
Chapter 2

Pairing and Seniority in Sn Isotopes

In the shell model, the nucleus is considered as a system of nucleons moving in a common 
potential well. Many properties of such idealized systems can be obtained from the study 
of the motion of one particle, the other particles showing their effect through the Pauli 
principle only, namely, in forbidding the occupation of some states by the particle considered. 
Obviously, a common single particle central interaction cannot replace completely the actual 
mutual interactions in a system of many particles. We are therefore interested in solving the 
Sehrodinger equation

(H0 + HTesidual)^f(ru r2,..., rA) — E • (ri, r2, ...,rA) 

where H0 is the Hamiltonian of the central field

(2.1)

= EPS + c'(r<)] (2-2)

and ifresidtiai may include corrections to the single particle potential Ufa) as well as addi­
tional two-body interactions between the particles.

2.1 Two Particle Configurations
iiilti-
and

We now discuss the effects of residual interactions which affect the energies of in 
configurations. If we consider two identical nucleons with angular momentum ji 
can be coupled to the total angular momentum J. The easiest method to calculi 
“m-scheme”, which is shown for the configuration |(7/2)2J) in tab. 2.1.

i-particle 
h, they 

,te J is the

The states of two non-interacting particles moving in a central field are generally degener­
ate. The residual interactions affect the energies of two-particle configuration, leading to a 
difference in the energies AE which is given by

AE(jij2J) = (3ij2JM\Vl2\jij2JM) (2.3)
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ji=7/2 
m i

.72=7/2
m2 M J

7/2 5/2 6
7/2 3/2 5
7/2 1/2 4
7/2 -1/2 3 6
7/2 -3/2 2
7/2 -5/2 1
7/2 -7/2 0
5/2 3/2 4
5/2 1/2 3
5/2 -1/2 2 4
5/2 -3/2 1
5/2 -5/2 0
3/2 1/2 2
3/2 -1/2 1 2
3/2 -3/2 0
1/2 -1/2 0 0

*Only positive total M values are shown. The table is symmetric for M<0

Table 2.1: “m scheme” for the configuration |(7/2)2J)*



For the angular dependence of the 5-function residual interaction we obtain

AE(fj) = ~~Vo ' Flt tan~ (T = 1, J even)
n 2
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In the following, we consider the simple 5-function interaction, which can be written as

V12(5) = -V0-5(r1-r2) (2.4)

Using the polar coordinates and performing angular momentum algebra calculations [3], we 
obtain for the energy shifts in the identical particle configuration \j1j2J)

AE(j2J) = -Vq ■ FR(nl) ■ A(fJ) (J even) (2.5)

where
FR(nl)^~J l-i4(r)dr (2.6)

and
A(f n _ C2J + !)2 f 3 3 J}2

U J “ 2 [ 1/2 -1/2 0 (2.7)

Note that for J=0 the energy lowering is largest and the energy spacings decrease with J. 
For the 2-particle configuration |7/2,7/2, J) the relative energy values 
AE/[VoFR(nl)] are 4.0 (0+ state), 0.952(2+ state), 0.467(4+ state) and 0.233(6+ state). This 
property is identical to that defined for a pairing interaction.

2.2 Geometrical Analysis of ^-Function Residual 
Interaction

It is also possible to approach this entire subject from an alternate view point and actually 
derive the typical behaviour of the 3J-symbol from a simple geometrical analysis. Using a 
semi-classical concept, we can determine an angle 6 between the angular momentum vectors 
ji and j2 of the two particles, as illustrated schematically in fig. 2.1. In this case,

cosd =
if

21J1IU2I
(2.8)

Note that 0=180° corresponds to J=0.
In the following, we make use of some trignometric equations. Finally we can approxio- 

mate the 3-J symbol for identical particles by
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(2.10)
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Figure 2.1: Schematic illustration of geometrical interpretation of short-range residual inter- 
cation for two particle configuration jy and j?.

This extremely simple result expresses the energy shifts in different J states for a 5- 
interaction between two identical particles in equivalent orbits. It was derived for large j. J, 
but is remarkably accurate even for low spins. This property is identical to that defined for 
a pairing intercation.

For the 2-particle configuration |(7/2)2, J) the angle 9 between the angular momentum 
vectors is 171° (0+ state). 143° (2+ state), 111° (4+ state) and 72° (0+ state). For 112Sn the 
geometrical analysis of the partial level scheme is shown in fig. 2.2. In the T= 1 case, the 
empirical energy distribution follows the expected energy pattern quite well.

2.3 Generalized Seniority Scheme

The shell model [7] has been used for many years to describe the structure of nuclei, especially 
those that are fairly light or moderately near closed shells. With the steady improvement of 
computers, the size of the model space that can be accomodated has grown, expanding the 
region of nuclei that can be treated. Even so, some nuclear properties arc not well explained 
with the valence space comprising a single major shell, suggesting the need for still larger 
model spaces. It is clear, however, that when the size of the single-particle valence space is 
increased, some truncation of the configuration space is necessary if calculations are to be 
carried out. One possibility is to use the generalized-seniority [5] or broken-pair [8] approx-
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Figure 2.2: A geometrical analysis of the |(g7/2)2, J) inultiplet in 112Sn. The angular depen­
dence of the 5-function residual interaction strength is shown on the left with the semiclassical 
angle for the two identical particles in the equivalent orbits (T=l).

iination. This method has been widely used to approximate the shell model [9], especially 
when dealing with semi-magic nuclei. In the following, a brief overview of the generalized- 
seniority approach is presented [3].
The seniority scheme was introduced by Racah [10, 11] for the classification of states in 
atomic spectra. His aim was to find an additional quantum number in order to distinguish 
between states of electron ln configurations which have the same values of S, L and I (and 
M). This problem arises most frequently in LS-coupling, which is the prevalent coupling 
scheme of atomic electrons, than in jj-coupling. The seniority scheme for jn configurations 
of identical nucleons was introduced by Racah [12] and independently by Flowers [13].

The scheme introduced by Racah is based on the idea of pairing of particles into J=0 
pairs. Loosely speaking, the seniority quantum number v . is equal to the number of un­
paired particles in the jn configuration, where n is the number of valence nucleons. The 
doubly-magic core nucleus plays the role of the vacuum. In the special case of j2 configu­
rations, there is complete pairing in the J=0 state and its seniority is v — 0. In all other
j2 states, with J=2, 4......2j-l, there are no pairs coupled to J=0 and the seniority is v=2.
Hence, the low energy states of (semi-magic) nuclei arc states of low generalized seniority. 
The shell-model problem can now be solved in a truncated space of low generalized seniority.

Of particular interest are the energy levels in semi-magic nuclei with v—2 and J=2, 4,...., 
2j-l. They appear in all jn configurations with n even and 2j+l>n>0. If the two-body inter­
action 'V=Y?i<k Vik is diagonal in the seniority scheme, they should have the same spacing
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(also between them and the J=0, v—Q ground state) in all nuclei. The relevant formulae for 
the energy differences are given below

qrt _ O 71
E(f,v = 2,J)-E(jn,p = 0,J = 0) = {j2J\V\j2J) H------ ho — —ho

= J) - (2.11)

The energies of the u=2 states are independent of n. For the spacing within the u=2 
states one obtains

0 . J\Vtf, J) - (j2, J'\V\f, J') (2.12)

Thus, all the energy differences of seniority u=0 and v=2 states in the n-particle configu­
ration are identical to those in the two-particle system and are independent of n. It is also 
important to note, that the two-body interaction matrix elements of seniority v states in the 
jn configuration (n even) are related to the matrix elements in a ju configuration.
The Sn nuclei provide a classic example of eq. 2.11 and its generalization to the multi-j case: 
the entire known set of i/=2 levels, J=0+, 2+,... is virtually constant across an entire major 
shell (fig. 2.3)

For the E2 transition rates, induced by the operator Q=r2y2) from the first 2+ state to 
the 0+ ground state in even-even nuclei one obtains

(jni ^ — 2 || Q || jn, J — 0^1 n- (2j+l—ra)
2-<sy—i)

(2j + l)2 

2 • (2j — 1)

j2, J = 2\\Q\\j2,J = 0

/-(I-/)

j2, J = 21 <31| j2, </ = o (2.13)

where f=n/(2j+l) is the fractional filling of the shell. One should notice that matrix elements 
in the configuration jn axe linked to those in the configuration jv which is the power of the 
seniority scheme. For shells that are not too filled, so that (2j±l)^>n, this becomes

jn,J = 2\\Q i”) J n J2,J 2 II Q j2,j = 0
2 2

(2.14)
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Figure 2.3: Partial level schemes [NNDC] in the even-A Sn nuclei for mass numbers between 
A=102 and A=130.

This expression increases as the number of particles n in the shell. The reduced transition 
probability is defined as

B(£2; J, J,) = I! Q II A (2-15)

In the jn configuration the B(E2) value is just propotional to the number of particles n in 
the shell, for small n. For large n, n 2j+l, it falls off, vanishing, as it must, at the closed 
shell. For j, n^>2, we see that, as given in the general case (eq. 2.13) above,

B(£2;2+-0f)«/-(l-/) (2.16)

This behaviour is commonly observed in real nuclei, with B(E2;2f —* Of) values rising 
to mid-shell, and falling thereafter. Data beautifully illustrating this are shown for Z=50, 
N=50-82 in (fig. 2.4). For transitions that do not change seniority, the expression is [assuming 
v~2\

(r,j ii q ii = fe^ViViiQiijv)
- |i|.[l-2/].(j2,J||Q||f,j) (2.17)

It has an interesting behaviour as a function of n. For low v the numerator goes simply as 
(l-2f). It therefore has opposite signs in the first and second halves of the shell and hence
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Figure 2.4: B(E2 |) values in the even-A Sn nuclei for mass numbers between A=106 and 
A=130. The data are from NNDC and [6. 14. 15, 16].

mass number

Figure 2.5: Measured E2 transition matrix elements for the {uhn/2)n 10+ —> 8+ transitions 
in even-A Sn isotopes [17, 18].

must vanish identically at mid-shell. This is why nuclei are prolate at the bcgining of the 
shell and (sometimes) oblate at the shell.
Fig. 2.5 shows the square root of the reduced transition probabilities B(E2,10+ —> 8+) ver­
sus the mass number in even-A Sn isotopes. The square root leaves ambiguity about the sign 
of the E2 matrix element, but in practice this causes no difficulty because opposite signs arc 
required in the bottom and top halves of the subshell.


