		R
		£
		S
		U
		L
		Т
		S
		Α
	RESULT S	AND DISCUSSION
		D
		D
、		I
		S
		0
		U T
		U
		S
		S
		I
		0
		N

.

,

-.

.

E X P E R E X P E R I M E N T - I M E N T

.

•

1

•

١

1

,

EXPERIMENT - D -

IA CHANGES IN THE CONCENTRATION OF POLYPI AT DIFFERENT TIMES POST-MORTEM

It is well known that several biochemical changes occur in brain post-mortem. Glycolytic changes (Friede and Van Houten, 1961; Mark et al., 1968), increased GABA (Yoshing and Elliott, 1970) and 5-HT levels (Sloviter and Connor, 1977) and a substantial decline in several neurotransmitter metabolizing enzymes (Fahn and Cote, 1976) in the brain have been reported. Considerable evidence exists to show that among the lipids PolyPI are rapidly lost post-mortem in rat brain (Dawson and Eichberg, 1965; Eichberg and Hauser, 1967; Sheltawy and Dawson, 1969; Hauser et al., 1971a; Gonzalez-Sastre et al., 1971). Eichberg and Hauser (1967) have shown that the activity of PolyPI phosphohydrolases however, do not change for at legast 120 min after death. Studies using microwave irradiation have shown improved recoveries of endogenous $PtdIns(4,5)P_2$ in rat (Soukup et al., 1978a) and mouse (Nishihara and Keenan, 1983) brain. Based on the above, several authors have suggested that PolyPI may exist in the form of two pools in brain, one that is readily susceptible to hydrolytic attack and disappears rapidly post-mortem and the other that is hydrolysed at a slower rate. Special interest lies in the rapidly disappearing pool of PolyPI which may have a functional role in CNS and other

membranes. Further, post-mortem changes in PolyPI levels have also been reported to be dependent on the age of the animals (Sheltawy and Dawson, 1969). Studies were therefore carried out first to investigate the concentration of PolyPI at different times post-mortem in rats of two ages (21 and 56 days old). The heads of rats were immersed in liquid N₂ at different times after decapitation viz. 2sec, 1, 10, 20, 30, 40 and 70 min and the brains from the frozen heads were used for extraction and analysis of PolyPI (see Materials and Methods, pp-/39).

The data obtained on losses in PtdIns(4,5)P₂ and PtdIns4P at different times post-mortem in rat brain (21 and 56 days old) are given in Table 26 and Fig. 12. Substantial losses were observed in PtdIns(4,5)P₂ (63% - 21 days; 71%- 56 days) and PtdIns4P (71% - 21 days; 44% - 56 days) during the 70 min post-mortem period. The maximum decline occurred in the first min (26-27% - PtdIns(4,5)P₂; 22-30% - PtdIns4P) followed by a steady decline to 70 min. Eichberg and Hauser (1967) reported that the levels of PolyPI decrease by about 46% within 10 min after death and thereafter the depletion is very slow for the next 110 min. In this study the brains of rats were frozen in liquid N₂ after decapitation and thus the levels of PolyPI lost during the first minute could not be determined.

The rate of decrease (nmoles/min) in the levels of PolyPI during different time intervals post-mortem are given in Table 27. The rate of depletion of $PtdIns(4,5)P_2$ during different time intervals post-mortem is found to be generally higher at 56 than at 21 days of age. These results are at variance with those of Sheltawy and Dawson (1969) where the rate and magnitude of the fall in $PtdIns(4,5)P_2$ was shown to be rapid and more extensive in the younger rats. However, the PtdIns4P fraction showed no correlation with age in their studies as well as in the present study.

It is evident from Table 27 that the rate of decrease (nmoles of PolyPI lost/min) is highest between 0-1 min and gradually drops with increasing time post-mortem. The decreases in the levels of $PtdIns(4,5)P_2$ and PtdIns4P during 0-1, 1-10 and 10-70 min post-mortem time intervals are significant in both 21 and 56 day old brains. The changes observed after 10 min post-mortem i.e. between 10-20, 20-30, 30-40 and 40-70 min post-mortem time intervals are however not significant. These results suggest that PolyPI may exist as two pools, one, a metabolically active pool and the other a relatively stable pool. Studies carried out on PolyPI in myelin (Deshmukh et al., 1980), have shown that $PtdIns(4,5)P_2$ and PtdIns4P in myelin isolated from 24 day old rat brains represent 55% and 44% respectively of the total homogenate levels. In the present study 10 min post-mortem levels of PtdIns(4,5)P2 and PtdIns4P at 21 days of age are in close correlation with those

reported for whole myelin while the 1 min post-mortem levels are appreciably higher. This suggests that PolyPI levels at 1 min post-mortem are not totally representative of a stable pool, all of it being located in myelin, but a fraction of the same (lost during the next 10 min) is also present in nonmyelinated structures. The fact that considerable amounts of PolyPI are lost even after 10 min post-mortem suggests that the relatively stable pool presemably localized in myelin is also further degraded and this pool may have a functional role in myelin metabolism. In this connection, it is interesting to note that the enzymes responsible for the synthesis and catabolism of PolyPI are also partially localized in myelin (Deshmukh <u>et al.</u>, 1978; 1982).

PolyPi which presumably have a role in the rapid conduction of nerve impulses along axons (Kai and Hawthorne, 1969) and across synapses (Griffin and Hawthorne, 1978) would constitute an active fraction of the total PolyPI. The sharp decline in the first x minute post-mortem followed by a steady fall suggests that PolyPI lost during the first minute may be related to such events.

Based on the above discussion, certain speculations on the designation, localization and role of different pools of PolyPI have been made which are summarized in Fig. 13 and

Table 28. The assumption, that heads frozen in liquid N_2 immediately following decapitation would contain the absolute or maximum levels of PolyPI, may be far from true since the set of decapitation itself may lead to losses in PolyPI levels. Mark <u>et al</u> (1968) reported that brains of rats where whole animals, heads and brains were frozen in liquid N2 contained 0.91, 0.36 and 0.22 umoles of glucose/g respectively. This indicates that 60% of the glucose in brain is metabolized by the act of decapitation and only 16% more is labile in the 1 minute interval that follows it. Soukap et al (1978) have shown the levels of Ptd Ins $(4,5)P_2$ and Ptd Ins4P to be 460 nmoles/g and 149 nmoles/g wet wt respectively in microwave irradiated 34 day old rat brains. A 17% loss in $PtdIns(4,5)P_{2}$ was observed in brains where the heads of the animals were frozen in liquid No. However, in the present study, it was rather difficult to carry out such precise determinations due to the existing limitations in this laboratory on the technique employed for tissue fixation though attempts were made along this direction. In effect, the results of the present study may not reflect the true in vivo concentrations of PolyPI pools but give us an idea of the pattern of changes that occur post-mortem and provide a base for studies on PolyPI in the developing rat brain and the effects of nutritional deficiencies

on the same during different periods of development. The above ate could be extended using improved techniques to inactive the brain efficiently.

The question remains, whether the rapid loss part-mortem of PolyPI is due to a phosphodiesteratic or phosphomonoesteratic cleavage, or a combination of both activities. A rise in the levels of intracellular Ca²⁺ ions post-mortem could regulate the hydrolysis of PolyPI since both enzymes are known to be activated by this cation (Table 13). Nijjar and Hawthorne (1977) have suggested that the amount of phosphohydrolase activity present in the brain is sufficient to hydrolyze all the PolyPI within short intervals after death. Since considerable amounts remain several minutes after death, it is speculated that PolyPI exist in two forms, one attacked rapidly by the phosphohydrolases (lost immediately post-mortem) which may be present in combination with proteins and ions like Ca^{2+} and Mg^{2+} and the noncomplexed form attacked at a slower rate (lost gradually postmortem). PolyPI have in fact been considered to occur as Ca²⁺ or Mg²⁺ complexes (Kerr et al., 1964; Hendrickson and Ballou, 1964; Eichberg and Dawson, 1965) bound through ionic linkages to protein. Studies on the cholinergic proteolipid receptor fraction isolated from the cerebral cortex have shown that it contains $PtdIns(4,5)P_2$ which may function as a binding component of the nicotinic cholinergic receptor and thereby have a role in

synaptic events (Wu <u>et al</u>., 1977; Cho <u>et al</u>., 1978). The precise localization, metabolic properties and specific functions of these pools need further investigations.

Ib CHANGES IN THE CONCENTRATION OF POLYPI IN RAT BRAIN DURING DEVELOPMENT

Several studies have been carried out on the PolyPI composition of developing brain of rat (Rossiter and Gardiner, 1966; Wells and Dittmer, 1967; Eichberg and Hauser, 1967; Sheltawy and Dawson, 1969; Keough and Thompson, 1970), guinea-pig (Sheltawy and Dawson, 1969) and chick (Shaikh and Palmer, 1976). As mentioned earlier the methods used for tissue fixation to preserve these compounds varied widely thereby leading to a wide range of values in literature (Table 6). No systematic study has focused on determining the levels of PolyPI pools during the development of rat brain. Since PolyPI pools are presumably located in different cell structures of the brain (Eichberg et al., 1971; Hauser et al., 1971a) which mature during different stages of development (Benjamins and McKhann, 1981) the levels of PolyPI pools during development were investigated. Results of the present study have recently appeared (Uma and Ramakrishnan, 1983a).

Studies were therefore carried out to estimate the concentration of PolyPI and their post-mortem losses in rat brain at different ages. Groups of rats were killed at 0, 7, 14, 21, 34 and 63 days of age and the concentrations of PolyPI were determined both at "0 min" and 1 min post-mortem at each age. These two time points were chosen based on the results of preliminary study (i.e. experiment Ia).

Data obtained on body and brain weights are presented in Table 29. The body and brain weights were comparable with several literature reports (Wells and Dittmer, 1967; DeSouza and Horrocks, 1979; Reddy <u>et al.</u>, 1983). The weight of the brain reached 83% of the reference value (i.e. 9 weeks) by 3 weeks of age, while the corresponding value for body weight was only 27%. The brain and body weights were 18% and 4% at birth and reached 44% and 9% at one week and 71% and 15% at two weeks after birth. The percent increment in brain weight during the pre- and post-weaning periods were 300% and 20% respectively, while the body weight increases were many fold higher. The pattern is consistent with the well-known priority enjoyed by the brain during development.

The data on the concentration of PolyPI at "O min" and 1 min post-mortem are presented in Table 30 and Figure 14. The results on PtdIns4P at 1 min post-mortem need to be interpreted with caution since it is an intermediate in the biosynthetic and degradative pathways of PtdIns $(4,5)P_2$. The concentrations of total $PtdIns(4,5)P_2$ and PtdIns4Pincreased from birth to 63 and 34 days, respectively. The values for PtdIns4P were higher than those reported by Eichberg andHauser (1967) and Soukup <u>et al</u> (1978a). This increase could be attributed to the inclusion of $CaCl_2$ in the neutral solvent extraction step as shown in the rat (Hauser and Eichberg, 1973) and chick (Shaikh and Palmer, 1976) brain. The improved recoveries are probably a result of reduced losses of PolyPI into the initial neutral solvent extracts due to enhanced binding of these lipids to tissue proteins.

Although PolyPI levels increased both during pre- and postweaning periods, $PtdIns(4,5)P_2$ showed a peak increase between 21 and 34 days (61%) and PtdIns4P between 14 and 21 days of age (56%). Developmental studies on the kinases have shown that PtdIns kinase increases in activity well before myelination while PtdIns4P kinase increases rapidly during myelination (Salway et al., 1968; Eichberg and Hauser, 1969; Shaikh and Palmer, 1977a). The PtdIns $(4,5)P_2$ phosphomonoesterase (Salway et al., 1968; Shaikh and Palmer, 1977b) and PtdIns $(4,5)P_2$ phosphodiesterase (Keough and Thompson, 1970; Shaikh and Palmer, 1977b) have also been shown to increase rapidly during myelination implying some co-ordination of control of the enzymes and substrates, especially $PtdIns(4,5)P_2$. Preliminary studies carried out in this laboratory on inositol phosphatases hydrolysing InstP, Ins $(1,4)P_2$ and Ins $(1,4,5)P_3$ (Muralidharan et al., unpublshed) have shown the activities of these enzymes to

ŋ

increase rapidly during the peak period of myelination. Several myelin-specific lipids, namely galactolipids and ethanolamine plasmalogens also show rapid increases during this period (Wells and Dittmer, 1967; Reddy <u>et al</u>., 1983). Thus, there seems to be a close correlation between the deposition of $PtdIns(4,5)P_2$, myelinogenesis and development of the biosynthetic and hydrolytic enzymes active against $PtdIns(4,5)P_2$ in the rat brain. The metabolism of PtdIns4P appears to be more related to neuronal structures rather than myelin.

PolyPI levels as percent of reference value (i.e. 63 day old) in the developing rat brain are given in Table 31. Results show that substantial amounts of PolyPI are present in rat brain after birth (22%-PtdIns(4,5)P2 and 38% shortly PtdIns4P of maximum adult value). This agrees with several earlier reports (Rossiter and Gardiner, 1966; Eichberg and Hauser, 1967; Wells and Dittmer, 1967; Sheltawy and Dawson, 1969) and also confirms the findings that PolyPI are indeed present in cellular membranes other than myelin (Eichberg et al., 1971; Hauser et al., 1971b; Eichberg and Hauser, 1973). Significant amounts of the metabolically relatively stable pool (1 min) of PolyPI (26% - PtdIns(4,5) P_2 and 50% - PtdIns4P of maximum adult value) were present at birth, presumably located in structures including those which later elaborate myelin. In this connection, it is interesting to note that significant amounts of these lipids are present in the myelin-rich P_2A

fraction of 7 day-old rat brains although no profile characteristic of compacted myelin were seen in this fraction (Kichberg and Hauser, 1973). The myelin like material in this fraction has been proposed to be a modified form of oligodendroglial plasma membrane (Agrawal <u>et al.</u>, 1970). Alternatively, this pool of PolyPI present at birth may represent the fraction C (lost during 1-40 min post-mortem, refer pp 189-190) presumably located in non-myelin membranes.

The changes in the relative proportions of the metabolically highly active pool (0-1 min post-mortem values - pool B) and the relatively inert pool (1 min post-mortem values - pools $A_1 + C$) in the developing rat brain are given in Fig. 15. At all ages the pools $(A_1 + C)$ represented a greater fraction than pool B of PolyPI. Since the differences between "0 min" and 1 min values are not significant at birth, the question arises if the metabolically highly active pool of PolyPI are formed only after birth. This active pool of PtdIns $(4,5)P_2$ seems to appear at 7 days and that of PtdIns4P at 14 days of age.

The percent increments in brain weight and the content of PolyPI during different stages of development are given in Table 32. The increments in brain weight were highest during the first week after birth and gradually dropped with increasing

age. A similar pattern of changes was observed in the content of PolyPI at "O min" and 1 min post-mortem although the increments were relatively higher than that observed for brain weight. This indicates that the increments in the levels of PolyPI are not merely due to an increase in the tissue weight of the animal. Further, significant increases in the content of PtdIns $(4,5)P_2$ occurred between 5 and 9 weeks of age although the brain weight showed no changes during this period of development. This suggests that PtdIns $(4,5)P_2$ may have an important role to play in the post-weaning period.

The concentrations of PtdIns $(4,5)P_2$ and PtdIns4P at 1 min post-mortem (pool $A_1 + C$) increased from birth to 63 and 34 days of age, respectively, indicating that the pools A_1 and C are deposited both during prê- and post-weaning periods. Since the levels of PolyPI at 10 min post-mortem have not been determined, the actual levels of pool C lost between 1 and 10 min post-mortem could not be calculated. However, the results suggest that the metabolically relatively inert pool of PolyPI may be important in the maintenance of the structural integrity of neuronal, glial and myelin membranes. This pool of PtdIns $(4,5)P_2$ alone exhibited a significant increase of 53% (Table 32) between 5 and 9 weeks of age. Hauser <u>et al</u> (1971a) have shown that significant amounts of PtdIns $(4,5)P_2$ are deposited in the brain stem between 34 and 60 days of age. Thus, the data obtained in the present study provide supportive evidence to

184

the hypothesis that the 1 min post-mortem levels represent a major fraction of PolyPI located in white matter structure like the brain stem.

The metabolically highly active pool of $PtdIns(4,5)P_2$ seems to appear at 7 days while that of PtdIns4P at 14 days of age (Table 30). Maximum deposition of the active pool of $PtdIns(4,5)P_2$ occurred after weaning (3-5 weeks - Table 32) during the period of glial cell proliferation and continued • myelination. In this connection it is interesting to note that a metabolically active pool of PolyPI exists even in myelin and that the necessary biosynthetic and hydrolysing enzymes are present in the "heavy" myelin fraction (Deshmukh <u>et al.</u>, 1978; 1982). On the other hand, rapid increases in this pool of PtdIns4P occurred before weaning (2-3 weeks) during the period of active synaptogenesis. These changes in PtdIns(4,5)P₂ may be related to the role of neuronal, glial and myelin membranes while that of PtdIns4P mainly to neuronal and to synaptic membranes.

In summary, the results suggest that PolyPI in brain exist in the form of at least two pools, namely, the metabolically highly active pool (pool B) that is readily susceptible to hydrolytic attack and the relatively inert pool (pool $A_1 + C$) that is hydrolysed at a slower rate. The

proportion of the two pools appear to vary at different times post-mortem, the active pool disappearing gradually with increasing time. Results also suggest the existence of multiple metabolic pools - each pool being relatively more stable or relatively more active than the other. The metabolically highly active pool (pool B) of PolyPI could not be detected at birth indicating that they begin to appear at the onset of neuronal and synaptic maturation and continue to be deposited during the period of active myelination and glial cell proliferation. On the other hand, considerable amounts of the metabolically relatively inert pool of PolyPI are present at birth probably located in neurons or in structures that later elaborate myelin. The metabolically highly active pool as $RtdIns(4,5)P_2$ is deposited rapidly after weaning during the period of glial cell maturation and continued myelination. It therefore seems to be more important in glial and myelin metabolism. As rapid deposition of this pool of PtdIns4P occurs before weaning pduring the period of active synaptogenesis and may be important in neuronal metabolism. On the other hand the relatively inert pool of both lipids are deposited during preand post-weaning periods indicating their importance in glial and myelin metabolism apart from their role in neurons. However, it is necessary to carry out further studies on subcellular fractions of the brain or on neuronal and glial cells cultured in vitro to obtain precise knowledge on the role of PolyPI pools in different types of nerve cells.

TABLE 26 :	CHANGES I 21 AND 56	EN THE CONC 5 DAY OLD R	ENTRATION	OF POLYPH(ISONIOHAS	TIDES AT DI	FFERENT T	M-TSO4 SEMI	ORTEM IN
			PtdIns	$(4,5)P_2$			PtdI	ns4P	· Mich. Mich. Mich. Mich. Man. Ward and
pegun begun	No. of	21 d	lays	50 c	lays	21 di	ays	56 d	ays
post- mortem (min)	vations	rmoles g wet wt	% of "O min" value	nmoles g wet wt	% of "O min" value	moles g wet wt	% of "O min" value		% of % of "O min" value
10 mmb Mad Map Ann Ann Ann Ann Ann	متر تقسد بجمد معلم طحية تعريد يحمد مجود الحمد	1966 Facilit and state man land. Mark shall state		to any out the number of the state of the	(Mean	± s.D.)		with way into anto man man the that they was too a	440 MA 100 MA 100 MA 100 MA
*0	$n_{21} = 5$ $n_{56} = 3$	250-28		426+22		192+20		321 <u>+</u> 18	
7	$n_{24} = 5$ $n_{56} = 3$	182+9	73	315+21	74	150-20	78	226+9	70
10	$n_{21} = 3$ $n_{66} = 2$	147±7	50	214 249	54	118 ± 13	61	222 249	73
20	$n_{21} = 2$ $n_{56} = 2$	120 125	50	214 222	51	86 102	49	221 236	71
30	$\begin{array}{c} n_{21}=2\\ n_{56}=2 \end{array}$	102 120	44	152 176	S S	94 90	45	201 230	67
40	$n_{21} = 2$, $n_{56} = 2$	102 98	40	138 150	34	87 69	41	177 213	61
70	$n_{21} = 2$ $n_{56} = 2$	86 99	37	132 118	39	60 52	5	165 185	56
* PolyPI 1 n ₂₁ = number	evels at " of observ	'O min" rep: rations at	resent 2 s 21 days.	sec post-mo	rtem valu				86

n₅₆= number of observations at 56 days.

Fig. 12 : PolyPI levels at different times post-mortem.

188

-

TABLE 27 : RATE OF DECREASE (nmoles/min) IN THE LEVELS OF POLY-PHOSPHOINOSITIDES DURING DIFFERENT TIME-INTERVALS POST-MORTEM IN RAT BRAIN (21 and 56 days old).

,

.

Post-mortem time interval (min)	0-1	1-10	10- 20	20-30	30-40	40-70
		140 - 11 1 - 11 1 -	Will have tille the till the fact the		t del. Clin (N) (N) (N)	n inite dina ana ana ani ani ana ana
21 DAYS						
$PtdIns(4,5)P_2$	68 ^{***}	3•8 ^{***}	2.4	1.2	1.1	0.23
PtdIIns4P	42**	3. ^{**}	2.4	0.2	1.4	0.73
56 DAYS						
$PtdIns(4,5)P_2$	*** 111	9.2*	1.4	5.4	2.0	0.63
PtdIns4P	95 ^{***}	-	0.7	1.3	2.1	0.66
		یرین واست. دارین هست واقع در در مرکز است.	ann ann ann bha dan ann an b	عبر طورت طبيع عليه وليت طبقة إدارة القاب الله	n, daan sadan danke saler dalah sang adam dan	n Miga majar dadi dinir pinar dinir dinin maja dida

- *** Values represent significant decreases during the time interval specified P \leq 0.005.
 - ** Values represent significant decreases during the time interval specified P <0.02 and 0.05

.

, , Fig. 13 : Schematic representation of PolyPI pools.

.

.

a

~ ~

190

,

TABLE 28 : POSTULATED DESIGNATION, LOCALIZATION AND ROLE OF POLYPI POOLS IN RAT BRAIN.

t

-

		Designation	Localization	o Role
"O min" ((A+B).	Total levels of PolyPI	Neuronal, glial and myelin membranes	Structural and functional role in neuronal, glia and myelin membranes
1 min	A ₁	1,Metaboli- cally rela- tively stable pool of PolyPI	Myelin membrane	Structural and functional role in myelin membrane
	С	2. Metaboli- cally rela- tively active pool of PolyPI	Non-myelin membrane	Functional role in non-myelin membrane
(0-1) min	В	Metabolically highly active pool of PolyPI	Non-myelin membrane	Functional role in non-myelin membrane
10 min	А ₂	Metabolically relatively stable pool of PolyPI	Myelin membrane	Structural and functional role in myelin membrane
	D	Metabolically relatively pool of PolyPI	Myelin membrane	Functional role in meylin membrane
(1-10)min	C	Metabolically relatively active pool of PolyPI	Non-myelin membrane	Functional role in non-myelin membranes
(10-70) min	n D	Metabolically relatively active pool of PolyPI	Myelin membrane	Functional role in myelin membrane

•

-

,

Age (weeks)	0	1	2	3	5	9
	n=16	n=32	n=13	n=18	n=14	n= 8
	na ninita nona, dida, daja tapis ninita dana d	iger dige minis vann bille filme take dien k	ang diara sana sana ang ang ang ang a	an erh ihr pro an an an an a	ang dinin beur daun dinin angs dinin di	
			mean <u>-</u>	s.d.		
Body weight (g)	6.2 <u>+</u> 0.8	14.6 <u>+</u> 1.4	25.8 <u>+</u> 1.1	45.0 <u>+</u> 3.5	70.5 ± 7.6	$167.0 \\ \pm 20.0$
Brain weight (g)	0.30 <u>+</u> 0.05	0.71 <u>+</u> 0.13	1.17 <u>+</u> 0.06	1.36 <u>+</u> 0.08	1.54 +0.10	1.64 +0.12
$\frac{\text{Brain weight}}{\text{Body weight}} \times 100$	4.8	4.9	4.5	3.0	2.2	0.9
% of adult weight (i.e., 63 days old)						
Body weight	3.7	8.7	15.4	27.0	42.2	100
Brain weight	18.1	43.6	71.3	83.3	93.3	100

TABLE 29 : BODY AND BRAIN WEIGHTS AT DIFFERENT AGES IN THE RAT.

-

.

-

•

^

n = No of observations for determination of body and brain weight at all ages except brain weight at birth (n = 4) and first week (n = 8) where brains of four rats were pooled.

.

-

TABLE 30 : POLYPHOSPHOINOSITIDES IN DEVELOPING RAT BRAIN.

Age (weeks)	0	1	2	· · · · · ·	5	6
	$n_0 = 2$	$n_0 = 4$	$n_0 = \frac{8}{8}$	n . = 9.	$n_0 = 7^{-1}$	n ₀ = 4
	n1 = 2	n ₁ = 4	n ₁ = 5	$n_1 = 9$	$n_1 = 7$	$n_1 = 4$
		ICI	oles/g wet w	t.; mean + s	٠d.	
$\underline{\operatorname{PtdIns}(4.5)}\underline{\operatorname{P2}}_2$						
"0 min" (q)*	108 ± 7	164 + 42	213 ± 15	269 ± 49	433 ± 15	476 ± 18
1 min (R.)	95 + 4	102 + 22	156 ± 29	199 ± 23	262 + 28	368 ± 60
Q. – R.	13	62	57	02	171	108
Significance between (Q) & (R) P <	N.S.	0.01	0.01	0.01	0.001	0.05
PtdIns4P				,	-	
"0 min" (S)*	84 ± 18	105 ± 9	132 ± 31	206 ± 38	234 ± 18	222 + 42
1 min (P)	83 + 5	101 ± 33	105 ± 23	171 ± 35	203 ± 12	166 ± 20
S – D	ħ	4	27	35	31	56
Significance between ((S)) & ((T)) P <	N.S.	N.S.	N•S•	0.1	0.01	0.1
Brains of four rat: At all other a n ₀ - Number of sam n ₁ - Number of sam *1 Time to cut and N.S not signific	s were pooled ages only one ples used for jles used for drop the head	for each sa brain was u determinati determinati i in liquid	unple at 0 ar sed for each on of PolyPI on of PolyPI N2 was 2 sec	d 7 days of sample. levels at " levels at 1	age. O min". min.	

.

,

•

192

`. ?

Fig. 14 : PolyPI levels in developing rat brain.

TABLE 31 :	POLYPHOSPHOINOSITIDE COMPOSITION OF DEVELOPING RAT
	BRAIN AS PERCENT OF REFERENCE VALUE (i.e., 63-DAY-OLD
	RATS)*.

					Age	(week	s)	
		0	:	1		2	3	5
$\underline{PtdIns(4,5)P}_2$								
"O min" (Q)		22		34		45	56	91
1 min (R)		26		28		42	54	71
(q - B))		12		57		53	65	158
PtdIns4P	~							
"O min (S)		38		47		59	93	105
1 min (¶)		50		60		63	103	122
(S - T)		2,		7		48	62	55

• •

.

* Values balculated from mean \pm s.d. values of Table 30.

.

N

ŕ

TABLE 32 : PERCENT INCREMENTS IN THE CONTENT OF POLYPHOSPHO-INOSITIDE POOLS DURING DIFFERENT PERIODS OF DEVELOP-MENT IN RAT BRAIN.

Age (weeks)	0-1	1-2	2-3	3-5	5-9
Brain wt	13 ^{***}	65 ^{***}	16***	13 ^{***}	6
$\underline{PtdIns(4,5)P}_2$					
"O min" (Q)	*** 211	115 ^{***}	50***	76 ^{***}	17**
1 min (R)	21 ^{**}	140***	44 ^{***}	51***	53 ^{**}
.Q – R	200 [•]	55	75	150	-
PtdIns4P					
"O min" ((S))	150***	*** 114	91 ***	20**	1
1 min ((T))	268	5 7	91 ^{***}	33 ^{***}	12
Ś <i>T</i>		-	87	-	225
التقلي كرابة استة المتار التحد والتي فلنت الجبر متجا والتا التار التي البين الثار التي البين ال	will been were anne will been tone their the			·	

- *** Values represent significant increases during the age interval specified P ≺ 0.001 and 0.005.
 - ** Values represent significant increases during the age interval specified P < 0.01, 0.02 and 0.05.

.

E X P E X P E X R R R E N E N T T

,

•

.

 \mathbf{n}

-

.

s.

-

.

.

EXPERIMENT - 11

EFFECTS OF NUTRITIONAL ALTERATIONS DURING PRE- AND POST-WEANING PERIODS ON POLYPI POOLS IN RAT BRAIN.

Undernutrition instituted at any time during the entire programme of myelination and synaptogenesis in the rat brain is known to affect different aspects of development. The adverse effects of nutritional stress during the suckling period on the maturation of neurons (Cragg, 1972; Gambetti <u>et al</u>., 1974; Burns <u>et al</u>., 1975; Shoemaker and Bloom, 1977), glia (Robain and Ponsot, 1978; Sikes <u>et al</u>., 1981) and myelin (Wiggins, 1982) are well documented. The concentrations of different lipids are significantly reduced in whole brain (Rajalakshmi and Nakhasi, 1974a; Krigman and Hogan, 1976; Reddy and Sastry, 1978), gray and white matter (Reddy and Horrocks, 1982), myelin (Nakhasi <u>et al</u>., 1975; Wiggins and Fuller, 1978; Reddy <u>et al</u>., 1979) and other subcellular membranes (Pasquini <u>et al</u>., 1981) of neonatally undernourished rats.

Nutritional rehabilitation subsequent to deprivation in early life is not found to correct fully the deficits in lipids of the whole brain (Geison and Waisman, 1970; Rajalakshmi <u>et al.</u>, 1974b; Reddy and Sastry, 1978) myelin (Simons and Johnston, 1976; Reddy <u>et al.</u>, 1979; Yusuf <u>et al.</u>, 1981; Fuller <u>et al.</u>, 1984) and white matter (Reddy <u>et al.</u>, 1982).

Protein deficiency after weaning has not been investigated in detail. Scattered reports indicate no changes in lipid levels (Guthrie and Brown, 1968; Rajalakshmi <u>et al</u>., 1974b) and decrease in the activities of glutamate decarboxylase and glutamate dehydrogenase (Rajalakshmi <u>et al</u>., 1974c) in the rat brain. A recent study on protâin deficiency instituted from 60-240 days of age has shown that long-term low protein intake could affect the lipid composition of the rat brain during adulthood (Vrbaski, 1983). Further, some studies suggest that effects of nutritional deficiencies during the post-weaning period depend on the previous dietary history of the animal (Reddy and Ramakrishnan, 1982).

Diminished levels of PtdIns have been reported in studies on deprivation of myo-inositol (Burton and Wells, 1976) during lactation in rats. Levels of PolyPI are considerably lowered in brains of quaking mutant mice, which are characterized by inadequate myelination (Hauser <u>et al.</u>, 1971b). The effects of nutritional insufficiency on the classical "PtdIns effect" in response to several neurotransmitters has been studied in different brain regions (Reddy and Sastry, 1979). Results indicate that the cholinergic, adrenergic and serotonergic synapses are affected by pre-weaning undernutrition in the brain stem but not in the cerebral cortex while in the cerebellum only the serotonergic systems are altered. Investigations on brain gangliosides, a minor component of total lipids like PolyPI, which predominate in nerve endings and are considered to be functional lipids (Kasarskis <u>et al</u>., 1981) suggest an adverse effect due to undernutrition (Reddy and Sastry, 1978; Pasquini <u>et al</u>., 1981; Reddy <u>et al</u>., 1982). However, no studies have been carried out on the effects of protein deficiency during the pre- and post-weaning stages of development on PolyPI pools in rat brain.

Observations on the developmental pattern of PolyPI pools (experiment - Ib) suggested that the metabolically relatively inert pool (pools $A_1 + C$) may have an important role in the structure of neuronal, glial and myelin membranes as this pool is detected even at birth and is found to increase during pre- and post-weaning stages of development. The metabolically highly active pool (pool B) of PtdIns(4,5)P₂ showed maximum deposition after weaning (3-5 weeks) and that of PtdIns4P before weaning (2-3 weeks) suggesting the importance of the former in neuronal, glial and myelin membranes and the latter mainly in neuronal and synaptic membranes.

Based on the above observations several questions arose : (1) If there is a metabolically highly active pool of PtdIns(4,5)P₂ deposited rapidly after weaning when glial cells continue to mature and continued myelinogenesis occurs, would there be any influence of nutritional deprivations on this pool by (a) post-weaning protein deficiency alone? (b) pre-weaning undernutrition superimposed by post-weaning protein deficiency?

- (2) If there is a metabolically highly active pool of
 PtdIns4P deposited before weaning during the active period of synaptogenesis, would there be any damage to this pool by pre-weaning undernutrition?
- (3) What would be the influence of nutritional alterations during pre- and post-weaning periods on the metabolically relatively inert pools of PolyPI?

In an attempt to provide answers to the above questions studies were carried out to see the effects of pre- and postweaning undernutrition on the concentration of PolyPI pools in rat brain. Additional studies were made on the continuation of pre-weaning undernutrition during the post-weaning period and of the reversibility of the effects abserved at weaning with dietary rehabilitation after weaning. After the appropriate nutritional regimen (refer Materials and Methods, p 140) PolyPI letels were determined in rat brains at two time points after todion, derafied namely in tissues removed from heads of rats frozen either immediately or after standing at room temperature for 1 min. Reports of the findings have appeared recently (Uma and Ramakrishnan, 1983b).

Body and brain weights

Neonatal undernutrition caused significant reductions in the body (72%) and brain (24%) weights of rats (Table 33). The results are comparable to several reports where the same method of feeding a low protein (4-5%) diet to the mothers during the suckling period has been employed for inducing undernutrition (Reddy et al., 1982; Reddy and Horrocks, 1982).

Protein deficiency during the post-weaning period affected the body (66%) and brain (15%) weights to a smaller extent (Table 34). Rajalakshmi <u>et al</u> (1974a) observed similar deficits using a 4% protein diet. The same authors reported lower deficits (52%-body wt and 10% brain wt) when a 5% protôin diet was used (Rajalakshmi and Nakhasi, 1974b).

Nutritional rehabilitation during the post-weaning period improved the body and brain weights considerably but left them still significantly different from controls (Table 35). The extent of "catch up" was similar to these observed in previous studies (Reddy and Sastry, 1978; Reddy et al., 1982).

When undernutrition during the suckling period was superimposed by post-weaning protein deficiency, the percent deficits in body (86%) and brain (33%) weights were increased further as compared to 21 day L^- animals (Table 36). Similar observations have been made by Reddy and Ramakrishnan (1982) using the same animal paradigm.

PolyPI levels

Effect of neonatal undernutrition on PolyPI levels in whole brain

The concentrations of PolyPI in whole brain of 21 day old control (L^+) and undernourished (L^-) rats are shown in Table 33

and Fig. 16. Levels of $PtdIns(4,5)P_2$ and PtdIns4P were decreased by 41% and 34%, respectively, in the L⁻ "o min" samples. Deficits in the 1 min L⁻ samples were found to be 59% and 37% indicating that the higher phosphorylated derivative is more sensitive to nutritional deprivation. As regards the pool lost between 0 and 1 minute post-mortem marginal effects were observed only in the case of PtdIns4P (23%) but there was no appropriate method to determine if this decrease was statistically significant.

Effect of post-wenning protein deficiency on PolyPI levels in whole brain

The concentration of PolyPI in whole brain of 63 day old control (L^+P^+) and protein deficient (L^+P^-) rats are shown in Table 34 and Fig. 17. In contrast to the effects of pre-weaning undernutrition, levels of PtdIns $(4,5)P_2$ and PtdIns4P were not affected in the L^+P^- "0 min" and 1 min samples. Significant losses in PtdIns $(4,5)P_2$ (123 nmoles/g wet wt) during the first minute post-mortem were observed in the control (L^+P^+) brains while those in the protein deficient group (L^+P^-) were considerably lower (56 nmoles/g wet wt). This observation did not appear to be true in the case of PtdIns4P.

Effect of nutritional rehabilitation on PolyPI levels in whole brain

The concentrations of PolyPI in whole brain of control (L^+P^+) and rehabilitated (L^-P^+) group of animals are shown in

Table 35 and Fig. 18. When neonatally undernourished rats were nutritionally rehabilitated for 6 weeks by feeding a 20% protein diet during the post-weaning period, the levels of $PtdIns(4,5)P_2$ and PtdIns4P at "0 min" and 1 min post-mortem returned to normal. In fact levels of PtdIns4P in (0-1) min samples were higher than controls. As stated earlier the data on 1 min and (0-1) min samples for PtdIns4P should be discussed with reservations, since the 1 min value may also represent some PtdIns4P formed by the degradation of $PtdIns(4,5)P_9$.

Effect of continuation of pre-weaning undernutrition during the post-weaning period on PolyPI levels in whole brain.

Table 36 and Fig. 19 give the concentrations of PolyPI pools in the continued (L^{P}) group of animals with respect to controls ($L^{+}P^{+}$) at 63 days of age. Levels of PtdIns(4,5)P₂ and PtdIns4P were decreased by 69% and 36% respectively in the $L^{-}P^{-}$ "0 min" samples. Deficits in the 1 min $L^{-}P^{-}$ samples were 62% (PtdIns(4,5)P₂) and 34% (PtdIns4P) for the two lipids. The higher phosphorylated derivative was again affected to a greater degree as in the case of L^{-} brains. The pool of PtdIns(4,5)P₂ lost between 0 and 1 minute post-mortem was affected severely (92%) while the same remained unaffected during the pre-weaning period.

A comparative analysis of the effect of varying nutritional conditions during the pre- and post-weaning periods on PolyPI pools as well as the myelin yield (Harjit and Ramakrishnan, unpublished) in rat brain is given in Table 37.

In the major portion of this study contain assumptions have been made based on observations of the previous experiment on post-mortem changes in PolyPI levels with time, the results of which led us to hypothesize that 1 minute post-mortem values represent a major fraction of PolyPI located in myelinated structures and the (0-1) minute values represent those located in non-myelinated structures of the brain. In light of this hypothesis, the results of the present experiment have been discussed.

Figs 20A and 20b represent the levels of metabolically highly active and relatively inert pools of PolyPI as percent of total in different groups of animals. The metabolically relatively inert pool of PolyPI (pools $A_1 + C$) represented a greater fraction than the active pool (pool B) in all the six groups of animals (i.e. L⁺, L⁻, L⁺P⁺, L⁺P⁻, L⁻P⁺, L⁻P⁻) irrespective of the nutritional status.

The effects of undernutrition on the rapidly disappearing pool (0-1 min post-mortem - pool B) are rather difficult to interpret as there is no appropriate method to determine if the observed changes are statistically significant. The present studies, however, indicate that this pool increases in control animals by 54% between 21 and 63 days of age. Protein deficiency during this period not only prevents this increase but results in a small depletion (20%) of this pool. Interestingly,
if such deficiency was superimposed over neonatal undernutrition (LP) there was a drastic reduction in this pool and the final value was only 8% of control (L^+P^+) . Thus it appears that the nutritional status during the post-weaning period is very important for the levels of this pool of $PtdIns(4,5)P_2$ in rat brain since similar effects were not apparent on the 0-1 min pool of PtdIns4P. The factors responsible for the decreased hydrolysis during the first minute post-mortem in $\mathbf{L}^{\mathbf{P}}$ and $\mathbf{L}^{\mathbf{P}}$ brains are unknown. It is well known that the activities of PolyPI phosphohydrolases are regulated by Ca^{2+} and Mg^{2+} ions (Table 13). Nijjar and Hawthorne (1977) pointed out that an increase in the levels of Ca²⁺ ions on post-mortem may be responsible for the rapid postmortem degradation of these compounds. The levels of Ca^{2+} ions could thus be one of the possible regulatory factors leading to decreased hydrolysis and in effect decreased levels of the metabolically highly active pool of PolyPI in L⁻P⁻ and L⁺P⁻ brains.

The severe effects of nutritional insufficiency after weaning on the rapidly disappearing pools of PtdIns(4,5)P₂ suggests an aborration in the functional role of the metabolically active pool of this lipid presumably located in glial and myelin membranes which continue to nature during the postweaning period. An active pool of PolyPI and the necessary enzymes responsible for its turnover have been shown to be located in "heavy" myelin (Deshmukh <u>et al</u>., 1978; 1980; 1982). It is interesting to note that several neurotransmitters like ACh (Rajalakshmi <u>et al</u>., 1974a), NE and DA (Bhave <u>et al</u>., unpublished) and enzymes of **GABA** metabolism like glutamate dehydrogenase and glutamate decarboxylase are reduced (Rajalakshmi et al., 1974) by post-weaning protein deprivation. This suggests a possible relationship in the metabolism of neurotransmitters and the rapidly disappearing pool of PolyPI, both being involved in functional events of nerve cell membranes.

The relatively inert pool of PolyPI (1 min post-mortem pools $A_1 + C$) is severely affected in L brains. The effects are carried over on continuation of protein deficiency (L P⁻) but reversed on nutritional rehabilitation (L P⁺) during the post-weaning period. In contrast to the effects on the rapidly disappearing pool, this pool of PtdIns(4,5)P₂ appears to be more affected prior to weaning rather than after weaning. As far as the inert pool of PtdIns4P is concerned the effects of pre-weaning undernutrition are not further increased by postweaning protein undernutrition. This is consistent with observations made on the developmental pattern of PtdIns4P where no increases have been observed in the inert pool of PtdIns4P after weaning. Protein deficiency during the postweaning period alone does not have any effect on this pool of both the lipids.

This severe effect on the relatively inert pool of PolyPI (probably pool A_1) located in white matter structures during the suckling period, is consistent with the deficits observed in the lipid composition of white matter (Reddy <u>et al.</u>, 1982) and of myelin (Nakhasi, <u>et al.</u>, 1975; Wiggins and Fuller, 1978; Reddy <u>et al.</u>, 1979). Nutritional rehabilitation subsequent to deprivation in early life does not fully correct the deficits in myelin and myelin-specific lipids (Simons and Johnston, 1976; Reddy <u>et al.</u>, 1979; Yusuf <u>et al.</u>, 1981; Fuller <u>et al.</u>, 1984) nor those in white matter content and its lipid composition (Reddy <u>et al.</u>, 1982). In contrast, the present study shows that PolyPI located in white matter structures are restored on nutritional rehabilitation, indicating that the behavior of these lipids differs from that of the other lipids.

Quantitative comparisons on the content of myelin (Harjit and Ramakrishnan, unpublished) and 1 min post-mortem levels of PolyPI under different nutritional conditions have been made in Table 37. Pre-weaning undernutrition decreases the yield of myelin by 20% while the deficits in the 1 min post-mortem levels of PolyPI are considerably higher (PtdIns $(4,5)P_2 - 59\%$ and PtdIns4P - 37%). This is also found to be true in the case of rats undernourished during the pre- and post-weaning periods. However, protein deficiency after weaning has no effect on the yield of myelin as well as the 1 min post-mortem levels of PolyPI in brain. Since the deficits observed in myelin yield

and 1 min post-mortem levels of PolyPI in L and L P brains are not similar this confirms earlier suggestions that the 1 min post-mortem levels of PolyPI are not totally representative of the pool localized in myelin thereby indicating that a portion of it is also present in non-myelinated structures.

Thus it appears from these studies that the relatively inert pool of PolyPI which is presumed to play an important role in the structure of neurons, glia and myelin is affected both by pre-weaning undernutrition and continued post-weaning protein deficiency. The metabolically highly active pool of $PtdIns(4,5)P_2$ deposited rapidly after weaning is severely affected by protein deficiency during the post-weaning period suggesting an aberration in the functional maturation of glial cells and myelin. Post-weaning nutritional rehabilitation reverses the effects of-neonatal undernutrition on the two pools of PolyPI.

Although the present investigations do not directly deal with different cell types or subcellular membranes, they underline the importance of nutritional status on PolyPI pools and it would be interesting to extend these studies to different cell types in the nervous tissue. Further studies are needed to investigate the effects using microwave irradiation for arresting the degradation of PolyPI rapidly. Since phosphoinositide metabolism and neurotransmitter associated events are closely interrelated, it would be also worthwhile to study the interaction of the two with respect to undernutrition.

,

v

.

.

,

TABLE 33 : EFFECT OF PRE-WEANING UNDERNUTRITION ON (a) THE BODY AND BRAIN WEIGHTS OF RATS (b) THE CONCENTRATION OF POLYPI POOLS IN RAT BRAIN (21 DAYS OLD). $L^+ - I$ L - IISignificance between $n_0 = 7$ $\dot{n}_0 = 9$ (I) and (II) $n_1 = 9$ $n_1 = 5$ р mean + s.d. Body weight (g)⁺ 0.001 45.04 3.5 12.7+ 1.0 $(2\overline{8})$ Brain weight $(g)^+$ 1.36+0.08 1.04+0.05 0.001 $(7\overline{6})$ nmoles/g wet wt; mean + s.d. $\underline{PtdIns(4,5)P}_2$ "0 min" $(Q)^{*}$ 158 <u>+</u> 32 269 + 49 0.001 1 min (R) 199 + 23 82 + 8 0.001 70 76 Q - R26 48 % Decrease Significance between (Q) and 0.01 0.001 (R) p PtdIns4P "0 min" (S) 135 <u>+</u> 24 206 ± 38 0.001 171 <u>+</u> 35 108 <u>+</u> 18 0,001 1 min (T) 27 S - T3517 20 % Decrease Significance between (S) and 0.1 0.05 (T) p $n_0 =$ Number of samples used for determination of PolyPI levels at "O min". n_{i} = Number of samples used for determination of PolyPI levels at 1 min. Time taken to cut the head and drop it in liquid N₂ was 2 sec. Number of animals used for calculating mean body and brain + weights were $-L^+ = 18$; $L^- = 12$. Numbers in parentheses denote % of control values.

Values are expressed as means \pm s.d. * Values significantly different from "Omin" (p $\langle 0.1 \rangle$ + Values significantly different from control (L⁺) (p $\langle 0.001 \rangle$. X axis labels refer to the time at which heads of the animals were frozen in liquid N₂ after decapitation. TABLE 34 : EFFECT OF POST-WEANING PROTEIN DEFICIENCY ON (a) THE BODY AND BRAIN WEIGHTS OF RATS (b) THE CONCENTRA-TION OF POLYPI POOLS IN RAT BRAIN '63 DAYS OLD).

х Х. ,

	$L^{+}P^{+} - I$ $n_{0} = 4$ $n_{1} = 4$	$L^{+}P^{-} - II$ $n_{0} = 4$ $n_{1} = 4$	Significance between (I) and (II) p
	mean	s .d.	
Body weight (g) ⁺	141 ± 1 9	34.5 <u>+</u> 5	0.001
Brain weight $(g)^+$	1.60 <u>+</u> 0.05	1.65+0.06	0.001
-	nmoles/g wet wt;	mean <u>+</u> s.d.	
$\underline{PtdIns(4,5)P}_2$			
"0 min" (Q) ^{*-}	424 <u>+</u> 46	378 <u>+</u> 36	N • S •
1 min (R)	301 ± 25	322 <u>+</u> 66	N.S.
Q - R	123	54	ζ.
% Decrease	· 29	15	
Significance between (Q) and (R) p<	0.005	N.S.	,
PtdIns4P			•
"O_min" (Q) [*]	253 <u>+</u> 36	253 <u>+</u> 9	N.S.
1 min (R)	198 <u>+</u> 36	218 <u>+</u> 35	N.S.
Q – R	. 55	35	, ,
% Decrease	22	14	
Significance between (Kg) and (R) p <	0.1	N.S.	, ,

n_o - Number of samples used for determination of PolyPI levels at "O min".

n₁ - Number of samples used for determination of PolyPI levels at 1 min.

* - Time taken to cut the head and drop it in liquid N2 was 2 sec.

+ - Number of animals used for calculating mean body and brain weights were $L^+P^+ = 9$; $L^+P = 8$.

N.S. - Not significant.

Numbers in parentheses denote % of control values.

Fig. 17 : Effect of post-weaning protein undernutrition on PolyPI pools in rat brain.

Values are expressed as mean \pm s.d. * Values significantly different from "O min" (p < 0.1). X axis labels refer to the time at which heads of the animals were frozen in liquid N₂ after decapitation. TABLE 35 : EFFECT OF POST-WEANING NUTRITIONAL REHABILITATION ON (a) THE BODY AND BRAIN WEIGHTS OF RATS (b) THE CONCE NTRATION OF POLYPI POOLS IN BRAINS OF RATS UNDER -NOURISHED PRIOR TO WEANING (63 DAYS OLD).

,

.

.

dink wher sign also been and ann and one see and and ages also day the sour sing after the		age glouge water densit where blood balling dates along billed water down appendix by	4 Inter adaug utbal seaan alaan fagas falga falaa afan dalar dalar alaan alaan alaan alaan alaan alaan seaan se
	$\mathbf{L}^{\dagger}\mathbf{P}^{\dagger} - \mathbf{I}$	$L^{P^+} - II$	Significance
	$n_0 = 4$	$n_0 = 4$	(I) and (II)
	$n_1 = 4$	$n_1 = 4$	₽ <
nga hira nga dala tala dan dan man nan din gir tika dan tala dan dan yan dan dan t	mean	+ s.d.	
Body weight (g) ⁺	167 <u>+</u> 20	$-\frac{130 + 11}{(78)}$	0.001
Brain weight $(g)^+$	1.64 <u>+</u> 0.12	1.43 ± 0.09 (87)	0.01
	nmoles/g wet wt	; mean <u>+</u> s.d.	
$PtdIns(4,5)P_2$			
"O min" (Q) [*]	476 + 18	425 <u>+</u> 81	N.S.
1 min (Q)	368 <u>+</u> 60	35 0 <u>+</u> 39	N.S.
Q - R	108	75	
% Decrease	23	18	
Significance between (Q) and (R) p<	0.05	0.1	
PtdIns4P			
"0 min" (S) [*]	222 + 42	239 <u>+</u> 43	N.S.
1 min (T)	166 + 20	143 <u>+</u> 39	N.S.
S - T	56	96	
% Decrease	25	40	
Significance between (S) and (T) p <	0.1	0.001	
n - Number of sample "O min".	es used for dete	rmination of 1	PolyPI levels at
n ₁ - Number of sampl 1 min.	es used for dete	ermination of]	PolyPI levels at
* - Time taken to c	ut the head and	drop it in li	quid N_2 was 2 sec.
+ - Number of anima weights were L ⁺	ls used for calcP+ = 8; L P+ = 8	ulating mean 1 3.	oody and brain
N.S Not significa	nt.		
Numbers in parenthes	es denote % of c	ontrol values	•

Fig. 18 : Effect of post-weaning nutritional rehabilitation on PolyPI pools in rat brain.

Values are expressed as means \pm s.d. * Values significantly different from "0 min" (p < 0.1). X axis labels refer to the time at which heads of the animals were frozen in liquidN₂ after decapitation. TABLE 36 : EFFECTS OF PRE- AND POST-WEANING PROTEIN UNDERNUTRI-TION ON (a) THE BODY AND BRAIN WEIGHTS OF RATS (b) THE CONCENTRATION OF POLYPI POOLS IN RAT BRAIN (63 DAYS OLD).

ę

	$L^{+}P^{+} - I$ $n_{0} = 4$	$L^{P} - II$ $n_{0} = 6$	Significance between (I) and (II)
	$n_1 = 4$	$n_1 = 5$	p
	me	an <u>+</u> s.d.	
Body weight (g) ⁺	167 <u>+</u> 20	23 ± 7 (14)	0.001
Brain weight (g) ⁴	1.64 <u>+</u> 0.12	1.09+0.06 ($\overline{67}$)	0.001
n	noles/g wet	wt; mean \pm s.d.	,
$PtdIns(4,5)P_2$			
"0 min" (Q)*	470 ± 18	147 <u>+</u> 24	0.001
1 min (R)	368 <u>+</u> 60	138 <u>+</u> 29	0.001
Q - R	108	9	
% Decrease	23	6	,
Significance between (Q) and (R) p	0.05	N•S•	
PtdIns4P			
"0 min" (S)*	222 <u>+</u> 42	143 <u>+</u> 27	0.01
1 min (T)	166 <u>+</u> 20	109 <u>+</u> 24	0.01
S - T	56	34	
% Decrease	25	24	
Significance between (S) and (T) p	0.1	0.1	
n _o - Number of samples "O min".	s used for (letermination of	PolyPI levels at
n ₁ - Number of samples 1 min.	s used for (letermination of	PolyPI levels at
* - Time taken to cut	t the head a	and drop it in li	iquid N $_2$ was 2 sec.
+ - Number of animals weights were L ⁺ P	s used for = 9; L ⁻ P ⁻	calculating mean = 11.	body and brain
N.S Not significant	t •		
Numbers in porenthese	a donate %	of control value	S •

Fig. 19 : Effect of continued post-weaning protein undernutrition on PolyPI pools in rat brain.

Values are expressed as means \pm s.d. * Values significantly different from "0 min" (p \leq 0.1). + Values significantly different from control (L⁺P⁺) (p \leq 0.01). X axis labels refer to the time at which heads of the animals were frozen in liquid N₂ after decapitation.

		E P
% of contro	01 (L ⁺ or L ⁺ P ⁺)
. 89	89	31 ***
•* 107	95	38.***
46	69	8
10 0	108	64 ^{**}
** 110	86	66 ^{**}
64	171	67
98	88	79*
fferent from e	control p 0.	001.
ferent from c	ontrol p 0.0	31.
ferent from c	ontrol p 0.0	95.
	fferent from c fferent from c fferent from c have been tak (Harjit and Ra	fferent from control p 0.0 fferent from control p 0.0 fferent from control p 0.0 have been taken from studio (Harjit and Ramakrishnan, u

.

TABLE 37 : COMPARATIVE EFFECTS OF NUTRITIONAL ALTERATIONSDURING THE PRE- AND POST-WEANING PERIODS ON THE
CONCENTRATION OF POLYPI IN RAT BRAIN.

,

.

Fig. 20 : Proportions of PolyPI pools under varying conditions of nutritional stress.

E X P E R E X P E R I M E N T - III M E N T

. •

.

`

-

,

.

3

,

.

EXPERIMENT - III

EFFECTS OF PRE-WEANING UNDERNUTRITION AND POST-WEANING PROTEIN DEFICIENCY ON THE INCORPORATION OF LABELLED ³²P_i INTO POLYPI POOLS OF RAT BRAIN

A good deal of evidence exists to show that phosphoinositides exhibit a high turnover rate of their monoester phosphate groups inspite of being a minor component of cell membranes. A rapid incorporation of ${}^{32}P_i$ into phosphoinositides of rat whole brain (Friedel and Schanberg, 1971), brain regions (Gonzalez-Sastre <u>et al.</u>, **1971**; Soukup <u>et al.</u>, 1978a), brain subcellular fractions (Kai and Hawthorne, 1966; Mandel and Nussbaum, 1966), neuronal and glial cells (Freysz <u>et al.</u>, 1969), brain myelin (Eichberg and Dawson, 1965), and subfractions of myelin (Deshmukh <u>et al.</u>, 1981) have been reported. Further, a selective increase in the incorporation of ${}^{32}P_i$ into PtdA, PtdIns and PolyPI in response to a wide variety of stimuli in several tissues has been well documented (Michell, 1975; 1982; Abdel-Latif, 1983).

The incorporation in vivo of $({}^{14}C)$ glucose into different. phospholipids has been shown to be significantly reduced in neonatally undernourished rat brains (Agrawal <u>et al.</u>, 1971; Similarly Chase <u>et al.</u>, 1976). Wiggins <u>et al</u> (1976) reported the incorporation of $({}^{3}H)$ and $({}^{14}C)$ acetate, choline and glycerol to be reduced by about 60% in lipids of myelin isolated from rat brain. Incorporation of ${}^{32}P_1$ in total phospholipids and its fractions have been shown to be increased under conditions of nutritional stress (Jailkhani and Subrahmanyam, 1977; Reddy and Sastry, 1978) although PolyPI have not been investigated in these studies. However, the ability to incorporate ${}^{32}P_1$ <u>in vivo</u> into PolyPI is substantially reduced in quaking mutant mice, probably as a result of an yet unknown biochemical lesion related to normal myelination (Hauser <u>et al.</u>, 1971b).

Results on PolyPI levels (experiment - II) showed that the metabolically relatively inert pool (1 min post-mortem value pools $A_1 + C$) is affected by undernutrition during the pre-weaning period while the metabolically highly active pool (0-4 min postmortem value - pool B) of PtdIns(4,5)P₂ is preferentially affected during the post-weaning period. In order to establish whether the decreased levels of PolyPI are accompanied by altered metabolism the incorporation of intraperitoneally injected ${}^{32}P_1$ into these compounds was studied.

Studies were therefore carried out to see the effects of pre-weaning undernutrition and post-weaning protein deficiency on the incorporation of ${}^{32}P_1$ into PolyPI pools of rat brain. For this study the peak time of incorporation at 3 and 9 weeks of age was first determined in the control animals. Later incorporation of ${}^{32}P_1$ into PolyPI was determined in the control (L^+, L^+P^+) and experimental (L^-, L^+P^-) rat brains at 3 and 9 weeks of age at two time points after x death, namely in tissues

removed from heads of rats frozen either immediately or after standing at room temperature for 1 min (see Materials and Methods, pp $\binom{42-}{43}$). Loss of incorporation during the first minute was studied, since rapid losses in the levels have been observed during this time interval in previous experiments and the same would also be likely to reflect processes related to neuronal and glial functions.

Incorporation of labelled ³²P_i into PolyPI of 21 and 63 day ' old rat brains at different times after intraperitoneal injection.

The time course of incorporation of ${}^{32}P_{i}$ in PolyPT of 21 and 63 day old control rat brains are given in Figs. 21a and 21b respectively. Radioactivity on the ordinate is expressed as CPM/g wet wt which represents a measure of the total incorporation at each time point determined. During the time-course of labeling, peak incorporation was observed at two time points for both lipids at both ages. At 21 days of age the first peak was at 4 hr for both lipids and the second at 12 and 8 hr for PtdIns(4,5)P₂ and PtdIns4P respectively. At 63 days of age the first peak was at 2 hr for both lipids and a second peak was observed only in the case of PtdIns4P at 8 hr after injection of the label. Incorporation in PtdIns(4,5)P₂ showed a steady rise from 5-24 hr reaching a level almost equal to that at the first peak time (i.e. 2 hr). At all time points and at both ages, the total incorporation was found to be higher in $PtdIns(4,5)P_2$ than PtdIns4P. Based on the results of this preliminary experiment the time-period chosen for equilibration of the label was 4 hr for the study on pre-weaning undernutrition and 2 hr for the post-weaning protein deficiency experiment.

Effect of pre-weaning undernutrition on the incorporation of ³²P₁ into PolyPI of whole brain.

The incorporation of ${}^{32}P_1$ into PolyPI of 21 day old control (L⁺) and undernourished (L⁻) rat brains are given in Table 38 and Fig. 22a. The total incorporation, expressed as CPM/g wet wt. in PtdIns(4,5)P₂ was not found to be affected in the L⁻"O min" and 1 min samples while in PtdIns4P it was significantly reduced (74% at "O min" and 71% at 1 min).

Data are expressed as specific radioactivity in Table 39 and Fig. 22b. The total incorporation, expressed as CPM/umole of PolyPI-P, in PtdIns $(4,5)P_2$ was found to be significantly increased in the L⁻ "O min" (127%) and 1 min samples (103%). In contrast, the rate of incorporation was significantly reduced in PtdIns4P at both time points (60% at "O min" and 53% at 1 min).

Effect of post-weaning protein deficiency on the incorporation of ³²P₁ into PolyPI of whole brain

The incorporation of ${}^{32}P_1$ into PolyPI of 63 day old control $(L^{+}P^{+})$ and protein deficiently $(L^{+}P^{-})$ brains are given in

Table 40 and Fig. 23a. The total incorporation, expressed as CPM/g wet wt. was found to be significantly decreased by 31% and 26% in PtdIns $(4,5)P_2$ and PtdIns4P respectively in the L⁺P⁻"O min" samples. In the L⁺P⁻ 1 min samples a decrease was observed only in PtdIns $(4,5)P_2$ (17%).

Data are expressed as specific radioactivity in Table 41 and Fig. 23b. The total incorporation, expressed as CFM/umole of PolyPI-P, in both lipids was found to be significantly decreased only in the $L^{+}P^{-}$ "O min" samples. A decreasing trend was also observed in the 1 min samples but this decrease was not significant.

The biosynthetic patential of a tissue is more realistically assessed by comparing specific radioactivities rather than the total incorporation. The former expression helps in meaningful interpretation of data in most cases especially when the pool size of the component under study differs in different tissue samples and a direct precursor is used for labeling the compound. A comparative analysis of the radioactivity and concentration data on the effects of pre-weaning undernutrition and postweaning protein deficiency on the metabolically relatively inert pool (1 min post-mortem value - pool $A_1 + C$) and the highly active pool (0-1 min post-mortem value - pool B) are given in Table 42. As mentioned in previous experiments, the effects of undernutrition on the incorporation of ${}^{32}P_1$ into the rapidly disappearing pool (0-1 min post-mortem) are difficult to

interpret as there is no appropriate method to determine if the observed changes are statistically significant.

Results on PolyPI levels show that neonatal undernutrition significantly reduces the size of the metabolically relatively inert pool and has marginal or no effects on the metabolically highly active pool of both lipids at 21 days of age. However, a significant increase in the specific radioactivity of $PtdIns(4,5)P_{0}$ and a decrease in PtdIns4P in both the pools has been observed in the present study. These changes are expressed diagrammatically in Fig. 24. The fact that the specific radio-($Pools A_1 + C$) activity of the metabolically relatively inert pool/ of PtdIns4P is reduced in L brains suggests a decrease in the activity of PtdIns kinase which would lead to decreased levels of PtdIns4P in neonatally undernourished rat brains. However, an increase in the specific radioactivity and decreased levels of PtdIns(4,5)P_o suggests that the catabolism of this lipid by the phosphodiesterase pathway is probably increased. In the case of (Pool B), metabolically highly active pool decreased specific radioactivity and no change in the levels of PtdIns4P suggsts that its catabolism is also reduced, possibly to a larger extent than the synthesis. Similarly, an increase in the specific radioactivity and no change in the levels of PtdIns $(4,5)P_{2}$ suggest an increased catabolism, possibly to a larger extent than the synthesis.

Thus, pre-weaning undernutrition appears to increase the metabolic activity of both pools of $PtdIns(4,5)P_2$ and decrease that of PtdIns4P. It would be interesting to study the incorporation at 10 min post-mortem in order to get an idea of the metabolic activity of the pool lost between 1 and 10 min (pool C) post-mortem. Increased incorporation of ${}^{32}P_4$ into phospholipids of neonatally undernourished animals has been reported (Jailkhani and Subrahmanyam, 1977; Reddy and Sastry, 1978). The specific radioactivty in PolyPI isolated from quaking mouse brains has also been reported to be higher than that in normal brains (Hauser et al., 1971b). Sharma et al (1980) reported an increased incorporation of intraperitoneally injected ${}^{32}P_4$ in PtdIns(4,5)P₂ and PtdIns4P of neonatally undernourished rat brains. In their study, PolyPI were extracted and analysed from brains frozen in ice-cold sucrose for 10 min after decapitation of the animal. Bell et al (1982) have shown a specific and significant increase in ${}^{32}P_1$ incorporation in brain $PtdIns(4,5)P_2$ of rats which had been diabetic for over 20 weeks. These results only go to suggest that enhanced phospholipid and expecially Ptd Ins $(4,5)P_2$ metabolism is a common feature observed under stress or diseased conditions.

Post-weaning protein deficiency does not have any effect on either the levels or the specific radioactivity of the metabolically relatively inert pool (pools $A_1 + C$) of both

ß

lipids suggesting that the metabolic activity of this pool remains unaffected in contrast to the effects produced by pre-weaning undernutrition. On the other hand, large reductions in the levels of the metabolically highly active pool (pool B) of $PtdIns(4,5)P_2$ accompanied by no changes in the specific radioactivities of $PtdIns(4,5)P_2$ and Gibson and Brammer (1981) have shown that Ca^{2+} ions inhibit the synthesis of PtdIns in oligodendroglial cells of rat brain. Based on the earlier suggestions (experiment - II) that this highly active pool of $PtdIns(4,5)P_2$ is localised in glial cells and myelin, it is possible that increased intracellular Ca^{2+} levels inhibit the synthesis of PtdIns thereby leading to decreased levels of $PtdIns(4,5)P_{2}$ in the protein deficient brains. Alternatively, the $PtdIns(4,5)P_2$ phosphodiesterase may also be activated by high levels of Ca²⁺ ions as discussed in experiment - II. In effect, both possibilities would lead to significant reductions in the levels of $PtdIns(4,5)P_2$ in the protein deficient.

The possible mechanisms operating for the metabolically relatively inert pool and the highly active pool of PolyPI in neonatally undernourished (L⁻) and post-weaning protein deficient (L⁺P⁻) brains are summarized in Fig. 24. The physiological significance of these results remain unknown. Since several enzymatic reactions of phosphoinositide metabolism are regulated by Ca²⁺ ions, the availability of the ion may be a critical factor responsible for the metabolic activity of different pools of PolyPI localized in different cellular

228

different pools of PolyPI localized in different cellular membranes. Ca²⁺ ions are known to be potential inhibitors of CDP-diacylglycerol inositol phosphatidyl transferase amd PtdIns kinase in the brain. However, the PolyPI phosphomonoesterase and phosphodiesterase enzymes are activated by this ion (refer Table 13). Detailed studies on the synthesizing and hydrolying enzymes under different conditions of nutritional stress are necessary to get a clear picture on the metabolic activity of different pools of PolyPI. Fig. 21 : Time course of incorporation of ${}^{32}P_i$ into PolyPI of rat brains.

Rats were decapitated at different times after intraperitoneal injection of 200 Luci of $\operatorname{NaH}_3^{32}\operatorname{PO}_4/100$ g body wt.

TABLE 38 : EFFECT INCORPO	OF PRE-WEANING U RATION OF ³² P. I	NDERNUTRITION ON (NTO POLYPI OF RAT	THE BRAIN (21
DAYS OL	D).		
	$L^{+} - I$ $n_{0} = 4$	L - II n _o = 3	Significance between (T) and (IT)
	$n_1 = 4$	n ₁ = 3	^p ζ
	CPM/	g wet wt; mean <u>+</u>	s.d.
$PtdIns(4,5)P_2$			
"O min" (Q)*	4,012 <u>+</u> 569	$5,344 \pm 719$ (133)	N.S.
1 Min (R)	3,134 <u>*</u> 857	2,625 + 272 $(8\overline{4})$	N.S.
(0-1)(Q-R)	878	2,719 (310)	
% change	-22	-51	
Significance between Q and R p <	0.1	0.01	
PtdIns4P			
"O Min" (S) [*]	2,207 <u>+</u> 254	572 ± 130 (26)	0.001
1 Min (T)	1,919 <u>+</u> 234	$ 560 \pm 30 (29) $	0.001
(0-1) (S-T)	288	12 (4)	
% chang ê	-13	-2	
Significance between ς and T $p \varsigma$	0.1	N.S.	

* Time taken to cut the head and drop it in liquid N₂ was 2 sec n₀ - Number of samples used for determination of PolyPI levels at "0 min". n₁ - Number of samples used for determination of PolyPI levels at

1 min. Number in parentheses denote % of control values.

,

TABLE 39 : EFFECT OF PRE-WEANING UNDERNUTRITION ON THE INCORPORATION OF ${}^{32}P_1$ INTO POLYPI OF RAT BRAIN (21 DAYS OLD). L⁺ - I L – II Significance between $n_0 = 4$ $n_0 = 3$ (I) and (II) $n_1 = 3$ $n_1 = 4$ ¢۷ CPM/umole of PolyPI-P*; mean + s.d. $PtdIns(4,5)P_{2}$ 14,916 + 2,116 33,825 + 4,551 0.01 "O Min" $(2\overline{2}7)$ 32,016 ± 3,315 $15,750 \pm 4,310$ 0.005 1 Min $(3\overline{0}3)$ 35,776 12,543 0-1 Min (285)PtdIns4P10,712 + 1,235 4,239 ± 960 0.001 "0 Min" $(4\overline{0})$ 0.001 5,182 + 285 11,222 + 1,367 1 Min (47)0-1 Min 8,228 444 (5)Time period of equilibration of the label after injection-4 hr * PolyPI values for L⁺ and L⁻ groups have been taken from

- experiment II (Table 33) for calculation of specific radioactivity.
- n_0 Number of samples used for determination of PolyPI levels at "0 min".
- n₁ Number of samples used for determination of PolyPI levels at 1 min.

Numbers in parentheses denote % of control values.

Fig. 22 : Effect of pre-weaning undernutrition on the labeling of ${}^{32}P_i$ in PolyPI. of ratherain.

Values are expressed as means <u>+</u> s.d. *Values significantly different from "O Min" (p < 0.1). + Values significantly different from control (L⁺) (p < 0.001 for 22a and p < 0.01 for 22b). x -Axis labels refer to the time at which heads of the animals were frozen in liquid N₂ after decapitation. Time period of equilibr/ion of the label after injection - 4 hr

	$L^{+}P^{+} - I$ $n_{\Theta} = 4$ $n_{1} = 4$	$L^{+}P^{-} - II$ $n_{0} = 4$ $n_{1} = 4$	Significance between (I) and (II \$\$\$\vee \lambda \vee \vee \vee \vee \vee \vee \vee \ve
$P + dT_{no} (4 - 5) P$	CPM/g v	vet wt; mean \pm s.	e.
'0 Min" (Q)*	7,195 <u>+</u> 458	$4,967 \div 328$ (69)	0.001
l Min (R)	$4,426 \pm 408$	3,662 + 406 (83)	0.05
0 -1 (Q-R)	2,769	1,305 (47)	
% cha n ge	-38.5	-26.0	
ignificance etween Q and 、 Pく	R. 0.001	0.001	
2tdIns4P			
'0 Min" (5)*	3,143 <u>+</u> 232	$2,327 \pm 294 $ (74)	0.001
l Min (T)	2,117 <u>+</u> 150	1,925 <u>+</u> 276 (90)	N.S.
)-1 (S-T)	1,026	402 (39)	
change	-33.0	-17.0	
Significance	0.001	0.1	,

N.S. - Not significant. Numbers in parentheses denote % of control values.

,

,

.

	INCORPORATION OF	³² P ₁ INTO POLYPI	OF RAT BRAIN (63
ann Ait-fair ain an an an Ain an bha an tar an Air an A	L ⁺ P ⁺ -	I L ⁺ P ⁻ -	II Significance
	$n_0 = n_1 =$	$\begin{array}{ccc} 4 & n_{\Theta} \\ 4 & n_{1} \\ \end{array}$	4 (I) and (II) 4 p
nden filler und den nen pris der fille der sin den fille	CPM/un	nole of PolyPI-P*	; mean \pm s.d.
PtdIns(4,5)F	, -2		
"O Min"	17,065 <u>+</u> 1	13,249 * (78)	1,512 0.02
1 Min	14,756 <u>+</u> 1	L,658 11,751 <u>+</u> (80)	2,705 N.S.
0 - 1 Min	22,512	23,3 (104	04)
<u>PtdIns4P</u>			
"O Min"	12,533 <u>+</u> 1	9,249 + (74)	1,469 0.02
1 Min	10,909 <u>+</u> 2	2,196 9,131 <u>+</u> (84)	2,688 N.S.
0 - 1 Min	18,68	55 . 11,48 (62)	6
Time perio * PolyPI val experiment activity.	d of equilibratio ues for L ⁺ P ⁺ and ; II (Table 34) fo	on of the label a L ⁺ P ⁻ groups have or calculation of	fter injection-2 hr. been taken from specific radio-
n _θ - Number "O Min"	of samples used f	for determination	of PolyPI levels at
n ₁ - Number 1 min.	of samples used 1	for determination	of PolyPI levels at
Numbers	in parentheses d	lenote % of contr	ol values.
N.S Not s	ignificant.		

.

TABLE 41 : EFFECT OF POST-WEANING PROTEIN UNDERNUTRITION ON THE

Fig. 23 : Effect of post-weaning protein undernutrition on the labeling of ³²P_i in PolyPI of rat brain.

Values are expressed as means + s.d.

- * Values significantly different from "O Min" (p < 0.1).
- + Values significantly different from control (L^+P^+)
 - (p < 0.05 for 23a and p < 0.02 for 23b).
- x axis labels refer to the time at which heads of the animals were frozen in liquid N₂ after decapitation. Time period of equilibration of the label after injection -
 - 2 hr.

TABLE 42 L COMPAR	LATIVI	I RFFEC	TS OF	PRE-WE	ANING UNI	DERNUTRITION	AND POST-	WEANING PR	OTEIN DEF.	I CI ENCY
EHL NO	I LEVI	ELS AND	INCC	RPORATI	0N 0F ³² 1	i INTO POL	XPI - POOLS	OF RAT BR	AIN.	
				PtdIns (4,5)P ₂			PtdIr	LS4P	
لين من من من من الله الله الله الله من من الله عنه إليه من من الله الله الله الله الله الله الله ال		+	•••••	······································	Г+ ^р +	1 4 4 1	+	L L	+ 4 + 7	Г+Ъ-
<u>1-MIN</u>										
Concentration (nmoles/g wet wt)		199		* * * 00	301	322	171	108	198	218
Incorporation (CPM/g wet wt)		3,134	•	2,625	4,426	3,662**	1,919	£860 ₩¥ ₩	2,117	1,925
(CPM/Amole of PolyPI-P)		15,750	ŝ	2,016	14,756	10,909	11,108	5 ,1 82 ***	11,751	9,131
<u>0-1_MIN</u>										
Concentration (nuoles/g wet wt)		10		76	123	56	35	27	ល ល រ	က
Incorporation (CFM/g wet wt)		878		2,719	2,769	1,305	288	12	1,026	402
(CPM//umole of PolyPI-P)		12,543	ŝ	5,776	22,512	23,304	8,228	444	18,655	11,486
							N ANNA TANÀN TAN	جاية بالأل والله جايبة سنت المت البل والل التلك وي	a ning than the owner which which the owner that a	the same links data the same same same same links

*** Values significantly different from control (L^{\star}) P < 0.001 and 0.005

.

RELATIVELY INERT POOL (A1+C)

HIGHLY ACTIVE POOL (B)

.

.

Fig. 24 : Metabolism of PolyPI pools in undernourished rat brain.

.

•

,

.

III		Decreased levels of PtdIns(4,5)P ₂ /PtdIns4P
	-	No change in levels of PtdIns(4,5)P ₂ /PtdIns4P
?		Fate of levels unknown.
DEC	-	Decreased incorporation.
INC	-	Increased incorporation.
NA	-	Incorporation not altered
(-)	-	Inhibition by Ca ²⁺ ions
(+)		Activation by Ca ²⁺ ions

-

Е Х Р Е R EXPERIMENT-IV M Е Ν $\dot{\mathbf{T}}$

.

IV

•

.
239

EXPERIMENT - IV

EFFECTS OF NUTRATIONAL ALTERATIONS DURING PRE- AND POST-WEANING PERIODS ON POLYPI POOLS IN RAT BRAIN REGIONS

Brain regions vary considerably in weight, period of maturation, structure, composition and function. It is therefore reasonable to assume that undernutrition has variable effects on different components in different brain regions. This has indeed been shown to be true with regard to lipid levels (Dickerson and Jarvis, 1970; Ghittoni and DeRaveglia, 1972; Rajalakshmi and Nakhasi, 1974b) and levels of different neurotransmitters and their metabolizing enzymes (Shoemaker and Wurtman, 1971; Rajalakshmi <u>et al.</u>, 1974c; Sobotka <u>et al.</u>, 1974) in rat brain. Comparative effects of nutritional stress on gray and white matter lipids in rats have been reported (Reddy <u>et al.</u>, 1982). Lipid levels in the developing cerebrum, cerebellum and brain stem of normal and undernourished children have also been investigated (Martinez, 1982).

Only limited information on the regional levels of PolyPI is available (Sheltawy and Dawson, 1969; Birnberger and Eliasson, 1970; Hauser <u>et al.</u>, 1971a; Eichberg <u>et al.</u>, 1971), although the lipids are implicated in several functional processes (Downes and Michell, 1982; Abdel-Latif, 1983). The response to the injection of neurotransmitters on the incorporation of ${}^{32}P_1$ into PolyPI has been studied in several brain regions using microwave irradiation techniques (Soukup <u>et al.</u>, 1978b). This neurotransmitter stimulated phenomenon has also been studied during neonatal undernutrition in different brain regions but the lipids investigated were PtdIns and PtdA (Reddy and Sastry, 1979). No report exists on changes in the regional distribution of PolyPI following nutritional deprivation until date.

Studies on whole brain showed that neonatal undernutrition reduces the concentration of total and metabolically relatively stable pools of PtdIns $(4,5)P_2$ and PtdIns4P significantly while the more active pools of the two lipids are not affected (experiment - II). These effects were reversed by post-weaning nutritional rehabilitation. Protein undernutrition during the post-weaning period alone as also continued feeding of a low protein diet after weaning decreased the metabolically highly active pool of PtdIns $(4,5)P_2$ Suggesting a role of this component in the functional development of glial and myelin membranes which continues actively after weaning.

To provide further insight into the fate of the metabolic pools of PolyPI the nutritional studies on whole brain have been extended to discrete brain regions. After the appropriate nutritional regimen, PolyPI levels were determined in regions enriched in neuronal cell bodies (cerebral cortex and cerebellum) or myelin (brain stem) at two time points after death, namely in

tissues dissected and frozen either rapidly or after standing at room temperature for 10 min. Reports of the findings have appeared (Hauser and Swaminathan, 1982; Hauser and Ananth, 1983).

Body, brainstem and cerebellum weights

Neonatal undernutrition (L⁻) caused a significant reduction in body weight of the animals (58%). The weights of brainstem and cerebellum were also decreased by 40% and 35%, respectively (Table 43). Post-weaning protein deficiency (L⁺P⁻) affected in body weight drastically, reduction being 82%. Brain stem and cerebellar weights were reduced much less, the deficits being of the order of 25% (Table 44). Rehabilitation (L^-P^+) improved the body and brain region weights but left them still significantly lower than controls (L^+P^+) (Table 43).

The deficits in body weights were smaller at 21 days of age (L⁻) than those observed in the previous experiment on whole brain (experiment - II) and by other investigators using the same model (Nakhasik <u>et al.</u>, 1975; Reddy <u>et al.</u>, 1982). However, the deficits were comparable with those reported by Rajalakshmi et al.(1974a) where undernutrition was induced by increasing the litter size being reared by the mothers fed a high protein diet. Protein deficiency during the post-weaning period (L⁺P⁻) caused a greater reduction in the body weight (82%) as compared to whole brain studies (experiment - II) and earlier reports of Rajalakshmi <u>et al</u> (1974a; 1974b) and Rajalakshmi and Nakhasi (1974a), who used diets containing higher amounts of protein (4-5%) for the experimental animals. The "catch-up" in the body weights of nutritionally rehabilitated rats ($L^{-}P^{+}$) was more complete than that observed in the present study (experiment - II) and some others (Reddy and Sastry, 1978; Reddy <u>et al</u>., 1982). These differences in the deficits observed in body weights at 21 and 63 days of age in the experimental groups could be largely due to differences in the strain of rats used for the two experiments. However, the possibility of environmental factors contributing to the variation in experimental results must also be considered.

Cerebroside levels

The levels of cerebrosides in brain regions (Table 43, 44, 45 and 46) were determined in order to evaluate the nutritional effects and the reliability of the dissection procedure. The values for cerebrosides served as an index of the degree of myelination. Cerebroside analysis was carried out on all samples of cerebral cortex in order to be able to check for white matter contamination, if any. Not all cerebellum and brain stem samples from each group were analysed. The constancy of cerebroside values in the cerebral cortex samples from all five groups of animals (Tables 43, 44, 45 and 46) indicated that the method of dissection was reproducible and the cerebrosides detected were not due to inclusion of subcortical white matter in the samples.

Small amounts of cerebrosides are present in gray matter structures well before the onset of myelination and the determination of cerebroside levels in 7-day-old rat cerebral cortex, brain stem and whole brain gave 0.088, 0.712 and 0.206 umoles/g wet wt, respectively.

The concentrations of total cerebrosides in the cerebral cortex were significantly reduced (35%) in neonatally undernourished rats (L⁻) and this decrease was reflected in both NFA and HFA cerebrosides (Table 43). However, their concentration in brain stem and cerebellum was not affected. Krigman and Hogan (1976) have reported a decrease in the concentration of NFA-cerebrosides in 30-day-old undernourished rat brain.

Post-weaning protein deficiency (L^+P^-) caused no changes in cerebroside levels in the three regions examined (Table 44) and the effects on cerebral cortex at weaning were reversed by postweaning nutritional rehabilitation (L^+P^+) (Table 45).

Table 46 gives the distribution of NFA and HFA-cerebrosides in different brain regions under varying nutritional conditions. At 21 days NFA and HFA-cerebrosides contributed about equally to the total in cerebral cortex and cerebellum while the brain stem contained a higher proportion of HFA-cerebrosides. This was not found to be affected in the undernourished animals (L^{-}). The proportion of HFA-cerebrosides increased appreciably in cerebral cortex between 21 and 63 days of age while no change was observed in brain stem and cerebellum. The pattern of cerebrosides in

post-weaning protein deficient (L^+P^-) and rehabilitated (L^-P^+) animals was similar to that of the controls (L^+P^+) at 63 days in all the three regions.

PolyPI Levels

Effect of neonatal undernutrition on PolyPI levels in brain regions

The concentrations of PolyPI in the three brain regions of 21 day old control (L^+) and undernourished (L^-) rats are shown in Table 47 and Figs. 25a and 25b. PtdIns4P is the PolyPI in each region accounting for 60-65% of total PolyPI in both control and undernourished animals. Levels of PtdIns4P and PtdIns $(4,5)P_2$ ("0" min samples) were decreased by 40% and 70%, respectively in the cerebral cortex of the undernourished (L^-) rats when compared to controls (L^+) . Such deficits in brain stem and cerebellum were of the order of 45-50%. In the 10 min L⁻ samples the deficits were found to be 20-30% in all three regions, indicating the presence of a portion of these lipids which is affected considerably less by nutritional deficiency. The PolyPI pool lost between 1 and 10 min post-mortem was practically absent in the L⁻ brain regions, except in the case of PtdIns4P in cerebral cortex where a 58% decrease was observed.

Effect of post-weaning protein deficiency on PolyPI levels in brain regions

The concentrations of PolyPI in the three brain regions of 63 day old control (L^+P^+) and protein deficient (L^+P^-) rats are shown in Table 48 and Figs. 26a and 26b. Concentration of PtdIns4P was higher than Ptd Ins $(4,5)P_2$ in the three regions studied. However, there is a further deposition of PtdIns $(4,5)P_2$ between 21 and 63 days age so that the contribution of this lipid increases to 40-45% when compared to 35-40% at 21 days of age. Levels of PtdIns4P and PtdIns $(4,5)P_2$ in "0 min" and 10 min samples from all three regions remained unaffected by the nutritional deficiency.

Effect of nutritional rehabilitation on PolyPI levels in brain regions

The concentrations of PolyPI in the three brain regions of control (L^+P^+) and rehabilitated (L^-P^+) group of animals are shown in Table 49 and Figs. 27a and 27b. As in the previous groups PtdIns4P is the predominant PolyPI in L^-P^+ brain regions. Levels of PolyPI were partially restored in the "0 min" samples of cerebral cortex from L^-P^+ animals, PtdIns4P being 72% and PtdIns $(4,5)P_2$ 77% of the controls. In brain stem and cerebellum, levels were 62-70% of the controls. In the 10 min samples, which represented that portion of both lipids which was affected to a smaller extent by protein deficiency at weaning than the more labile pool, there was a complete reversal in all three regions. However, the PolyPI pool lost between 1 and 11 min port-mortem (absent in L^- brain regions) was not regenerated during nutritional rehabilitation.

A minor section of this experiment, constituting the analysis of cerebroside levels, was carried out mainly to check for white matter content in all cerebral cortex samples. This seemed essential since gray matter was dissected as quickly as possible from the chilled hemispheres where visual discrimination of gray and white matter was difficult. Cerebrosides are well documented to be myelin indicators and serve as a quantitative histochemical referent for myelinated fibers in nervous tissue (Lewin and Hess, 1965; Norton, 1981; Chao and Rumsby, 1981). The dissection procedure appeared to be quite reproducible, so that it did not seem necessary to make any corrections for subcortical white matter inclusion in the cerebral cortex samples.

In the main portion of this experiment, (PolyPI determination) the time required for dissection and freezing of brain regions was 0.75-1 min, so that the results at "0 min" are comparable only with 1 min post-mortem levels of PolyPI from whole brain, but not with those obtained from heads immersed in liquid N₂ within 2 sec after decapitation (experiment - II). Further, since separation of brain regions, especially gray matter, from heads frozen in liquid N₂ was not possible, the metabolically highly active pool, which is lost during the first minute, in different brain regions could not be determined. However, the levels of PolyPI at 10 min post-mortem in the brain regions were estimated. This time point was chosen based on the results of experiment Ia (refer Table 26 p 186). Calculations

247

made on the rate of decrease of PolyPI in whole brain (nmoles/min) during different time intervals post-mortem indicated significant losses during 0-1 and 1-10 min post-mortem. Further, 10 min post-mortem values were comparable to the levels reported for myelin isolated from rat whole brain (Deshmukh et al., 1980). Previous reports (Eichberg et al., 1971; Hauser et al., 1971a) have also shown this time period (1-10 min post-mortem) to reflect substantial changes in the PolyPI levels of different brain regions and have led to speculations on the localization, preperties and role of different metabolic pools of PolyPI in the nervous system. It was therefore thought that determination of PolyPI levels at 1 and 10 min post-mortem would give an idea of the effects of nutritional stress on two pools of PolyPI in different brain regions - namely, the metabolically relatively inert pool (10 min post-mortem value - pool A₁) presumably located in myelin and the active pool (1-10 min post-mortem value - pool C) presumably located in non-myelin membranes. (Refer Fig. 13, p. 189). On the other hand, studies on whole brain reflected the effects of undernutrition on the metabolically highly active pool (0-1 min post-mortem value - pool B) and the relatively inert pool active pool (1 min post-mortem value - pool $A_1 + C$) present in the whole brain.

PtdIns4P was the major PolyPI in most brain tissue samples analysed. This observation is at variance with earlier studies where $PtdIns(4,5)P_2$ was shown to be the major PolyPI (Hauser <u>et al</u>., 1971a; Soukup <u>et al</u>., 1978a). This is consistent with the results on whole brain (experiment I and II) where improved recoveries of PtdIns4P were observed and this was attributed to the inclusion of CaCl₂ in the neutral solvent extraction step (Hauser and Eichberg, 1973).

The data on PolyPI levels in the "O min" samples from all six groups followed the order; brain stem cerebellum cerebral cortex, which confirm and extend previous observations that total PolyPI are enriched in white matter structures, mainly in the myelin sheath (Hauser et al., 1971a; Eichberg et al., 1971).

Comparative effects of nutritional alterations during the pre- and post-weaning periods on the post-mortem depletion of PolyPI in brain regions are given in Table 50. Post-mortem losses of PolyPI (loss during 1-10 min) were relatively higher in the cerebral cortex when compared to cerebellum and brain stem in all groups of animals. This provides additional evidence to the earlier suggestion that the pool of PolyPI lost rapidly after death is located largely in gray matter structures with in neuronal cells, and the relatively loss labile pool is located in white matter structures rich in glial cells and myelin (Hauser et al., 1971a] Eichberg et al., 1971). Rapid depletion of PolyPI (27%) in rat whole brain occurs in the first minute after death followed by a steady decline to 70 min (experiment Ia). As mentioned earlier, this metabolically highly active pool which is lost in the first minute could not be determined in different brain regions due to technical difficulties.

Comparative effects of nutritional alterations during the pre- and post-weaning periods on the 1 min post-mortem levels of PolyPI (pools A,+C) in whole brain (from experiment - II, Table 37) and brain regions as well as the myelin yield from whole brain (Harjit and Ramakrishnan, unpublished) are given in Table 51. A high proportion of myelinated structures being present in the brain stem, it would be logical to expect the changes in this relatively inert pool of PolyPI in whole brain to be reflected in this region. This is found to be indeed true in 5 out of 6 measures (Table 51) thereby strengthening the results on whole brain. In addition to the significant deficits observed in L brain stem samples, deficits were observed in cerebral cortex and cerebellum as well, suggesting that a portion of this pool is also located in non-myelinated structures. In the earlier experiments on whole brain the deficits in the 1 min post-mortem levels of PolyPI were found to be considerably higher than the deficits observed in the yield of myelin (Harjit and Ramakrishnan, unpublished) and this difference was attributed to the partial localization of this pool in non-myelinated structures. The data obtained on brain regions therefore provides further supportive evidence to the earlier suggestions.

Comparative effects of nutritional alterations during the pre- and post-weaning periods on the 10 min post-mortem levels of PolyPI (pool A_1) in brain regions as well as the myelin yield (Harjit and Ramakrishnan, unpublished) from whole brain

are given in Table 52. It is evident from the table that this pool of $PtdIns(4,5)P_2$ is moderately affected in brain stem and cerebellum and that of PtdIns4P in cerebral cortex and cerebellum. However, these effects were restored to normal upon subsequent rehabilitation during the post-weaning period. Protein deficiency after weaning does not affect this pool in any of the regions examined.

The effects on the 10 min post-mortem levels of PolyPI in brain regions being moderate, are comparable to the similar deficits observed in the myelin yield from L brains. Also, morphological studies have revealed relatively moderate effects on the number of oligodendroglial cells in most areas of brain (Sikes <u>et al.</u>, 1981) with the exception of corpus callosum which shows relatively larger deficits (Robain and Ponsot, 1978). The results thus suggest that the 10 min post-mortem values may represent the metabolically inert pool of PolyPI bearing a closer relationship to myelin and glial cells. It would be necessary to determine the levels of this pool in glialcells and myelin at different times post-mortem in order to get further insight into this metabolic relationship.

The pool of PolyPI lost between 1 and 10 min post-mortem (pool C) was virtually eliminated in L brain regions and was not restored when the animals were nutritionally rehabilitated (Figs. 25, 26 and 27). However, protein deficiency after weaning did not affect this pool in any of the regions examined.

2:5-01

In contrast, studies on whole brain (experiment - II.) showed that the metabolically highly active pool (pool B) lost between 0 and 1 min post-mortem was not affected in L⁻ whole brain but was drastically decreased in L^+P^- (mainly PtdIns(4,5)P₂) brains. This differential effect of undernutrition on the PolyPI pool lost between 0 and 1 min post-mortem (whole brain studies) and that lost between 1 and 10 min post-mortem (regional studies) suggest the existence of more than one metabolically active pool. It is possible that one pool might readily become exposed to the PolyPI phosphohydrolases so as to be promptly hydrolysed while the other would initially be protected against hydrolytic cleavage.

The severe effects of nutritional insufficiency at weaning on the pool of PolyPI lost between 1 and 10 min post-mortem (pool C) which is also presumably located largely in gray matter structures, is consistent with morphological changes such as retarded neuropil development (Cragg, 1972), decreased dendritic arborization (Cordoro <u>et al.</u>, 1976; Pysh <u>et al.</u>, 1979; Hammer, 1981), diminished size and density of presynaptic endings (Gambetti <u>et al.</u>, 1974) and decreased number of synapses per unit area (Sheemaker and Bloom, 1977) as well as the changes in functionally important neuronal lipids like gray matter gangliosides (Reddy <u>et al.</u>, 1982). However, the partial persistence of the effects **at** weaning on this pool of PolyPI in nutritionally rehabilitated brain regions does not agree with the complete "catch-up" observed in morphology (Pysh <u>et <u>al</u>., 1979) and the weight and lipid composition of gray matter (Reddy <u>et al</u>., 1982). The effects observed after weaning are consistent with studies on the lipid levels in brain regions (Rajalakshmi and Nakhasi, 1974b) where no changes were observed during postweaning protein deprivation.</u>

In attempting to compare the results at 1 and 10 min postmortem in whole brain and brain regions the differences in the severity of undernutrition induced in the two studies as judged by the body weights (13 g and 18 g in Baroda and Harvard respectively) as also the differences in the strain of rats used (Charles Foster strain at Baroda and Sprague Dawley strain at Harvard) raised doubts that required clarification. For this purpose undernutrition was induced by increasing the litter size of the rats at Baroda (Charles Foster strain) from 8 to 16 in order to be able to achieve body weights comparable to those obtained for the 5% protein fed 21 day old undernourished rats (Sprague Dawley strain at Harvard). The PolyPI levels were determined in the cerebral cortex, brain stem and cerebellum of samples frozen at 1 and 10 min. after decapitation of 21 day old control and undernourished animals. In general, results obtained were comparable in a qualitative way indicating that the mode of producing undernutrition and the strain of rats did not influence the results.

A summary of the effects of nutritional stress on PolyPI pools in whole brain (experiment - II) and brain regions is given in Table 53. The findings that emerge from the neurochemical data suggest the possible existence of multiple metabolic pools with differential localization, orientation to hydrolyzing enzymes, susceptibility to stress conditions, properties and roles in the nervous system.

')

3 1

NO 100 TH TH TH 100 TH 100 TH 100 TH	Cerebra	l cortex	Signifi-	Brain	stem	Signi-	Cereb	ellum	Signi-
、	$L^{+}-(I)$ n = 12	$\begin{array}{c} \mathbf{L}^{-}(\mathbf{I}\mathbf{I}) \\ \mathbf{n} = 8 \end{array}$	$\begin{array}{c} cance \\ between \\ (1) \\ (11) \\ p \\ \end{array}$	$L^{+}-(I)$ $n = 4$	L ⁻ -(II) n = 4	between (I) and (I) $P < P < P$	$L^+-(I)$ n = 3	$\mathbf{L}^{-(\mathrm{II})}$ $\mathbf{n} = 3$	between $\begin{pmatrix} 1\\1\\11 \end{pmatrix}$ and $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$
					mean + s.e				
Body wt (g)	43.0 + 3.0	$\frac{18.0}{(42)}$	0.001						-
Tissue wt (g)	I	I	I	0.140	$0.084 \\ +0.009 \\ (60)$	0.001	0.187 +0.024	$0.122 \\ + 0.013 \\ + (65)$	0.001
				mg/g wet	t wt; mean	±s.d.			
Total cerebro- side	0.37 +0.09	$0.24 \\ +0.07 \\ -(65)$	0,001	12.3 + 2.6	$\frac{10.8}{-2.6}$	N•S•	+ • • 0 • 2 • 2	$\frac{1.7}{(89)}$	N.S.
NFA cerebro- side	0.17 +0.04	$0.11 \\ -40.04 \\ -65)$	0.01	+ 4 + 8 • •	$\frac{4.3}{-1.3}$	N S.	+ 0.8 0.1	$\frac{0.7}{1}$ (88)	N.S.
HFA cerebro- side	$0.21 \\ \div 0.05$	$0.13 \\ -0.04 \\ -(62)$	0.005	7.5 +1.4	6.5 +1.3 (87)	°S•N	1+ 1.2 1.2	$\frac{1.0}{2}$ (91)	N.S.
Numbers in n = Number Numbers of	parenthese of sample observati	s denote % s used for $\begin{pmatrix} 2\\ 2\\ \end{pmatrix}$	of control determinet body weig stem weig cerebell	values. ion of cer $r = L_{1}^{-3}$ in L_{1}^{-1}	rebroside] 5; L=44 2; L= 84 - L+=12; L	levels. -=8			254

,

.

,

N.S. - not significant

.

TABLE 44 :	EFFECT OI LLAR WEI(BRAIN RE(F POST-WEAN GHTS OF RAT GIONS (63 L	VING PROTE. IS (b) THE DAYS OLD).	IN UNDERNU' CONCENTRAI	FRITION ON FION OF TOT	(a) THE B 'AL, NFA A	ODY; BRAIN ND HFA CER	EDROSIDES I	JER EBE- N RAT
	Cerebra	l cortex	Signi-	Brain	stem	Signi-	Cereb	ellum	Signi-
	$\mathbf{L}^{+}\mathbf{p}^{+} \downarrow (\mathbf{I})$ $\mathbf{n} = 8$	$L^{+}P^{-}(II)$ $n = 8$	$\begin{array}{c} 11 \text{ cance} \\ \text{between} \\ (1) \\ (11) \\ p < \end{array}$	$L^{+}P^{+} - (I)$ $n = 3$	$L^{+}P^{-}(II)$ $n = 3$	Ilcance between (I) and (II) p <	$L^{+}P^{+} - (I)$ $n = 2$	$L^+P^-(II)$ $n = 3$	$\begin{array}{c} \text{Ilcance} \\ \text{between} \\ (1) \\ (11) \\ p \\ \end{array}$
والبه بقيت عقت فحاد فحاد حاله حاله حاله عليه وحاد	ت مقد الله الله لاية الله الله حمة الله عام الله الله الله	you with our daw way and and out the two ou		of the state state which they have state and state which	mean + s.d				
Body wt (g)	280 ±37	50 ± 6 (18)	0.001						
Tissue wt (g)	I ,	ł	ł	0.225 +0.036	$\begin{array}{c} 0.169 \\ +0.021 \\ (75) \\ \end{array}$	0.005	0.259 +0.019	$0.189 \\ +0.018 \\ -(73)$	0.001
				new g/gm	uwu; mean	•0•0 +1			
Total cerebro- side	1.71 +0.3	$\frac{1.8}{-10.2}$.s. N	28.2 4.0	25.2 + 2.9 (89)	N.S.	++ 0.1 1.8 4.4	$\frac{8.1}{1007}$	N.S.
NFA cerebro- side	0.49 +0.08	0.51 +0.07 (104)	N•S•	11.3 + 1.6	10.2 + 0.5 (90)	N.S.	3.1 1+ 0.5	, 2.9 <u>+</u> 0.3 (78)	N•S•
HFA cerebro- side	1.24 $\div0.23$	1.24 + 0.14 - (100)	N•S•	16.0 16.0 14.0	$\frac{14.9}{(88)}$	N S	6.1 + 0.6	5.1 + 0.4 (84)	N•S•
Numbers in n = Number Numbers of	par enthes of samples observatio	es de note $\frac{1}{2}$ s us ed for ons for $(\frac{1}{2})$ (2)	6 of contr(determina ¹) body wei) sten wei) cerebell	ol values. tion of c_{1} ght - L_{P} ght - L_{P}	rebroside 1 =16; 5; 4; 2=2 =1; 4; 5=8; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5;	evels.			

.

`

255

N.S. - Not significant.

TABLE 45 :	EFFECT OI CEREBELLA PAT BATA	T POST -WEAN AR WEIGHTS	ING NUTRIT OF RATS (R	FIONAL REH() THE CON(ABILI TATION JENTRATION	N ON (a) TH OF TOTAL,	HE BODY, BI NFA AND HI	RAIN STEM A FA CEREBROS	ND IDES IN
	nereura.	COLVEX	ficance	brain.	sten	fitcance	Cereb	ettum	Signi- ficance
	$L^{+}P^{+} - (I)$	L ^{p+} -(II)	between (I) and	$L^{+}P^{+} - (I)$	L ^{-p+} -(II)	between (I) and	$L^{+}P^{+} - (I)$	L ^{p+} -(II).	between (I) and
	11 11 00	n = 8	> d (11)	က ။ ရ	n 11 12	> d (11)	n 12	က ။ ။	(II) p <
					mean + s.d				
Body wt (g)	280+37	240+37 (<i>8</i> 6)	0.01				ı	¢	
Tissue wt (g)	ł	I	1	0.225 +0.036	0.209 ± 0.021 (93)	N.S.	0.259 + 0.019	$ \begin{array}{c} 0.226 \\ \pm 0.014 \\ (87) \end{array} $	0.005
				mg/g wet	wt; mean <u>+</u>	- s • d •			,
Total cerebro- side	1.71 <u>+</u> 0.3	2.2 + 0.5 (12.9)	0.1	28.2 + 4.0	$\frac{31.9}{-1}$	N.S.	+ 1.1 1.1	$\frac{9.9}{101}$	N.S.
NFA cerebro- side	0.49 +0.08	0.52 +0.15 (106)	N.S.	11.3 + 1.6	$\frac{11.2}{1.7}$	N.S.	3.7 + 0.5	3.3 + 0.7 (89)	N.S.
HFA cerebro- side	1.24 +0.23	1.65 +0.39 (133)	0.02	+ 16.9 1.5	20.7 + 3.7 (122)	N.S.	6.1 1+ 0.6	6.7 $\frac{1}{-}(110)$	N.S.
Numbers in Numbers in Numbers of	parenthese of samples observatio	s denote $\frac{1}{2}$ i used for ins for $\begin{pmatrix} 1\\2\\ \end{pmatrix}$	of contro determinat body weig stem weig cerebell:	ol values. Sion of cert th $-L_{P+}^{+}$.	rebroside 1 rebroside 1 =16; L_P+=1 = 8; L_P== - L'P+=8; L	evels. 6. ⁸ p ⁺ =8		• • • • • • • • • • • • • • • • • • •	
N.S Not	s ignificant				۲.				256

, ,

257

TABLE 46 : COMPARATIVE EFFECTS OF NUTRITIONAL ALTERATIONS DURING THE PRE- AND POST-WEANING PERIODS ON THE DISTRIBUTION OF NFA AND HFA CEREBROSIDES IN RAT BRAIN REGIONS.*

.

	-	L+	L-	L ⁺ P ⁺	L ⁺ P ⁻	L ⁻ P ⁺
Cerebral	NFA- Cerebroside	45.9	45.8	28.8	28.3	23.6
cortex	HFA- Cerebroside	54 .1	54.2	71.2	71.7	76.4
Brain	NFA- Cerebroside	39.0	3 9. 8	40.0	40.4	35.1
stem `	HFA- Cerebroside	61.0	60.2	60.0	59.6	64.9
Cerebellum	NFA- Cerebroside	42.1	41 .1	37.7	35.8	33.3
oor eperrum	HFA- Cerebroside	57.9	58.9	62.3	64.2	66.7

*Values expressed as % of total cerebroside levels.

	21 DAYS OLD).					G IVN NT TI	NTRA REGION
		PtdIns	$(4,5)P_2$	Signifi-	PtdII	154P	Signifi-
Region	40 40 40 40 40 40 40 40 40 40 40 40 40 4	L ⁺ - (I)	L ⁻ - (II)	between (I) & (II) p	L ⁺ - (III)	L ⁻ - (IV)	cance between (III) & (IV) p
1	0	က	4	70	9	2	8
		nmoles/g	wet wt;		rmoles/g	wet wt;	
		mean	+ s.d.		mean 1	r s.d.	
	"0 Min (q) [*]	114.4 +21.4	34.3 + 8.7 (30)	0.001	200.1 <u>+</u> 26.7	$\frac{117.6}{+20.6}$	0.001
	10 Min (R)*	44.8 <u>+</u> 9.2	35.6 + 5.1 (80)	N.S.	63.9 +10.1	49.4 + 6.4 - (77)	0.025
Cerebral							
cortex	% Decrease in 10 min	61	í I	ł	68	តខ	i
	Significante between (Q) and (R) p	0.001	, 1	i	0.001	0.001	I
					· · · ·		contd
							2

į

,

TABLE 47 : COL	td.				•			
1	5	··	4	a	9	1	80	
	"0 Min" (q)	257.8 +57.5	144.1 +26.4 (56)	0.01	469.9 +77.4	246.3 +55.4 (52)	0.005	
Brain stem	10 Min (R [*])	213.9 +19.9	$\frac{150.1}{-32.6}$ $\frac{150.1}{-1}$	0.005	328. 4 +44.8	283.9 +31.8 -(86)	- N•S•	
-	% Decrease in 10 min	17	ł	ı	0 8	ł	I	
	Significance between (Q) and (R) p	N.S.	I	ł	0,005	1	ł	
	"0 Min" (q)*	140 68 +14 • 9	77.4 + 3.9 + (55)	0.001	220.3 +27.4	106.9 +14.0 -(47)	100.0	I I
Cerebellum	10 Min (R)*	114.3 +11.6	90.3 <u>+</u> 9.3 (79)	10.01	168.7 +30.5	122.7 +13.4 -(73)	0.02	1
	% Decrease in 10 min	19	I	1	25	I	ł	
	Significance between (Q) and (R) p	0.01	1	1	0.001	I	1	1
* Time taken t approximatel brain region Number of samp experimentals Numbers in par N.S Not sig	o separate the b y 60 sec. "O min s. les analysed at (L ⁻) four. entheses denote nificant.	rain regions " and 10 min each time p % of contro	s after deca n post-morte oint (0 and l values.	upitation an m value ref 10 min) for	d drop them f resent 1 min controls (I	n liquid N2 v 1 and 11 min v +) were six a	vas Value in Ind	259

.

Values are expressed as means + s.d. * Values significantly different from "O Min" (p < 0.01).

- Values significantly different from control (L⁺) (p < 0.025).
- x axis labels refer to the time at which dissection of brain regions was begun following decapitation of the animals and dipping of the brain in liquid N2.

EFFECT OF POST-WEANING PROTEIN UNDERNUTRITION ON THE CONCENTRATION OF POLYPI IN RAT • , BRAIN REGIONS (63 DAVS OLD). TABLE 48 :

.

•

.

		PtdIns ((4,5)P ₂	Signifi-	PtdI	ns4P	Signifi-
Region		$L^+P^+ - (I)$	L ⁺ P ⁻ (II)	cance between (I) & (II) p	L ⁺ P ⁺ -(III)	L ⁺ P ⁻ (IV)	cance between (III)& (IV P
	5	60	4	۱¢۲	9		8
		moles∕£	g wet wt;		nmoles/g	g wet wt;	
		mean -	F s · d.		mean 1	Es.d.	
	"0 Min" (q)*	118.9 +13.0	106.7 +25.8 -(90)	8°8	226.7 +43.5	172.5 +29.4 (76)	0.01
Çerebral	10 Min (R)*	65.2 + 8.0	58.5+12.3 (90)	N•S•	90.1 +12.4	90.6 + 5.3 (101)	N S.
COLTEX	% Decrease in 10 min	45	45	I	09	48	I
	Significance between (Q) and (R) p	0.001	0.02	I	0.001	0.005	1
ي هي رويد جيه جيه جيه جيه جيه جيه جيه جيه							contd

261

-

			442.3	N.S.	523.2		N.S.	-
	"0 Min" (Q)	386.1 +146.6	(115)	-	<u>+</u> 123.3	52.3 + 52.3 (102)		
Brain stem	10 Min (R)*	331.5 +135.5	403.5 <u>+</u> 87.4 (122)	N.S.	428.1 +105.4	473.2 $\frac{4}{1}38.6$ (111)	N.S.	L
	% Decrease in 10 min	14	6 ,	ı '	18	11	I	
•	Significance between (Q) and (R) p	N S S	N S.	ł	N S.	N .S.	1	
	"0 Min" (q)	203.6 4 76.8	225.6 + 32.6 (111)	N.S.	292•0 4 88•5	302.9 + 46.8 - (104)	N•S•	1
)erebellum	10 Min (R) [*]	144.9 + 45.4	154.6 + 39.5 - (107)	N.S.	184.2 + 43.5	202.1 <u>+</u> 26.8 (110)	N • S •	
,	% Decrease in 10 min	29	32	i	37	ဗ	ŧ	3
	Significance between (Q) and (R) p	N.S.	0.05	1	. 0	0.01	I ,	

263

Fig. 26 : Effect of post-weaning protein undernutrition on PolyPI pools in rat brain regions.

Values are expressed as means <u>+</u> s.d.

- * Values significantly different from "O min". (p < 0.1)
- + Values significantly different from control (L^+P^+) (p < 0.01).
- x axis labels refer to the time at which dissection of brain regions was begun following decapitation of the animals and

Region L+P+-(I) L-P+-(II) between (I) & (I) & (II) 1 2 3 4 5 5 1 2 3 4 5 5 5 1 2 3 4 5 5 5 1 2 3 4 5 5 5 nmoles/g wet wt; mean ± s.d. nmoles/g wet wt; mean ± s.d. 118.9 85.6 0.05 7 0 <min" (q)*<="" td=""> 118.9 85.6 0.05 111.0 10.5 121.2 0.05 10 Min (R)* ± 13.0 ± 21.2 78.6 N.S. 121.1 0.05 cortex $\%$ Decrease 45 8 - - Significance 0.001 N.S. - - - -</min">			PtdIns ($(4,5)P_2$	Signifi-	PtdI	ns4P	Signifi-
1 2 3 4 5 5 $mmoles/g wet wt;$ $montes/g wet wt;$ $mmoles/g wet wt;$ $mmones/g wet wt;$ $mmoles/g wet wt;$ $mean \pm s.d.$ $n 0 Min" (q)^*$ 118.9 85.6 0.05 721.2 0.05 $10 Min (R_1)^*$ ± 13.0 ± 21.2 78.6 $N.S.$ Cerebral $0 Min (R_1)^*$ ± 8.0 ± 111.0 0.05 cortex $\%$ Decrease 45 8 $-$ Significance 0.001 $N.S.$ $-$	Region	** ** ** ** ** ** ** **	L ⁺ P ⁺ - (I)	L ⁻ P ⁺ -(II)	between (I) & (II) p	L ⁺ P ⁺ -(III)	L ⁻ P ⁺ -(IV)	between (III)& (IV) p
$\begin{array}{llllllllllllllllllllllllllllllllllll$		2	ò	4	τΩ.	9	2	
$\begin{array}{cccccc} \text{mean } \pm \text{ s.d.} & \\ \text{mean } \pm \text{ s.d.} & \\ \text{no Min" (Q)}^{*} & 118.9 & 85.6 & 0.05 \\ \pm 13.0 & \pm 21.2 & \\ \pm 13.0 & \pm 78.6 & \text{N.S.} & \\ 10 \text{ Min (R)}^{*} & 65.2 & 78.6 & \text{N.S.} & \\ \pm 8.0 & \pm 11.0 & \\ 1110 & & & & \\ 1211 & & & & \\ \text{in 10 min} & & & & & \\ \text{between (Q)} & & & & & & & \\ \end{array}$			nmoles/g	g wet w t;		, muoles∕Ę	g wet wt;	
$\begin{array}{ccccc} \mbox{"0 Min" (Q)}^{*} & 118.9 & 85.6 & 0.05 \\ \pm 13.0 & \pm 21.2 & & & & & & & & & & & & & & & & & & &$			mean	r s.d.		mean	+ s.d.	
10 Min (R.)* 65.2 78.6 N.S. Cerebral ± 8.0 ±11.0 111.0 Cortex % Decrease 45 8 - % Decrease 45 8 - - in 10 min 0.001 N.S. - -		"0.Min" (q)	118.9 + 13.0	85.6 +21.2 -(72)	0.05	226.7 + 43.5	$\frac{174.9}{1}$	0.1
<pre>% Decrease 45 8 - in 10 min Significance 0.001 N.S between (Q)</pre>	rebral	10 Min (R.)*	65.2 65.2 1+	78.6 +11.0 (121)	N.S.	90.1 ± 12.4	$\frac{119.3}{(132)}$	N.S.
Significance 0.001 N.S between (Q)	X an J	% Decrease in 10 min	45	00	I	60	35	i .
and (n) P		Significance between (Q) and (R) p	0•001	N•N	I	0.001	0.005	I

TABLE 49 : EFFECT OF POST-WEANING NUTRITIONAL REHABILITATION ON THE CONCENTRATION OF POLYPI IN

,

ć

TABLE 49 : col	ntd.						
1	2		4	0	6		80
	"0 Min" (q)*	386.1 <u>+</u> 146.6	357.5 +132.3 -(93)	N.S.	523•2 +123•3	330.8 + 54.5 (63)	0•05
Brain stem	10 Min (R) [*]	331.5 +135.5	$\frac{400.1}{42.2}$ $\frac{1}{(121)}$	N.S.	428.1 +105.4	$\frac{431.4}{101}$	N•S•
	% Decrease in 10 min	14	i	1	18	ŧ	1
	Significance between (Q) and (R) p	N.S.	t .	1	N.S.	1	ł
	"O Min" (ç)*	203.6 + 76.8	141.1 ± 32.9 $\pm (69)$	N.N.	292•0 + 88•5	181.8 + 35.4 (62)	N.S.
Cerebellum	10 Min (R) [*]	144.9 + 45.4	127.9 <u>+</u> 22.7 (88)	N.S.	184.2 + 43.5	174.0 + 25.2 (95)	N•N
·	% Decrease in 10 min	29	6	I	37	4	I
	Significance between (Q) and (R) p	N.S.	N.S.	ł	0.1	N.S.	I
Number of sam (L P) group (* Time taken t mately 60 s brain regio N.S Not sit Numbers in par	ples analysed at of animals were to separate the ec. "O Min" and ns. rificant.	each time p four. brain regions 10 min post n % of control	oint (0 and 1(s after decapi nortem value t l values.	min) for h tation and therefore re	ooth controls drop them in presents 1 m	(L ⁴ P ⁺) and I liquid N ₂ w in and 11 ² mi	rehabilitated as approxi- n value in or

,

•

•

,

Fig. 27 : Effect of post-weaning nutritional rehabilitation on PolyPI pools in rat brain regions.

Values are expressed as means + s.d.

- * Values significant Jy different from "9 min" (p < 0.1).
- + Values significantly different from control, (L^+P^+) (p < 0.1)
- x-axis labels refer to the time at which dissection of brain regions was begun following decapitation of the animals and dipping of the brain in liquid N₂.

PERIODS	
POST-WEANING	
AND	
PRE-	. SN
G THE	REGIOI
DURIN	BRAIN
RATIONS	IN RAT
L ALTE	OLYPI
LONA	OF P
NUTRIT	ETION (
OF	DEPL
EFFECTS	MORTEM
TVE	POST
MPARA	THE
00	NO
•• 0	
ភ្ល	
TABLI	

• • • • •		Ptc	II ns (4, 5) P	2	•••••	2 - 240 - 240 - 240 - 240 - 240 - 240 - 240 - 240 - 240 - 240 - 240 - 240 - 240 - 240 - 240 - 240 - 240 - 240 -	P1	dIns4P		
	 + -	1	L+P+	L ⁺ P ⁻	L P+	+	······	L ⁺ P+	L ⁺ P -	L ⁻ P+
ebrat ex	-61 ***	+4	-45 ***	** ** *	ထို	* * 89 <mark>-</mark>	*** * •	-60	**************************************	*** *** •
i n	21-	+	-14	6 1	+12		+15	- 18	-11	+30
ebellum	-19 **	717	-29	-32 *	- 6	າ20 ***	+15	-37	-33 **	4

Values expressed as % change in 10 min samples with respect to "0 min".

- Indicates decrease in 10 min samples with respect to "0 min".
- Indicates increase in 10 min samples with respect to "0 min". +

*** Values significantly different from "Omin" levels $p\<\ 0.001$ and 0.005

** Values significantly different from "O min" levels p $<0.01,\ 0.02$ and 0.05

Values significantly different from "0 min" levels p < 0.1. *

COMPARATIVE EFFECTS OF NUTRITIONAL ALTERATIONS DURING THE PRE- AND POST-WEANING PERIODS ON THE 1 MIN POST-MORTEM LEVELS OF POLYPI IN RAT WHOLE BRAIN AND BRAIN REGIONS. TABLE 51 :

		PtdIn ⁶	s (4,5)P ₂			tdIns4P	
	Ţ	· • • • • •		F		L+P-	L_P+
				as % of con	trol (1 ⁺ 0	or <i>Ltpt</i>)	
Whole brai	41	* *	107	95	63 ***	110	86
Cerebral (, sortex 30	* * _	06	72	5 9***	76**	*77
Brain sten	п 56	*	115	° 63	ະ* ** ເມ	102	63 **
Cerebellum	ត	* *	111	69	47 ***	104	60 13 4
Myelin [@] (n	1g/g) 80	**	6 8	* * 80			
به منه بينه منه منه حبل فيه منه عبه							
*** Valu(ss significantly	different	from cont:	rol p < 0.00	1 and 0.005	•	
** Value	ss significantly	different	from cont	rol p < 0.01	, 0.02 and	0.05.	
* Value	es significantly	different	from cont	rol p $\langle 0.0$			

268

Values for myelin yield have been taken from studies in our laboratory (Harjit and

Ramakrishnan, unpublished).

TABL	E 52 : COMPARATI	VE EFFECT	S OF NUTRIT.	IONAL ALTERATI	ONS DURING T	HE PRE- ANI	POST-WEANING
	PERIODS 01	N THE CON	CENTRATION (OF POLYPI AT 1	W-TSOY NIM 0	ORTEM IN R/	T BRAIN
	REGIONS.						
		and and all and the two and the first	PtdIns (4,5)	P_2		PtdIns4P	who had not give any dide and the next one and dad date
		L -	, + ₽ 2	L P+.	L -	- 4 + 1	г_Р+,
				as % of	control (L ⁺	or Ltpt)	
Myel	$\operatorname{in}^{@}(\operatorname{mg/g})$	*08 *	98	** 88			
Cere	bral cortex	80	06	121	**	101	132
Brai	n stem	۲0 ۲	122	121	86	111	101
Cere	bellum	** 6 L	107	8	73**	110	95
* *	Values significa	ntly diff	erent from	control p < 0	•001 and 0.0	05	
* *	Values significa	ntly diff	erent from	control p < 0	.01, 0.02 an	d 0.05	
8	Values for myeli	n yield h	ave been tal	ken from studi	es in this la	lboratory (E	arjit and
	Remakrishnan, un	published	•				

٠

269

•

,

Follyfl poolTissue $\mathbf{L}^ \mathbf{L}^+ \mathbf{P}^ \mathbf{L}^- \mathbf{P}^+$ 12345(A + B)WholeDECNERES(A + B)WholeDECNERES(A + B)WholeDECNERES(A + B)WholeDECNERES(A + B)WholeDECNERES(A + B)WholeDECNERES(A_1 + C)WholeDECNERESMetabolicallyCerebralDECNERESrelativelyCerebralDECNERESrelativelycortexDECNERESrelativelyStemDECNERES					
12345 $(0 \text{ Min})^{"}$ $Whole$ BEC NE RES $(A + B)$ $Whole$ BEC NE RES $(A + B)$ $Whole$ BEC NE RES $Potal poolThe total levels of PtdIns(4, 5)P_2 andnutrition but not by post-weaning protein ofPotal poolThe effects at weaning are reversed ordat + CWholeBECNERESMetabolicallyCerebralDECNERetabolicallyCerebralDECNERES(A_1 + C)brainBrainDECNERES(A_1 + C)brainDECNERES(A_1 + C)brainDECNERES(A_1 + C)brainDECNERESA_1 + C)brainDECNERESA_1 + C)brainDECNERESA_1 + C)brainDECNERESA_1 + C)brainDECNERESA_1 + C)brainDECNERES$		'	г+Р-	+d. 7	L_P_
$(A + B)$ WholeDECNERES $(A + B)$ brainbrainbrainbrain $(A + B)$ protainThe total levels of PtdIns $(4,5)P_2$ and $PotalThe total levels of PtdIns(4,5)P_2 andPotalThe effects at weaning are reversed or(A_1 + C)WholeDECNE(A_1 + C)WholeDECNE(A_1 + C)brainDECNE(A_1 + C)brainBrain(A_1 + C)brainBEC(A_1 + C)brainBEC(A_1 + C)brain(A_1 + C)brain(A_1 + C)brain(A_1 + C)brain(A_1 + C)brain(A_1 + C)brain(A_1 + C)B$	9	L .	8	6	10
Cotal poolThe total levels of PtdIns(4,5)P2 and nutrition but not by post-weaning protRutrition but not by post-weaning protThe effects at weaning are reversed or decreased on continuation of protein ofMinWholeDECNHNHBrainDECMetabolicallyCerebralCerebralDECNENERESfelativelycortexCelativelystemactive poolstem	DEC	DEC	NE	RES	DEC
The effects at weaning are reversed or decreased on continuation of protein of $A_1 + C$)The effects at weaning are reversed or decreased on continuation of protein of $A_1 + C$)($A_1 + C$)Whole brainDECNERES($A_1 + C$)brain brainDECNERES($A_1 + C$)brain brainDECNERES($A_1 + C$)brain brainDECNERES($A_1 + C$)brain brainDECNERES($A_1 + C$)brain brainDECNERESclatively broolcortex stemDECNERES	nd PtdIns4P otein defi	are decr ciency.	eased by	pre-weani	ng under
t Min (A ₁ + C) Whole DEC NE RES (A ₁ + C) brain Metabolically Cerebral DEC NE RES-P relatively cortex inert pool + Brain DEC NE RES relatively stem	on nutriti deficienc	onal reha y during 1	bilitatio the post-	n and fur weaning po	ther eriod.
Metabolically Cerebral DEC NE RES-P relatively cortex Inert pool + Brain DEC NE RES relatively Brain DEC NE RES active pool stem	DBC	DEC	NE	RES	DEC
relatively Brain DEC NE RES celative pool stem	i	DEC	DEC	RES -P	ŧ
~	I	DEC	NE	RES -P	I
Cerebellum DEC* NE RES	ł	DEC	NB	RES-P	ł
The metabolically active (C) and inertare are significantly reduced in the whole undernutrition but not by post-weaning cortex PtdIns4P).	srt (A1) pool le brain al ng protein	ols of Pt nd brain deficien	dfins (4,5) regions b cy (excep	P2 and Pt(y ² pre-weal tion - cen	llns4P ning :ebral

Table 53 : contd.																
1	5	•••••	ന	••••••	4	•••••		9	••••••	7	 *****	8		6		10
	The effec rehabilit	ts at ation	t wea.	ni ng oweve	on be r, wh	oth th lich I	te poc	ols ar s les	e rev s rev	ersed ersib	only le is	part not	iall) clear	n no .	autri	tional
	1 min pos tive of t is also 10	t-mor he me ocate	rtem stabo sd in	level lical non-	s of ly in myelj	PtdIr nert p nated	us (4 , E 0001 j 1 stru)P2 a n mye ucture	nd Pt linat s.	dIns4 ed st	Pare ructu	not res b	totæ] ut a	ly re porti	epres ion c	ienta- if it
10 Min (A ₁)	Cerebral cortex		NE		NE	4	۲	I		DEC	١	NE	ų	LES		
Metabolically relatively	Brain stem		DEC	,	NE	H	ES	I		NB		NE	4	Ц,		ł,
тоод ллент	Cerebellu	Ħ	DEC		NR	14	ES	i		DEC		NE	<u>65</u>	LES		ł
	In the ce decreased	rebra by I	al co pre-w	rtex, eanin	leve g und	els of lernut	. Ptd] ritic	ns4P n and	and p rest	robab	ly Pt on nu	dIns (triti	4,5)I onal	2 are	e bilit	ation.
	In the brain the brain the transmission of the second seco	ain s and	stem rest	level ored	s of on nu	PtdIr atriti	s(4,5 onal	5)P2 a	re de ilita	creas tion.	ed by	pre-	weanj	ing ur	nder -	
	In the ce undernutr	rebe] i ti oı	llum 1 and	level rest	s of ored	PtdIr on nu	s(4, ⁵ triti	5)P ₂ a onal	nd Pt rehab	dIns4 ilita	P are tion.	decr	eased	l by l	pre-1	reani n h
	Post-wean brain reg	ing l ions i	prote	in de	fici	ency h	las n() effe	ct on	both	lipi	ds in	any	of th	le th	Iree
0-1 Min	Whole brain		NE		DEC	4	X	DE	Ö	NE		NE	μ ε ι	VE .		NK
Metabolically highly active pool	The metab by pre-wea	olice aning	ally y und	highl ernut	y act ritic	tive l on.	001 0	of Ptd	Ins (4	,5)P ₂	and	PtdIn	s4P j	is not	t af	ected
	- 1940 1950 1950 1950 1950 1950 1950 1950 195														conto	271

-

•

ميد مينو ميدي ويدي المري ميلو ويدي ميدي ويدي ميدي المري ميدي ويدي ميدي . «ال		•		•		-	•		•		•			••	-	i
1	5		3	••••	4	C1	*****	9	•• •• •		*****	8	6	** ••••	10	
ĸ	Protëin bolical and gli	l defic ly hig al cel	iency hly ac 1 matu	duri: stive urati	ng the pool on.	post of Pt	-weani dIns(4	ing pe 1,5)P2	eriod , sugg	drast estin	icall g an	y dec aberr	rease: ation	s the in my	meta- relin	1
1-10 Min (C)	Gerebre cortex	E (MIH		NE	N0 RE	s t	I		DEC	Q	BC	No. RE:	0 4	I	
Metabolically relatively active pool	Brain stem		QN		CIN	X	8	i		QN		Q N	IN	0	I	
	Cerebe]	Ium	ELM		NE	N0 RE	s S	i		BLM	Z	Э	NOI	1	i	
	The met the 1s1 cerebel nutriti of Ptd1	abolic minut lum by onal r ns4P i	ally a e post pre-v ehabil n the	activ t-mor reani itati cerel	e pool tem) i ng und ion. bral c	(rel s vir ernut Post- ortex	ativel tually ritior veanir alone	Ly les V elim 1 and 1g pro	ss act ninate these tein	tive t d in effe defic	han t the c cts a iency	he po erebr re no decr	ol lo: al co t rev eases	st dur rtex a ersed this	ing Ind on pool	
	The dif of more exposed initial	ferent e than 1 to th .1y pro	ial ef two po e enz; tected	lfect ools. yme s l aga:	s on t It i o as t inst h	he O- s pos o be ydrol	-1 min stible prompt ytic c	and 1 that tly hy cleava	l-10 m one p /droly ige.	tin po ool m 'sed w	ol su ight hile	lggest becom the o	the e read	exist(dily would	be	
											1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			cont	d.	
,	, ,		·													27

-

272

,

•

•

J

Table 53 : contd.

.

	1		
DEC	8	Decr eased	RES = Restored
H	11	Not effect	RES-P = Restored partially
<u>Q</u>	II,	Not detected	Not-RES = Not restored
I	H	Not determined	KLM = Bliminated

.

E X P E R E X P E R T M E N T - V. M E N T

4

.

V

.

.

.
EXPERIMENT - V

EFFECTS OF NUTRITIONAL ALTERATIONS DURING PRE- AND POST-WEANING PERIODS ON POLYPI POOLS IN RAT KIDNEY.

As mentioned earlier, the effects of undernutrition on organs of the animal body other than the brain are relatively severe (Widdowson and McCance, 1960; Winick and Noble, 1966). With regard to lipid composition, extensive studies have been carried out on the intestine under conditions of nutritional stress during pre-natal, neonatal and post-weaning stages of development (Arockiadoss, 1982). Phospholipid composition has been shown to be altered in several tissues like the liver, spleen, kidney, lung, heart and testes during neonatal undernutrition (Khanna and Reddy, 1983; Reddy and Khanna, 1983).

It is well known that like the brain, rat kidney is also endowed with the ability to synthesize myo-inositol and its phospholipid derivatives i.e. PolyPI. Although concentrations of PolyPI are by far the highest in brain, kidney contains substantial quantities of these compounds (Dittmer and Douglas, 1969; Tou <u>et al</u>., 1972; Hauser and Eichberg, 1973). Further, metabolism of PolyPI in kidney is unique in that there is rapid labeling of these compounds with ${}^{32}P_i$ <u>in vivo</u> followed by a rapid decline, which has not been observed in other organs examined (Tou <u>et al</u>., 1973). Several authors suggest that PolyPI in kidney may play a role as important functional

275

components of the tubule membranes during secretion and reabsorption of solutes from the lumen of the tubule (Farese <u>et al., 1980; 1981; Bidot-Lopez et al., 1981; Benabe et al.,</u> 1982; Hruska <u>et al., 1983</u>).

The kidney of an infant, although perfectly addquate for normal purposes, is less adaptable than that of an adult to various insults. Agradual less of nephrons and reduction in renal functional capacity with age has been reported (Zeman, 1968; Zeman and Stanbrough, 1969). With special reference to inositol phospholipid metabolism, it is interesting to note that patients with chronic renal failure exhibit dramatic elevations in serum levels of free myo-inositol which, in turn, may contribute to the pathogenesis of uremic polyneuropathy (Clements <u>et al</u>., 1973; Pitkanen, 1976). A decreased glomerular filtration rate and disturbed inositol reabsorption have also been shown to be present in advanced forms of glomerulonephritis. In view of the above, levels of PolyPI pools in the kidney were also analysed for possible differential effects of nutritional modifications in neural verus non.neural tissues.

For this study animals used in experiment IV were taken and PolyPI levels determined in the kidney at two time points after death, namely in tissues dissected and frozen either rapidly or after standing at room temperature for 10 min. (See Materials and Methods p. 144).

Effect of neonatal undernutrition on PolyPI levels in kidney

The concentrations of PolyPI in kidney of 21 day old control (L^+) and undernourished (L^-) rats are shown in Table 54 and Fig. 28. Levels of PtdIns(4,5)P₂ and PtdIns4P were decreased by 18% and 34% respectively in the L^- "0 min" samples. In the 10 min L^- samples deficits were observed only in PtdIns4P (38%) indicating that the lower phosphorylated derivative is more sensitive to nutritional deprivation. The PolyPI pool lost between 1 and 10 min post-mortem, however, did not seem to be affected.

Effect of post-weaning protein deficiency on PolyPI levels in kidney

The concentrations of PolyPI in kidney of 63 day old control (L^+P^+) and protein deficient (L^+P^-) rats are given in Table 55 and Fig. 29. It is evident that levels of PtdIns $(4,5)P_2$ and PtdIns4P are not altered at both time points ("0 min" and 10 min) by this nutritional regimen.

Effect of post-weaning nutritional rehabilitation on PolyPI levels in kidney

The concentrations of PolyPI in kidney of 63 day old control (L^+P^+) and rehabilitated (L^-P^+) rats are given in Table 56 and Fig. 30. Deficits observed in the "0 min" levels of PtdIns $(4,5)P_2$ at weaning were restored completely while a

277

partial catch up was observed in PtdIns4P. In the 10 min samples the decreases observed in PtdIns4P at weaning continued to persist during subsequent rehabilitation in the post-weaning period.

As in the previous experiment, the time required for dissection and freezing of kidneys was 0.75-1 min, so that the results at "O min" actually represent 1 min post-mortem levels of PolyPI but not the 2 sec levels as in the case of whole brain where heads were frozën in liquid N2 after decapitation. Since freezing of the whole animal and removal of the kidney from bodies frozen in liquid N2 was difficult, the metabolically highly active pool lost during the first minute could not be determined in this tissue. However, BolyPI levels at 10 min post-mortem were (estimated. Significant losses (25-40%) during this time period (1-10 min post-mortem) could be detected only in PtdIns $(4,5)P_2$ in all the five $(L_2^+L_2^-, L_2^+P_2^+, L_2^+P_2^-)$ and $L_2^-P_2^+$ groups of animals. As in the case of brain it is not known if the lability post-mortem of these lipids in kidney is due to a diesteratic or monoesteratic cleavage or a combination of both enzymes. The activities of the hydrolases are however higher in the brain when compared to kidney (Table 11). Further, the extent of losses post-mortem in PolyPI levels would also depend on the Ca^{2+} ion concentration which regulates the activities of (Table 13) these phosphohydrolases/ and also the accessibility of the different pools to these enzymes in the membrane.

278

The effects of varying nutritional conditions on the 1 min post-mortem levels of PolyPI in brain and kidney and 10 min post-mortem levels in kidney are given in Table 57. Brain and kidney show similar amount of deficits in the 1 min post-mortem levels of PtdIns4P at weaning. These deficits continue to persist in the kidney while there is a partial reversal in the case of brain on subsequent rehabilitation during the post-weaning period. Deficits observed in $PtdIns(4,5)P_2$ are lower than PtdIns4P in the kidney while the reverse is true for the brain, The preferential effects on PtdIns4P in kidney indicates tht the lower phosphorylated derivative is more sensitive to nutritional deprivation in this tissue. This is also true in the 10 min post-mortem levels of PolyPI in kidney where PtdIns4P is preferentially reduced at weaning and the deficits continue to persist on subsequent rehabilitation.

A preferential decrease of PtdIns4P as compared with PtdIns(4,5)P₂ suggests that this lipid is not merely an intermediate in the synthesis and catabolism of PtdIns(4,5)P₂. It is interesting to note that a selective effect on PtdIns4P metabolism in response to c-AMP is observed in rabbit kidney cortex (Baricos <u>et al.</u>, 1979). Separate enzymes mediating the phosphodiesteratic __cleavage of PtdIns4P and PtdIns(4,5)P₂ have been demonstrated in kidney cortex (Tou <u>et al.</u>, 1973), while a single enzyme appears to attack both substrates in the brain (Keough and Thompson, 1970). The existence of separate enzymes could partially explain the preferential decrease of PtdIns4P as well as the different effects of nutritional deprivation on the two lipids observed in kidney as compared with brain.

Several authors have studied the influence of hormones on PolyPI metabolism and shown that PTH which regulates a variety of renal functions rapidly increase the concentrations of $PtdIns(4,5)P_{0}$ and PtdIns4P in rabbit kidney cortex and this effect is abolished by pretreatment with cycloheximide which also inhibits certain renal functions - phosphaturia and amine acid transport (Farese et al., 1981; Bidot Lopez et al., 1981). However, the functional importance of the PolyPI effect in PTH action is presently unknown. Khanna and Reddy (1983) observed no major changes in the concentration of different phospholipids from the kidney during neonatal undernutrition. However, these authors did not report PolyPI levels, since their extraction procedure did not permit the isolation of these lipids. Tou et al (1972) reported no changes in kidney PolyPI levels of rats starved for 48 h, whereas an increase in PolyPI specific radioactivity was observed after injection of 32 P. What relation does the influence of nutritional status on PolyPI metabolism has to renal functions is not known.

In sum, these preliminary studies indicate that protein deficiency may have different effects on PolyPI pools in

279

1

,

neural (brain and non-neural (kidney) tissues: The factors regulating these effects in different tissues remain to be investigated.

.

.

.

.

. .

-

.

, i

TABLE 54 : EFFECT	OF PRE-WEANING UNDE	RNUTRITION ON	(a) THE BODY
AND KID	NEY WEIGHTS OF RATS	(b) THE CONCI	ENTRATION OF
POLYPI	POOLS IN RAT KIDNEY	(21 DAYS OLD).
	$L^{+} - I$ $n_{0} = 4$ $n_{10} = 4$	$L^{-} - II$ $n_{0} = 4$ $n_{10} = 4$	Significance between (I) and (II) p
	mean <u>+</u>	s.d.	
Body weight (g) ⁺	43.0 <u>+</u> 3.0	18.0 <u>+</u> 1.0	0.001
Kidney weight $(g)^{+}$	0.50 + 0.04	0.26 <u>+</u> 0.02	0.001
	nmoles/g wet wt	; mean \pm s.d.	
$\underline{\mathbf{PtdIns}(4,5)\mathbf{P}_2}$,
"O Min" (Q) [*]	39.4 <u>+</u> 3.9	32.3 <u>+</u> 3.6	0.05
10 Min (R)	26.7 <u>+</u> 7.7	20.0 <u>+</u> 3.5	N.S.
% Decrease in 10 min	32	38	
Significance between (Q) and (R) p	0.05	0.005	,
PtdIns4P			
"O Min" (S) [*]	74.1 + 7.8	48.9 <u>+</u> 2.1	0.001
10 Min (T)	63.6 <u>+</u> 16.9	39.4 <u>+</u> 4.1	0.05
% Decrease in 10 min	14	19	
Significance between (S) and (T) p	N.S.	0.01	
n - Number of sam	ples used for deter	mination of P	olyPI levels at
n_{10} Number of sam	ples used for deter	mination of Po	olyPI levels at
 * Time taken to them in liqui mortem value + Number of obs 	remove the kidneys d N ₂ was approximat therefore represent ervations for (1) b (2) k	after decapi ely 60 sec. " s 1 min value ody weight L idney weight	tation and drop 0 min" post- in kidney. = 36; L = 44 L ⁺ = 8; L = 8.
			· · · · · · · · · · · · · · · · · · ·

-

281

.

.

NS - Not significant.

Fig. 28 : Effect of pre-weaning undernutrition on PolyPI pools in rat kidney.

Values are expressed as means <u>+</u> s.d.

- * Values significantly different from "0 min" (p < 0.05).
- + Values significantly different from control (L^+) (p \lt 0.05). x-axis labels refer to the time at which dissection of kidney

1

was begun following decapitation of the animals.

.

TABLE 55 : EFFECT OF POST-WEANING PROTEIN DEFICIENCY ON (a) THE BODY AND KIDNEY WEIGHTS OF RATS (b) THE CONCENTRA-TION OF POLYPI POOLS IN RAT KIDNEY (63 DAYS OLD).

abits ware taken dara etain tilin dan tekn dira uken tekn eske akter tekn tekn tekn tekn tekn tekn tekn tekn		n annan dhann Willen Miller Hanne Albert Tanan Albein annah bilisti agarta Manin Singa abaga angan anna	u little alle alle site title site alle des time tout to the site alle sites
•	$L^{+}P^{+} - I$	$L^{+}P^{-} - II$	Significance
	$n_0 = 2$	$n_0 = 4$	(I) and (II)
	$n_{10} = 2$	$n_{10} = 4$	p
	mean	<u>+</u> s.d.	
Body weight $(g)^+$	280 <u>+</u> 37	50 <u>+</u> 6	0.001
Kidney weight $(g)^+$	2.35 ± 0.31	0.57 ± 0.07	0.001
	nmoles/g wet	wt; mean <u>+</u> s.d.	
$PtdIns(4,5)P_2$			
"O min" $(Q)^*$	99 .4 <u>+</u> 2.8	86.5 <u>+</u> 10.2	N.S.
10 Min (R)	60.0 <u>+</u> 11.0	54.4 <u>+</u> 6.5	N.S.
% Decrease in 10 min	40	37	
Significance between (Q) and (R) p	-	0.001	
PtdIns4P			
"0 Min" (S) [*]	108.4 <u>+</u> 9.8	115.1 <u>+</u> 13.8	N.S.
10 Min (T)	112.4 <u>+</u> 5.9	107.3 + 9.4	N.S.
% Decrease in 10 min	-	7	
Significance between (S) and (T) p	<u> </u>	N .S.	
n - Number of sam	ples used for de	termination of P	olyPI levels
$n_{10} - Number of sample at 10 min.$	ples used for de	termination of F	olyPI levels
 Time taken to drop them in post-mortem v kidney. 	remove the kidr liquid N ₂ was ap alue therefore p	neys after decapi oproximately 60 s represents 1 min	tation and sec. "O min" value in
+ - Number of obs	ervations for (1 (2) body weight L [*] 2) kidney weight	P ⁺ =16;L ⁺ P =29 L ⁺ P ⁺ =8;L ⁺ P =8
N.S Not signific	ant.	١	1

Fig. 29 : Effect of post-weaning protein under protection on PolyPI pools in rat kidney.

Values are expressed as means <u>+</u> s.d.
* Values significantly different from "0 min".(p < 0.001).</pre>

TABLE 56 : EFFECT OF POST-WEANING NUTRITIONAL REHABILITATION ON (a) THE BODY AND KIDNEY WEIGHTS OF RATS (b) THE CONCENTRATION OF POLYPI POOLS IN KIDNEYS OF RATS UNDERNOURISHED PRIOR TO WEANING (63 DAYS OLD).

$n_{0} = 2 \qquad n_{0} = 4 \qquad (1) \text{ and } (1) \\ n_{10} = 2 \qquad n_{10} = 4 \qquad p$ mean \pm s.d. Body weight $(g)^{+} \qquad 280 \pm 37 \qquad 240 \pm 37 \qquad 0.01$ Kidney weight $(g)^{+} \qquad 2.35 \pm 0.31 \qquad 1.91 \pm 0.08 \qquad 0.005$ nmoles/g wet wt; mean \pm s.d. <u>PtdIns(4.5)P_2</u> "0 Min" $(Q)^{*} \qquad 99.4 \pm 2.8 \qquad 108.2 \pm 26.1 \qquad N.S.$ 10 Min $(R) \qquad 60.0 \pm 11.0 \qquad 40.9 \pm 7.8 \qquad N.S.$ % Decrease in $40 \qquad 62$ 10 min Significance $- \qquad 0.005$ between (Q) and $(R) \qquad p$
$n_{10} = 2 \qquad n_{10} = 4 \qquad p$ mean \pm s.d. Body weight (g) ⁺ $280 \pm 37 \qquad 240 \pm 37 \qquad 0.01$ Kidney weight (g) ⁺ $2.35 \pm 0.31 \qquad 1.91 \pm 0.08 \qquad 0.005$ mmoles/g wet wt; mean \pm s.d. <u>PtdIns(4.5)P</u> ₂ "0 Min" (Q) [*] $99.4 \pm 2.8 \qquad 108.2 \pm 26.1 \qquad N.S.$ 10 Min (R) $60.0 \pm 11.0 \qquad 40.9 \pm 7.8 \qquad N.S.$ % Decrease in $40 \qquad 62$ 10 min Significance $- \qquad 0.005$ between (Q) and (R) p
mean \pm s.d. Body weight $(g)^+$ 280 ± 37 240 ± 37 0.01 Kidney weight $(g)^+$ 2.35 ± 0.31 1.91 ± 0.08 0.005 mmoles/g wet wt; mean \pm s.d. PtdIns(4.5)P2 "0 Min" $(Q)^*$ 99.4 ± 2.8 108.2 ± 26.1 N.S. 10 Min (R) 60.0 ± 11.0 40.9 ± 7.8 N.S. % Decrease in 40 62 0.005 10 min and $ 0.005$
mean \pm s.d.Body weight (g)* 280 ± 37 240 ± 37 0.01 Kidney weight (g)* 2.35 ± 0.31 1.91 ± 0.08 0.005 nmoles/g wet wt; mean \pm s.d.Ptdlns(4.5)P2"0 Min" (Q)* 99.4 ± 2.8 108.2 ± 26.1 N.S.10 Min (R) 60.0 ± 11.0 40.9 ± 7.8 N.S.% Decrease in 40 62 10 min 40.9 ± 7.8 N.S.% Decrease in 40 62 10 min $5ignificance$ $ 0.005$ between (Q) and R p
Body weight $(g)^{4}$ 280 ± 37 240 ± 37 0.01 Kidney weight $(g)^{4}$ 2.35 ± 0.31 1.91 ± 0.08 0.005 nmoles/g wet wt; mean \pm s.d.nmoles/g wet wt; mean \pm s.d.PtdIns(4.5)P2"0 Min" $(Q)^{*}$ 99.4 ± 2.8 108.2 ± 26.1 N.S.10 Min (R) 60.0 ± 11.0 40.9 ± 7.8 % Decrease in 10 min Significance between (Q) and (R) p 40 62
Kidney weight $(g)^{+}$ 2.35 ± 0.31 1.91 ± 0.08 0.005 nmoles/g wet wt; mean \pm s.d.PtdIns(4.5)P2"0 Min" (Q)*99.4 \pm 2.8108.2 \pm 26.1N.S.10 Min (R)60.0 \pm 11.040.9 \pm 7.8N.S.% Decrease in 10 min Significance between (Q) and (R) p
$nmoles/g wet wt; mean \pm s.d.$ $\underline{Ptdlns(4.5)P_2}$ "O Min" (Q) [*] 99.4 ± 2.8 108.2 ± 26.1 N.S. 10 Min (R) 60.0 ± 11.0 40.9 ± 7.8 N.S. % Decrease in 10 min Significance between (Q) and (R) p
PtdIns(4.5)P2 "O Min" $(Q)^*$ 99.4 ± 2.8 108.2 ± 26.1 N.S. 10 Min (R) 60.0 ± 11.0 40.9 ± 7.8 N.S. % Decrease in 40 62 10 min Significance - 0.005 between (Q) and (R) p - 0.005
"O Min" $(Q)^*$ 99.4 \pm 2.8108.2 \pm 26.1N.S.10 Min (R) 60.0 ± 11.0 40.9 ± 7.8 N.S.% Decrease in 10 min Significance between (Q) and $(R) p$ 40 62
10 Min (R) 60.0 ± 11.0 40.9 ± 7.8 N.S. % Decrease in 40 62 10 min - 0.005 between (Q) and - 0.005
% Decrease in406210 minSignificance-0.005between (Q) and(R) p-0.005
Significance - 0.005 between (Q) and (R) p
PtdIns4P
"0 Min" (S) [*] 108.4 \pm 9.8 80.8 \pm 9.4 0.05
10 Min (T) 112.4 \pm 5.9 71.9 \pm 19.7 0.05
% Decrease in - 11 10 min -
Significance - N.S. between (S) and (T) p
n ₀ - Number of samples used for determination of PolyPI levels
n - Number of samples used for determination of PolyPI levels
 * - Time taken to remove the kidneys after decapitation and drop them in liquid N₂ was approximately 60 sec. "O Min" post-mortem value therefore represents 1 min value in
+ - Number of observations for (1) body weight $L^+P^+=16$; $L^-P^+=16$
(2) kidney weight $L^+P^+=8$; $L^-P^+=8$

285

Fig. 30 : Effect of post-weaning nutritional rehabilitation on PolyPI pools in rat kidney.

Values are expressed as means \pm s.d.

- Values significantly different from "O min" (p < 0.005). ×
- Values significantly different from control (L^+P^+) (p $\lt 0.05$). +

10** ** 64 LEVELS OF POLYPI IN BRAIN AND KIDNEY AND 10 MIN POST-MORTEM LEVELS + -----TABLE 5.7 : EFFECT OF VARYING NUTRITIONAL CONDITIONS ON THE 1 MIN POST-MORTEM 86 (t+ or t+p+) PtdIns4P 1 4 1 110 95 106< 0.001 0.05 *** 99 *** 63 62 * 8 as % of control \sim **'**__ Values significantly different from control p *** Values significantly different from control p 68 1 1 1 1 95 109 PtdIns (4,5) P_2 L⁺P 107 81 104OF POLYPI IN KIDNEY. 41 , * 82 8 ן בי 73 10 Min Kidney Kidney 1 MinBrain **

287