example where a bound on 

the size of time reversal non-invariant (TRNI) part of nucleon-nucleon interac­

tion is derived from slow neutron resonance data). Hence fluctuations can be 

ignored for most purposes and spectral averages carry most of the significant 

physical information about observables 1. The theory that allows one to derive

1 All spectroscopic observables, broadly speaking, belong to one (or products) of the three
basic quantities: (1) state density 1(E) which counts the number of states in the interval E 
and E + AE, or its normalized version p(E), (2) expectation values (K)E — diagonal ma­
trix elements of an operator K in the hamiltonian (H) diagonal basis or expectation value 
densities Ik(E) = {K)eI(E), and (3) strengths \(E'\0\E)\2 — squares of matrix elements 
connecting two //-eigenstates or strength densities Ia(E, E') = I(Er)\{Er\0\E)\21(FJ). En­
ergies are also observables and they are tacitly included in (1) above.
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Figure 1.1

Typical spectrum of a heavy nucleus. Figure is taken from [Fr-89c]. As French 

and Kota state [Fr-89c]: “If we start at the ground state and go up in the spectrum 

of such a nucleus we can identify in order the following domains: (Dl) the shell model 

domain (0-2 MeV)', (D2) no man’s land (2-6 MeV); (D3) the fluctuation window (6 - 6.002 

MeV); (D4) the true continuum (> 6.002 MeV), where typical values are given for the 

domain boundary energies which of course vary somewhat from nucleus to nucleus. The 

two domains Dl, D3 where spectra can be studied in exquisite detail, contain no more 

than a few hundred states at best and are separated by D2 which contains many millions

of states about which because of experimental limitation, almost nothing is known...........

Up to now there have been for example no serious attempts to cross the no-man’s land and 

calculate from the Dl spectrum and the general features of the interaction, the absolute state 

or level density in the resonance region D3, (the only part of the complete spectrum where

unambiguously-defined smoothed densities have been measured with some precision)............

We justify our description of Dl as the “shell-model domain” by the argument that the shell 

model supplies the foundation for most microscopic models. Dl is of course extraordinarily 

rich in experimental data, and in theoretical concepts and models which involve, among 

other things, a wide range of symmetries with their more-or-less-well conserved quantum 

numbers. Some of the Dl data, yrast states and giant resonances for example, do extend 

to higher domains, but since these extensions involve only a small fraction of the states in 

the upper domains, this does not negate our classification. In D2 a transition occurs from a 

spectrum (of Dl) which is profitably studied in detail, level by level, to one (of D3) in which

the only sensible treatment would appear to be statistical one. (........... one must distinguish

between the use of statistical methods (as in our use of central limit theorems for the state 

density generated by a given Hamiltonian) and statistical assumptions (as with fluctuations 

where we assume a prion, and justfy by the results that averaging over a Hamiltonian
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ensemble is an appropriate procedure)). One might take for granted that we proceed to 

such a treatment of D3 because the D3 complexities make it impossible to do better. After 

all only a part of the spectrum is available (often only the l/2+ levels; see below), the shell 

model spaces are enormous (dimensionality ~ 10,s — 1030; the present diagonalization limit 

is ~ 104), and not enough could be known about the Hamiltonian, or deduced from the 

data, to support such a study. These practical reasons however are essentially irrelevant. 

The real point is that, just as the introduction of temperature and entropy concepts into 

mechanics give us a completely new view of things, so also with D3 spectrum which gives 

an extraordinary “window” through which we can study important aspects of a quantum- 

chaotic system; indeed it gives by far the best experimental data on quantum chaos available

now for any real system................... The latter effect weakens, and the resonances broaden,

as the neutron energy increases and the resultant overlapping of levels marks the beginning 

of the true continuum D4. In the lower part of D4 the effects due to underlying resonances

can still be observed as Ericson cross-section fluctuations...................... our study of the D1

- D3 relationship splits into two parts. The first, the 1-point problem, is the extension of 

the detailed D1 spectrum into the smoothed level density of D3 and then to other domains 

both above and below D3. The second part is the study, and comparison with data of the 

spectral fluctuations.........”
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(D4) Overlapping levels

(D3) Slow-neutron domain. 
Long sequence of i+ 
levels (if the target 
Is even-even)

(D2) Many close-lying bound 
states
Relatively little explored

(Dl) Ground state domain.
Great variety of data, 
interesting structures 
(vibrations, rotations etc.)

Typical Spectrum of a Heavy Nucleus
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and apply the smoothed (with respect to energy) forms of spectroscopic ob­

servables is called spectral averaging theory (SAT) and the resulting method 

for nuclear spectroscopy studies is often called spectral distribution methods 

(SDM). The subject matter of this thesis is SAT/SDM.

The fundamental result based on which SAT is developed is that there are 

central limit theorems (CLT’s) operating in nuclear shell model spaces. We 

begin with state densities. For a non-interacting particle (NIP) system (i.e. 

ignoring interaction) energies are additive and then the m - particle eigen­

value density (state density 1(E)) is an m - fold convolution of one-particle 

density which in general tends to a Gaussian (Q), due to CLT, very rapidly 

as m increases. The remarkable result is that even with interactions, though 

the energies are no longer additive, state densities take Gaussian form. This 

feature is demonstrated in an example in Fig. 1.2. The origin of CLT for 

interacting particle (IP) systems lies in an ensemble representation of the IP 

hamiltonian (H). As studied by Mon and French [Mo-75], the appropriate 

ensemble is the so called embedded Gaussian orthogonal ensemble generated 

(in m - particle spaces) by k - body interactions or EGOE(k) 2; for nuclear 

case k = 2. With EGOE(fc), in the dilute limit (m —> oo, N —> oo, k « m, 

mjN —> 0) one sees immediately that the lower order cumulants tend to zero; 

for example the excess parameter 72 ~ —k2/m —» 0 as m —► 00 and k « m. 

Thus in the CLT limit state densities take a Gaussian form and in practice 

one can add the skewness and excess corrections (Edgeworth corrections de­

scribed in Chapter 2) to the Gaussian. Inverting the distribution function

2In general in nuclear shell model, EGOE(fc) for m (m > k) particle systems is generated 
by defining the H to be GOE in k - particle spaces and then propagating it to m - particle 
spaces by using the geometry of the shell model spaces.
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Figure 1.2

Density of states 1(E) (in MeF-1) vs energy E. The histogram is for the 

shell model results where the calculations are made in (ds)6'J~2T~° space with 

(KU0+170) interaction [Ku-67]. The smooth curve is the Gaussian approxi­

mation. The dimensionality (d) of the space, centroid Ec, variance <r, skewness 

7i and excess j2 are also shown in the figure. Figure is taken from [Ko-89].
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F(E) (F(E) = f I(E)dE) gives the smoothed spectrum [Ra-71] with de- 

viations from the corresponding exact ones by ^ 2 MeV for ds-sheil nuclei 

and even less for heavy nuclei. Using the polynomials defined by the state 

density or otherwise, lead to CLT forms for expectation values of operators 

and the corresponding expectation value densities. For operators K for which 

H + olK (a is a small parameter) has a Gaussian density, then by CLT one 

has the remarkable result that expectation values ((K)E) are linear in energy 

with the slope given by the correlation coefficient 3 between the operators K 

and H. An expression for (K)E in terms of orthogonal polynomials defined by 

the state densities gives this result when truncated at the first two terms, with 

the remaining terms giving corrections to the CLT result [Dr-77a]. A good ex­

ample for the linear behavior of expectation values comes from occupancies as 

shown in Fig. 1.3a. In general for positive definite operators (K is O^O type; 

O is a transition operator) the expectation value density (Ik(E)) in the CLT 

limit takes a Gaussian form [Fr-89b, Ko-89] and thus the expectation values 

can be written as a ratio of two Gaussians; Figs 1.3b, 1.3c give examples for 

these CLT results. There are in general many other forms or expansions one 

can derive for expectation values and they will be interrelated as they all are- 

derivable from the traces {Hp) and (KHP). In addition to state and expec­

tation value densities, transition strength densities (Io(E, E')) also take CLT

forms. In general, strength densities take bivariate Gaussian (BIV — Q) form
....... -........**..............................................................................................................................

3The CLT defines a geometry [Fr-72] with norm |A'|m of an operator K in rn - par­
ticle spaces defined by \K\m = {((A' — (K)m)^(K — (K)m))m}1/?2 where the m - par­
ticle average {X)m of an operator X is (X)m = X)agm{ma Wm0f)/^(m)> d(m) is the 
dimensionality of m - particle space and the m - particle trace ((X))m = d(m){X)m. 
The norm defined here has all the properties of an Euclidean norm. With this geom­
etry, correlation coefficient between two operators A'i and A2 is (K,-K3(m) =
{(Ki - (Ki)m)HK2- {I<2)m))m/(\Ki\m\K2\m).

9



Figure 1.3

Comparison of shell model results with the CLT results (with or without cor­

rections) for expectation values and expectation value densities, (a) 4/2 and 

4/2 orbit occupancies vs energy. The calculations are in (ds)5,7'-1/2 space and the plots

are for J = 9/2. The wavy line represents the shell model results,------ line is for the CLT

result (linear form derived from the polynomial expansion) and is by including

the higher order terms in the polynomial expansion. Although the CLT (with and with­

out corrections) results shown in the figure are obtained using the polynomial expansion, 

essentially similar results are also obtained by using the CLT results (Gaussian or Gaussian 

with Edgeworth correction) for the occupancy densities. Figure is taken from [Ko-85]. (b) 

Ik(E) vs E and (K)B vs E for Gamow - Teller sum-rule operator K. The energy E is in 

MeV. The spectroscopic space used is (ds)s and the results are for the transition (J,T) 

= (3/2, 1/2) to (5/2, 3/2). The dimensionality (d) of the (3/2, 1/2) space is 188. The 

shell model Ik{E) density is shown in bins of width 2 MeV and the continuous curve is 

its Gaussian (CLT) representation. Similarly *’s are shell model results for (K)E and the 

dashed curve is its CLT approximation (ratio of the expectation value and state density 

Gaussians). Figure is taken from [Ko-89]. (c) Spin-cutofT density Ij? (E) and spin-cutoff 

factor (J]r)E vs E. The histogram and the boxes are shell model results and the continuous 

curves are the CLT results including Edgeworth corrections to the densities (the state and 

spin-cutoff densities are Gaussians in the CLT limit). The histogram (exact shell model) 

for the spin-cutoff density is constructed by averaging over a bin size of 0.2ir ~ 1.5 MeV, 

cr is the spectrum width. Similarly the boxes for the spin-cutoff factors are constructed by 

averaging over a bin size of 0.3<r ~ 2.3 MeV. All the calculations are carried out using KUO 

+ 17O interaction [Ku-67]. One sees from the figures that the CLT results (with corrections) 

are in excellent confirmity with the shell model results. Figure is taken from [Fr-89b].
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and its origin can be understood by using ensemble (EGOE) representation 

for both the hamiltonian and the transition operators [Fr-88b]. This leads to 

the important results that the strength sum (originating from an energy E) 

will be a ratio of two Gaussians, the strength centroids will be linear in energy 

with slope given by the bivariate correlation coefficient and the strength width 

a constant. Fig. 1.4 gives a shell model example for these results. In addition, 

the CLT result for strength densities provides an understanding of the CLT 

result for Ik(E).

The CLT results described above are in general valid only in strongly in­

teracting shell model subspaces, i.e. essentially in 0fuv spaces (for example: 

(ds)8 for MMg and (fp)16 for 56Fe). It should be stressed that the CLT forms 

involve traces of products of lower order powers of operators (e.g. Ig(E) is 

defined in terms of (H), (H2); I^.g(E) by (KH}, (KH2)\ Io-,biv~q(E,E') by

HpOffQ) with P + Q < 2 etc.). The shell model (01ko) spaces can be 

partitioned into subspaces and then the state and expectation value densi­

ties decompose similarly, though there are some complications with strength 

densities, and the CLT results extend to the partitioned subspaces. The par­

titioning, on one hand takes into account the departures from CLT (smooth) 

forms and on the other hand brings in more information and fine structures. 

Much of this works in practice as the trace information propagates i.e. many 

particle traces can be expressed in terms of the few particle input traces, when 

the partitioning is done using group symmetries that can be realized in shell 

model spaces; for example using spherical configuration group which is a di­

rect sum group of unitary groups, Wigner supermultiplet SU(4) group etc. 

With this, SAT provides a formalism for addressing wide variety of nuclear 

structures problems. Some of the studies that are carried out in literature
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Figure 1.4

Strength sum, strength centroid and strength width vs energy. The dashed 

curves correspond to the bivariate Gaussian (CLT) approximation for the 

strength density, the solid curve by including the bivariate Edgeworth cor­

rections (given by (2.21) in Chapter 2 ahead) and the wavy curve corresponds 

to exact shell model results. The hamiltonian is KUO + 17O interaction [Ku- 

67], the transition operator is the unitary two-body part (n = 2 part defined 

Chapter 2) of H and the space is the 307 dimensional (ds)6,J~2T=0. 

taken from [Fr-88b].
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include: (i) binding energies of ds and /p-shell nuclei [Ch-71, Pa-78, Wo- 

86, Sa-87a]; (ii) spherical orbit occupancies for ds and fp-shell nuclei [Ch-71, 

Po-76, Ko-79a, Ko-82, Sa-87b]; (iii) Electromagnetic (EM) sumrules [Dr-75, 

Dr-77b, Ha-79, Ha-82a, Ha-82b] which include the Kurath sum rule, deriv­

ing bounds on EM summed strengths etc.; (iv) comparison and analysis of 

operators using the geometry (norms and correlation coefficients) defined by 

CLT [Ch-71, Po-77, Ko-79b, Ch-80]; (v) investigating goodness of symmetries 

using partial densities and their moments defined over subspaces generated by 

the group symmetries, good examples are the studies involving Wigner SU(4), 

Elliot SU(3) and pairing Sp(N) groups [Fr-71b, Qu-74, Qu-75, Pa-78, Ch-80]; 

(vi) /Cdecay sum rule strengths and strength distributions [Ka-81, Sa-88; see 

also Chapter 6 ahead]; (vii) predicting collectivities [Dr-77a, Dr-77b]. As an 

example of the application of SAT, the analysis of s\/2 orbit occupancies of 

ds-shell nuclei is shown in Fig. 1.5. The large number of studies that are 

carried out in Otito spaces, essentially upto 1980, are well documented [Fr-67, 

Fr-69a, Fr-72, Pa-78, Fr-79, Da-80, Fr-82, Fr-83a, Wo-86, Ko-89].

Recent progress in statistical spectroscopy is in deriving and applying the 

smoothed forms in indefinitely large shell model spaces with interactions by 

using unitary group decompositions (of hamiltonians and the spectroscopic 

spaces), CLT’s locally, and convolutions * 4 [Fr-83b, Fr-88b, Fr-89a, Fr-89b, Fr- 

94]. In the resulting spectral averaging theory in large shell model spaces 

(SAT-LSS), it is seen that the essential role of interactions is to produce local 

spreadings of the non-interacting particle (NIP) densities and the spreadings

+oo

4Convolution of two functions A and B is denoted as A <g> B[x) = J A(y)B(x — y)dy.~oo
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Figure 1.5

S\j2 - ground state occupancies in SAT calculated using UNIV-SD [Wi-84], 

PW [Pr-72], RIP [Ha-71], KLS-R [Ka-69] and K+12FP [Ha-71] interactions 

compared with experimental values. The results for PW, RIP, K+12FP and 

KLS-R interactions and the compilation of experimental data are from [Po- 

76]. The results of UNIV-SD interaction are from [Sa~87b]. The analysis 

shown in the figure clearly demonstrates that one should exclude RIP, KLS 

and K+12FP interactions and favor PW and UNIV-SD interactions. The 

shell model results for UNIV-SD interaction show that the spectral method 

reproduces very well the shell model results which in turn are very close to 

data. All the spectral averaging calculations are done using spherical orbit 

configuration partitioning. Figure is taken from [Sa-87b].
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are in general Gaussian in nature. With SAT-LSS one can calculate level den­

sities, orbit occupancies, spin-cutoff factors 5 and other statistical observables 

where one needs to go beyond 0tiuj spaces. The aim of the present thesis is 

to study (and test) some aspects of this extended theory (SAT-LSS) for state, 

expectation value and strength densities in large spaces and apply them to cal­

culate nuclear level densities and /3-decay rates. We will now give a preview.

Mathematical preliminaries regarding the properties of univariate and bi­

variate distributions, unitary group decompositions of operators, partitioning 

and trace propagation formulas (for cases that are of relevance for the the­

sis) are given in Chapter 2 along with the mathematical definitions of state, 

expectation value and strength densities and the corresponding CLT results 

(valid in 0spaces). The results given in Chapter 2 are used throughout 

the thesis. Besides giving a brief overview of the convolution form for state, 

spin-cutoff and occupancy densities in SAT-LSS, results of systematic studies 

of two important aspects of SAT-LSS are given in Chapter 3 — these studies 

are: (a) a part of the interaction that produces non-NIP like shifts of the single 

particle energies, that is neglected in the theory, is demonstrated (using norms 

of operators) to be indeed small all across the periodic table by considering 

a wide variety of effective interactions; (b) moment methods for constructing 

locally smoothed forms for NIP state, spin-cutoff and occupancy densities are 

tested in a large space example including 16 spherical orbits and considering

5Level densities Ii(E) count the number of levels per MeV at the given energy E; this 
definition can be extended for fixed angular momentum (J) and/or parity level densities 
(see Chapter 4 and Appendix C ahead). Spin-cutoff factors <Tj{E) are nothing but the 
expectation values of J| (Z - component of angular momentum J operator) operator; 
<Xj(E) = (Jl)E and this definition can be extended for fixed parity spin-cutoff factors 
(see Appendix C ahead). Spin-cutoff factors decompose state densities into observable level 
densities. Finally orbit occupancies are defined by the expectation values {na)E where na 
is the number operator for the orbit a.
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a realistic proton - neutron system. Using the convolution forms for state 

and spin-cutoff densities, first systematic analysis of level densities is carried 

out for eight fp-shell nuclei (meaningful data exist only for the eight nuclei 

considered) and a magnitude parameter of the effective nucleon-nucleon inter­

action is deduced for 55Mn, 56Fe, 59Co, mCo and 60Ni isotopes by carrying 

out calculations in a 8-orbit shell model space and for 62Ni, 63Cu and 65Gu 

isotopes in a 10-orbit shell model space. The calculations include upto 2h.ui 

excitations. The results of the /p-shell analysis are given in Chapter 4. The 

experimental data for all the eight fp-shell nuclei are compiled in Appendix C. 

Going beyond state and expectation value densities, in SAT-LSS the bivariate 

strength densities take a convolution form with the non-interacting particle 

(NIP) strength density being convoluted with a spreading bivariate Gaussian 

due to interactions. In order to apply this result in practice, leaving aside the 

question of determining the parameters of the spreading bivariate Gaussian, 

one needs good methods for constructing the NIP bivariate strength densities 

(Io) in large shell model spaces. In Chapter 5 a formalism for constructing 

lo is developed for one-body transition operators by using spherical orbits 

and spherical configurations. For rapid construction and also for applying 

the statistical theory in large shell model spaces, 1^ is decomposed into par­

tial densities defined by unitary orbit configurations (unitary orbit is a set of 

spherical orbits). Trace propagation formulas for the bivariate moments Mrs 

with r + 3 < 2 of the partial NIP strength densities, which will determine 

the Gaussian representation, are derived and the goodness of the Gaussian 

representation is tested in a large space numerical example using Gamow - 

Teller (GT) f$~ transition operator. Trace propagation formulas for MTS with 

r + s < 4 are also derived in m-particle scalar spaces which are useful for
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many purposes. Construction of level densities and /?-decay strength densities 

(in some cases even occupancy densities) have very important applications in 

nuclear astrophysics problems [Wo-80a]. As a first application of SAT-LSS 

in this important area, in Chapter 6 a method to calculate temperature de­

pendent /?-decay rates is developed by writing the expression for the rates 

explicitly in terms of bivariate GT strength densities for a given hamiltonian 

and state densities of the parent nucleus besides having the usual phase space 

factors. Constructing NIP GT - strength densities using the theory developed 

in Chapter 5, together with a simple prescription for generating the spread­

ing bivariate Gaussians, the bivariate GT densities are constructed. Applying 

this theory, /?-decay rates of some neutron excess fp-shell nuclei, relevant for 

massive presupernova stars, are calculated at presupernova matter densities, 

temperatures and electron fractions. In addition, the convolution form for GT 

densities led to a simple expression for calculating GT non-energy weighted 

summed strengths. Finally Chapter 7 gives concluding remarks and future 

outlook 6.

6The cut-off date for the references given in the thesis is July ls‘, 1994; the synopsis of 
this thesis was defended on July 1'* at the Physical Research Laboratory, Ahmedabad.
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