
Chapter 3

Coulomb Excitation

Coulomb excitation is a nuclear reaction in which a target/projectile nucleus is excited by 
the common electromagnetic field. Stable targets are bombarded with heavy ions at energies 
so low that the Coulomb repulsion prevents the particle from touching each other, thus as­
suring a pure Coulomb interaction process. This process has been extensively used to study 
the excited states in nuclei. Let us discuss the theory in detail.

3.1 Theoretical Description
In the collison between two heavy ions the electromagnetic interaction depends on the electro­
magnetic multipole moments of both nuclei, thus during the process, one or both nuclei may 
be excited. The excitation cross section can be expressed in terms of the same electromag­
netic multipole matrix elements which also characterize the decay process. If the Coulomb 
excitation can be described in the semiclassical approach the calculations becomes very easy.

3.2 Semiclassical Theory
Although quantam-mechanical calculations are performed for heavy ion scattering, the un­
derstanding of reactions between heavy ions is greatly facilitated by applying semiclassical 
concepts [19, 20] to these processes. In order to decide whether a classical description is 
justified one should compare the wavelength X (eq. 3.15) of the projectile with a dimension 
characteristic for the classical orbits, e.g the distance of closest approach in a head on col­
lision D(0cm = 7r) (eq. 3.13). If A <C D(6cm = tt), one can form a wave packet which moves 
along a hyperbolic orbit exactly like a classical particle. It is convenient to introduce the 
Sommerfield parameter which measures the strength of the Coulomb interaction i.e.,

(3.1)
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If the Sommerfield parameter is significantly larger than unity (77 ;§> 1), one may describe 
the relative motion of the particles by classical hyperbolic orbits. In the heavy ion reaction 
58Ni on 112Sn at 175 MeV investigated at IUAC the value for 77 = 127 which justifies the use 
of semiclassical approach.
Fig. 3.2 shows the hyperbola (0cm=12O°) for the 58Ni+n2Sn system at 175 MeV, which is 
completely specified by the charge numbers, the energy and the scattering angle. It is usu­
ally described in its parametric representation which simultaneously determines the position 
of the projectile and the time in terms of a dimensionless parameter. The parameter ui is 
introduced by the relations

z2

Figure 3.1: Sommerfeld parameter rj (eq. 3.1) as a function of the target charge number Z2 
for various projectiles at the safe bombarding energy (eq. 3.16).

In eq. 3.1, the numerical value is obtained for the initial energy Tiab expressed in MeV. Zu Ai 
and Z2, A2 denote charge and mass numbers (in atomic mass unit) of projectile and target 
nucleus, respectively. The Sommerfeld parameter 77 is illustrated in fig. 3.1 as a function of 
the target charge number for various projectiles.
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r = a - (e • coshur + 1) (3.2)
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Figure 3.2: Classical picture of the 58Ni projectile orbit (6^=120°) in the Coulomb field of 
the 112Sn nucleus at 175MeV. The hyperbolic orbit of the projectile is shown in the relative 
frame of reference where the target is at rest. The nuclear charge radii are displayed (for 
details see text) as well as the nuclear interaction radius (dashed dotted lines).

in such a way that the point of closest approach is reached for io=t=0. In the coordinate 
system where the z-axis is chosen along the angular momentum i. the projectile coordinates 
are given by

x = a • (coshto + e) (3.5)

y = a • Ye2 — 1 • sinhto (3.6)

z = 0 (3.7)

(e • sinhto + to) (3.3)

where e = 1 /sin{\0cm) is the excentricity of the classical orbit, v the projectile velocity and 
the quantity a is half the distance of closest approach in a head-on-collision, i.e.

0.72 • Z\ • Z% Aj + Ai [f™] (3.4)
Tlab M

When the parameter to varies from -oo to +oo the particle moves along the hyperbola
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The resulting hyperbola is symmetric around the x-axis. while the one depicted in fig. 3.2 is 
rotated around the z-axis with an angle of dR = using the following relations

Xi = x • cos'dr + y • sindn

yi = —x • Slu'dR + y ■ cosdft 

Zi = z

(3.8)

(3.9) 

(3.10)

For the hyperbola, we can determine the impact parameter b [for yi (tu = —oo)], angular 
momentum l and the distance of closest approach D [for r(tu = 0)] from the measured 
scattering angle 6^.

, , dcm
b — a • cot

A

£ = fcoo • b = rj • cot

D = a-
■ -i(0c

sm ( — + i

The asymptotic wave number kx is given by

A2
hoc = 0.219 ■

Ai + A2
* y/Ax ■ Tlah [fm x]

(3.11)

(3.12)

(3.13)

(3.14)

For the 58Ni+112Sn system at 175 MeV, an asymptotic wave number of /c00=14.5 fm~l is 
calculated which yields an impact parameter of b=5.05 fm, an angular momentum of 73.4 
h and a distant of closest approach of D=18.8 fm at a scattering angle of 0cm=12O°.
The de Broglie wavelength is given by

A - (fcoo)"1 (3.15)

We can rewrite eq. 3.13 for the special case 9cm — 180° (D=2a) to obtain the expression for 
the safe bombarding energy

Tgafe = 1AA'^'Z1 • ^±^[MeV] (3.16)

where D= Cx + C2 + 5.0 [fm] is the safe distance.
Ci and C2 are the matter half-density radii (Fermi distribution) of the collision partners 
[21]. For the estimates in the present section, we use

Ci = Ri-( 1 - Ri2) (3.17)

and where Ri is the nuclear radius for a homogeneous mass distribution [22], which is 
parametrized as

Ri = 1.28 • A)/Z - 0.76 + 0.8 • AJlf3 (3.18)
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Isotope -Ri(fm) C) (fm)
58Ni(i=l) 4.40 4.17
n2Sn(i=2) 5.58 5.40

Table 3.1: Nuclear charge radii for Fermi and homogeneous mass distribution

For the 58Ni+112Sn system the nuclear charge radii are displayed in fig. 3.2 and the summa­
rized in tab. 3.1.

Fig. 3.2 shows for completeness the nuclear interaction radius i?in*=12.55fm which is 
calculated by

Rint = Cl + C2 + 4.49[fm] (3.19)

In the present Coulomb excitation experiment, this distance required for nuclear reactions is 
not reached since the incident energy of 175MeV is well below the safe bombarding energy 
of 210MeV for the 58Ni+U2Sn system.

3.3 Multipole Expansion

Figure 3.3: Schematic picture of an extended charge distribution (see text)

In the semiclassical approach the projectile is treated as a point object and target nucleus 
as an extended object (see fig. 3.3) . The electric potential is defined as
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U(r) ~ J J J j (3.20)
where pp{r') is the electric charge distribution. One expands the radial dependence as a 
function of spherical harmonics

E
e=o

Ait
re+i 2• £+ 1

£ Ws,

TO= — t
In the following we consider two physical cases: 
CASE 1: electric monopole when £=m=0

(3.21)

YQO(d,4>) = YOQ(e',4>/) = ^=
y/Air

In this case one obtain the following radial dependence

(3.22)

1 1 
|r — r'\ ~ r (3.23)

Therefore, the potential for the electric monopole is given by

^-///^
(3.24)

Inserting the homogenous charge distribution

, 3 -Z-e (3.25)

in eq. 3.24 one obtains, the well-known result

3-Z-e 1U(r) 4-7r • jR03 t 
3-Z-e 1 Rq3

J J J r'2 dr'sind'dff d4>

4 • 7r • Rq6 r 3 
Z • e

4 ■ fT

(3.26)

For point like charges, the scattering cross-section is given by the Rutherford cross section

do-Ruth a2
dOr

. —4 $cm

T.sm — (3.27)

CASE 2: electric multipole when 1=2,m
The potential is given by

00 e A-ir

um = E E=0 m——t 2-1+1 rt+1 Yim(9, <p) J jj pp(?) ■ r'1 ■ YU&., 4>')dr' (3.28)
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After reordering the multipole moment is defined by

M*(l, m)=j f I pp(?) • / • YZtf, 4W (3.29)

The reduced transition probability B(E2 f) is related to the nuclear matrix element by the 
formula

B(El = 2; I* —*• If) — <IfMf\M(e^2,m)\IiMi>2 (3.30)

According to the Wigner-Eckart theorem, a matrix element of an operator M (£. m) leads to 
the following reduced matrix element

< IfMf\M(E2,m)\IiMi >= (Ii2Mim\IfMf) < If\\M(E2)\\Ii > (3.31)

where (I,2Mjm|I/M/) is a Clebsch-Gordan coefficient. The reduced matrix element < If\\M(E2) 
contains the information about the nuclear wave functions. Then, according to the or­
thonormality of the Clebsch-Gordan coefficients, we obtained the following expression for 
the B(E2 f) values:

B(E2;Ii -* If) = -------- < If\\M(E2)\\Ii >2 (3.32)

This expression assures that the lifetime of a state does not depend on its orientation (ro­
tational invariance). Neglecting conversion coefficients, one obtains the following relation 
between the lifetime of a state and the reduced transition probability

- = 1.23 • 1013 • B{E2.t If /<) ■ E* [s~x] (3.33)

For the scattering of point-like objects with an extended nucleus (shown in fig. 3.3), the 
differential inelastic cross section is given by

do j f ^ doRuth
dOc dnr

(3.34)

where P^f is the excitation probability. For the simplest case of a one step excitation the 
inelastic cross section can be written analytically as

doB2 4.819- ' MeV B(E2]Ii^If)-dfE2(V,0 [5] (3.35)

where dfE2 is a classical function which is closely related to the orbital integral. The function 
dfE2 depends on the adiabaticity parameter which is given by

Z\ - Z2 • A\2 • AEMeV 
12.65 • (TMev — \&E,MeV)i

(3.36)

where
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AE'MeV= (l + f) • AJW

and AE is the energy of an excited state. For the 58Ni+U2Sn system at 175 MeV one 
obtains an adiabatieity parameter , of 0.70. Fig. 3.4 shows the inelastic cross section for the 
2+ excitation in 112Sn. The single step excitation was performed with a reduced transition 
probability of B(E2;0+ —> 2+)=0.240e262. One notices a maximum of the inelastic cross 
section which can be moved to higher scattering angles for larger adiabatieity parameter £. 
The relation of the reduced transition probability between the excitation B(E2 j') and the 
decay B(E2 |) of the nuclear state is given by

B(E2; If - U) = . B(E2; h - If) (3.37)

since the absolute value of the reduced matrix element is invariant under the interchange of 
It and If. In case of an E2 transition between ground state 0+ and the first excited state 
2f, we obtain

B(E2; 0+ 2+) = 5 • B(E2; 2f -» 0+) (3.38)
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Figure 3.4: Inelastic cross section for the single-step 2+ excitation in 112Sn
(B(E2; 0+ —* 2+ )= 0.240 e2b2) after the scattering of 58Ni projectiles at an energy of 
175MeV.

In the collision between two heavy ions, both target and projectile can usually be ex­
cited. In most cases one has to consider only the monopole-multipole fields, in which the 
monopole moments, i.e. the electric charges, are undisturbed by excitations. If the projec­
tile is a composite particle (fig. 3.3), the process is entirely analogous to the excitation of 
the target nucleus, and corresponds merely to the interchange of the roles of target nucleus
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and projectile. It differs from the evaluation of the target excitation through kinematical ef­
fects associated with the centre-of-mass motion (Tiab/Ai=constant). The interaction is now 
propotional to the projectile reduced transition probability.
In the collision of two heavy ions, where both of them may have large deformations, one has 
to study the effect of the multipole-multipole interactions. In most experiments these effects 
are, however, negligibly small.

3.4 Angular Distribution of De-Excitation 7-Rays
The nuclear states populated by Coulomb excitation decay by emission of 7-radiation or 
conversion electrons. Since the time scales for the excitation process (10-22 — 10-21s) and 
the 7-ray decay (10~15 — 10“9s) are quite different, the differential cross section for observing 
both the scattered particle and the 7-quantum is given by the following product

dV daRuth dQcm dW( 7^m) 
dQlpabdQlf dQcm ’ dlllab ' ' dillf K }

where ^uth- is the Rutherford cross-section (eq. 3.27) in the centre-of-mass system. If the 
projectile is detected, the transformation from the cm-system to the lab-system yields

with

dQcrn __ sin2!)-, 
dO-iab sm29c.,n

cosiQcm "di)

= i?i + arcsin

For the detection of the target nucleus, one obtains

(3.40)

(3.41)

wtocm ___  -1-

dQlab 4 • cos-$2
The angular distribution for 7-quanta from an excited state N to 
transformed from a coordinate system where the target nucleus is 
coordinate system by

(3.42)

a state M has also to be 
at rest to the laboratory

dQryeat
dDlf’ ,E.7O/

(3.43)

where E1 is the Doppler shifted 7-ray energy in the laboratory frame and E10 is the tran­
sition energy between the energy levels N and M. The angular distribution may be written as

}orest.M^ — (4 - 7T) 5 ’ X/ -A-kK ’ Qk ’ Gk • FkK(IM, In) •YkK(Q~/><f>'y ~ <!>l) (3.44)
“““7 fc=0,2,4 —k<K<k

where AkK denote the statistical tensors of the excitation, Qk are corrections due to the 
finite solid angle of the Ge-detectors [23], Gk are the deorientation coefficients [24] and
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Fk(IM, In) are the 77-correlation coefficients [20] . The spherical harmonics YkK depend 
on the polar angles B1 and <p7. Fig. 3.5 shows a particle-7 correlation with S8Ni projectiles 
being detected at angles of 0crn — 45° and —9° < <pcm < 9° (full curve) and 81° < cpcrn < 
99° (dashed curve). The 7-rays of the 2+ —► 0+ transition in the 112Sn are measured with a 
Ge-detector in plane (4>y = 0° or </>7 = 180°). No intergration over the finite solid angle of 
the Ge-detector was performed and the deorientation effect was not considered.

Figure 3.5: Particle-7 angular correlation for 58Ni projectiles scattered at angles of 6cm—Ah° 
and —9° < (pcrn < 9° (full curve) and 81° < <t>crn < 99° (dashed curve). The 7-rays of the 
2+ > o+ transition in 112Sn are measured with Ge-detectors in plane (<py —0° or <p~f =180°). 
The beam and target is indicated as well as the scattering at 9^—45°.

For the geometry in which the projectiles are detected in an annular counter symmetric 
around the beam axis, one finds the following angular distribution:

dW (jn-^m) 
dQryest

A0o-Qo-Gq-F0(0,2)-±

+ A4Q • Q4 • G4 • JF4(0,2)

• (35 • cos% - 30 • cos% + 3) (3.45)

with the 77-correlation coefficients for the 2+ —»• 0+ transition -Fo(0,2)—1, 
F2(0,2)= ~\fh and F4(0, 2)= -\f% one obtainsF2(0,2)=-^mdF4M=-Ji



3.4. ANGULAR DISTRIBUTION OF DE-EXCITATION j-RAYS 49

Figure 3.6: 7-ray angular correlation for 2+ —* 0+ transition in 112Sn after the scattering 
of 58Ni projectiles at an angle of 0cm=45°. The calculation was performed without taking 
into account the deorientation effect (Gk=1) and the integration over a finite size of the Ge 
detector (Qf. = 1). The dashed line shows an isotropic 7-ray angular correlation.

dW( lN^M) 
dQ:(est

Aqq ■ Qo ■ Gq

OK 1A20-Q2-G2-J^--(3-cos%-1)

A40 • Q4 • G4 118 1 
7 ' 8 (35 • cos% - 30 • cos% + 3) (3.46)

A 7-ray angular correlation for a 2+ —+ 0+ transition in 112Sn after the scattering of 58Ni 
projectiles at an angle of 9cm=45° is shown in fig. 3.6.
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