CHAPTER -~ T

INTRODUCTION

The theory of orthogonal series is not always a classical
section of the analysis. It has its origin since last 200 years,
which originated during the discussion of the problem of
vibrating string considered by Euler in 1753 in connection
with the work by Daniel Bernoulli. During their discussion
they had advanced"the theory of vibfating strings to the stage
where the partial differentisl equation y,,=a’y_  wes kaown
and the solution of the boundeary value problem hal been found
from the general solutioﬁ of that egquation. Thus, they have
led 1o the possibility of representing an arpitrary function
by a trigonometrical series. The problem of what functions
can be represented by trigonometric series arose again later
during the researches by French mathematical physicist J.B.

Fourier.

The last several years have been a period of intensive
developument in the theory of Fourier series.Advances have also
been made in the theory of Fourier series w.r.t. general
orthogonel systems, during the last thirty years. But the less
attention has been paid to the theory of orthogonal series

and 80 the present work is based on the orthogonal series.



The researches of some of the mathematicians like Pejer,
Hardy, Hilbert, Hobson, Lebesgue, F. Riesz, M. Riesz, Weyl,
Alexits, Kacgmarsz, Steinhaus, Menchoff, Zygmund, Lorentz,
Meder and Tandori are mainly in the subject of convergence
and summability problems of orthogonal series. In India

1) A.R. SapreZz S5.C. BhatnagarS)and R.X. Patel4>

Prof. C.M. Patel
also have worked in this direction. Wé would like to discuss
some of the problems connected with the convergence and
summability of orthogonal series.We begin with number of

definitions and concepts relevant to tne body work of our

thesis.

12 Throughout the thesis we shall make use of either
Stieltjes~Lebesgue integral or the Lebesgue integral. The
notion of the orthogonality is intrbduced by means of the
Stieltjes Lebesgue integral. Let /u(x) be a positive bounded
and monotone increasing function in the closed interval (e, 1] «

Such a function is called the distribution function.S)

A real function f(x) is called Ihl-integrable, if it is

/u~measurable and
b

(1.2.1) (1] ap(x)<e.
. a .

If /u(x) is sbsolutely continuous and §(x)=u'(x)., then

1) Patel [59] 4) Patel [62]
2) Sapre [77 5) Freud [27]
%) Bhatnagar b4 :



for any I.N—integrable function f(x) the relation

~

b b
(1.2.2) X £(x)ap (x) =§ £(x) €(x)dx
8 a

is velid. In this case we shall say that f(x) is an Le(x)”
integrable function and ¢(x) a covering function or weight
function. If in particuler gzx)-—-‘l, then we shall say in

accordance with the usual terminology that f(x) is L~integrable.

A function f(x) is called L; or Li(x)-integrable, if it

is I or Lg(x)-integrable respectively and if, furthermore,

M
b o
Sf‘g(x)d]u(x)<oo or X f‘?(x)g(x)dx<oo
a ’ a i )

holds. We shall talk about an L2-integrable funet ion,
if e(x) = 1. '

ORTHOGONALITY : A finite or denumersbly infinite systenm

{ﬁn(x)f of Lﬁ-—:integrable function is said to be orthogonal

with respect to the distribution d}l(x) in the interval [a,b], if

b
(1.2.3) g ,(x) #(x)dn(x)=0, win.
) . S

holds and none of the functions ﬁn(x) vanishes almost every-
where.
A system {ﬂfn(x)j is said to be orthomormal, (ONS) if in

addition to the condition (1.2.3) the condition



b
[ =1, n=0,1,2,..eeun.
I

is dlso satisfied. Bvery orthogonal system i}a(xg can be
converted into an ONS by means of multiplying every one of its
members by a sultably chosen constant factor.‘For, since none
of the functions yh(x) can vanish almost every where, the

-

functions

gn(x) = %) YEFX?
O Meoew |
a .

-

1
3

exist and it is immediately evident that they constitute an
ONS with respect to du(x). If, in particular m(x)=x i.e.
ralx)=¢x) = 1, then {ﬁnﬁxﬁ is simply an ONS in the ordinary

Sense.

ORTHOGOWALIZATION 2 A system of functions {ﬁn(xg is called

linearly independent in [&, 14 , if the validity of the relation

of the form
n

) et (o

k=0
for p-almost every xe @,b] necessarily implies the relation

8.0—8.1 = sessssse = an'—-Oo

Every orthogonal system §@ (x)} is linearly independent.1)
n,\ -

1) Alexits. ( [4],p.4)
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Comversely any linearly independent system of functions can

be converted into an ONS {ﬁﬂ(x{} such that @ (x) are linear
combinations of the functjnnsﬂf;(x), fT(x), eeenn fﬁ(x).

The ‘process of constructing an OﬁS'of fﬁnétions from eméiven
sequence of linearly independent functions is known as

Gram—-Schmidt process of ortkngonalizatipn.1)

ORTHOGONAL SERIES AND ORTHOGONAL EXPANSION.

Any series

co

(1,2.4?‘ ch .\}h(}d

n=0
constructed from the functions of an orthogonal systeﬁ and
an arbitraiy set of real numbers Cor 01, cessesns 15 called
an orthougonal series. However, if the coefficients On in the

series (1.2.4) gre representabie in the form

b
C,= — 1 S f{x) Yh(x)qu(x), n=0,1,2...
[ Feowe 2
) R

according to Fourier's manner, then we shall say that the

series

e

Gy ¥ ()
n=o0 T

1) Schmidt [75



is the orthogonal expansion of the function f(x) and we shall

express this relation by

(23]
f(x) ~ Z ¢, Fpulx)
’ n=o0 T

In this case we shall call the numbers Cyr CT""“' the

expansion coefficients of the function f(x).

The orthogonal expansion and orthogomnal series differ

from each other due to the following minimum property established

by Gram.TJ

Let £(x) denote an Iﬁ-integrable function and {0, (x)]

~ -

an arbitreary ONS.Among all the expressions of the form

I
| Sn(X) = Z akpk(X)

=0
the integral
b
1(s,)= [ [ 2x)-8,(x) ]* au(x)
LR ‘

attains for Sn(x)= sn(x) the least value, where

n o ‘
s, (x) = }:ok;ak(x), o= [ 1) (B)au(s)
k=0 a h

The above result of Gram gives rise to the important

property of expansion coefficlents knowi as Bessel's inequality

1) Gram [2%



" b
; 02 ¢ i g(xzdp(x?.

Bessel's inequality implies that the expansion coefficients

Cn of an Lli—integra‘ble funct ion converge to zero as n is

indefin itely increased.

The most fundamental theorem in the theory of orthogonal

series 1s the Riesz Fischer theorem proved nearly simltaneously

1)

and FischeI'?). The above theo:rem was
3)

and independently by Riess

later on generalized by Fomin as follows.

Let {#,(x)} be an ONS on the interval [a,b] , f& L% [a,1],

k:o,1;2....,1< A< and let %+-%= 1 if g<pand p=1 if

g=00 ., If there exists an increasingy sequence V. —>to such that

00 ] ] bi}'ﬁ‘
-1 (x) | a
) o) [I] et [ s

=
k +1

with a, real, then there exists a function f= i La,b] such

that b

o= j £(x)f, (x)dx  for k=0,1,2.0s0...
. ,

/u(n) ~ LACUNARY ORTHOGONAL SERIES
Let /u(x)g.x denote a positive function concave from

below, defined for x3>1 and increasing monotonely to infinity.

We shall call the orthogoml series

1) Riesz [70]
2) Fischer [2Q]
' 3) Fomin [21] R



o

Z onf, (x)

=0

/u(n) - lacunary, if the number of non-vamishing coefficients
C, with n<k<?2n does not exceed /u(n). Furthermore, we shall
say that the coefficlents have the positive number sequence {%ﬁ
as a mgjorant, if the relation

¢,=0(q,)
holds.

1.3 A little divergence &t this point will be male from
our main theme so as to define the various summability methods

which are to be used in the body work of our thesis.

CESARO SUMMABILITY

o0

Let
)

n=0

be a given series and Ag'= ( n;o% be given by

o
X n 1
Z:Anx =m(0(7é —1,—2,.........?.

n=o

We write
o _ 0 _ _
dn— Sn'- Sn—'u0+u1+eoooo-0 +1ln
and
n
S = o1 oA
S =
n E Ak Sk Ak Yy



Then the quotient

is called the n'? Cesiro mean of the sequence {s,3 or simply

_(C,0~-mean. The series

w
n

L

=

=0

is said to be (C¢,)-summable to 51)if dg?—-—>$

as n—>00.
The series

) ]

n=0 X .

g
with partial suums Sh is sald to be strongly (C,o)-summable

with index k to the sum s, if

L = e K a5 n—em
QIZAJL;IS\J”S]“‘” '
V=0
2)

,Por x=1, this gives the definition of strong summability (H,k).

RIESZ SUMMABILITY

Let {%n} be a positive, strictly increasing sequence of

numbers with No=0 and Ny~ The series
o0

)

n=o

1) Cesdro [36], Chapuwen [17], Kmopp (321, [33])
2 Zygmnd ( [98],p.180), Bary ( 17, p.2), Moricz [53]



is said to be (R, Ao & )«-summableﬂ (X >0) to the sum s, if

- -

4 P

0"1?;(%) = § (1= X )muk—--:»s as n ———=i .
.- - +7.

k=0

Here 6::( % ) is called the n b8

seri 1
eries ; n.

In partieular for o=l

(R,)\ﬂ,(x )-mean of the

n A 2
A )= s (x )= y - '%;;3% ,\;H Y O A5
’ - ’ k=0

k=0

defines the n:th <R’)‘n’1)" mean of the series

T

Obviously, the (R, ), ;1) summat ion introduced by M.Riesz
is a generalization of the (C,T)-—summation process for ,\n:n.
For ) =log(n+1), the Riesz sumability is known e Riessz

logarithmic summability.

FEULER SUMMABILITY.
Let

Do
;%

be an infinite series with the sequence of partial suns )’lsni

A sequence to sequence transformation given by the equation

10

1) Das [8], Lorentz [47% .



11

n
a
T n, n-k
= E ( g S N=0,71,2¢ceenoee
'n (Hq)n k, k? L

k=0

defines the seguence ngf of (B,q)-means (gq>0) kmown as

1) g

BEuler means.

In place of -«T(1) we simply write ~( .
n

.
) 4
n=o

is said to be (E,q)-summsble to the sum s, 1f

The series

lim _Céq) =S.
N —r ’

OO = "/» N
Vd

)

n=o0

is said to be strong summable (E,q) to the sum s(x), if

The series

n
! n E ( E)qn-k(sk-s)2 —>0 as n —>00,.
(1+q)

k=0

NORLUND SUMMABILITY

Let {pnj be a sequence of non-negative real numbers. The

S

n=0

series

with partial sunms Sy is said to be (N,pn)~summablez)to s, if

1) Hardy (24, p.180)
2) Hardy ( 24 , p.64 )
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ja]

= \
tn = Ppoy S —>S a8’ n —»0,
" %o

where Pn = Py¥Pqt eeeeeve P, P >0, D)z 0s We then write

(N,pn) lim s =s or (N,pn? E u =s.

The transforms “t;n are called the Norlund means of the sequence

)
n=o

It is wellknown that the metnod (N,pn) is regular, if and

‘{Snf or of the series

only if
. By
119):1.}.?_...—_- 0.
n—>00 n

The sequence {pn_{ will be said to belong to the class MO(,

for a certain real KZo, if
(1? 0L P <Py, q forn=o0,1,2,.0000.

ler] 0<P,, <P, for n=6,1,2,.......

(ii)‘ po+p1+- R +pn = PnT\a)
(113) 1im —2 = o,
n -—» n

o~

Obviously, if {pn} el , then the method (N,pn) is regular.

Let

1) Meder kg
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The sequence {pn} will be said to belong to the class BVM‘X,

if {pn} =3 u*  and if {Snz is a sequence of bounded variation i.e.

o0

1
f Sn"sn—‘l ] £ @ ),
:::1 -

n
If for some sequence {pn} , conditions (i) and (ii) are
satisfied and moreover, if “ -
lim W = 1=k, where ¢ >0, AP _.=P -p
N Py > n-1 ~1 *m?

)
then we shall say that the seguence {pn} belongs to the class ikl

%
A sequence {pn} is sald to belong to thue class;M, if

(a) p> 0

Fb?{pnf is convex or concave

lim 2By Tim 2Pn 2)
Fc? R y—— P, Sn—sc i <o

A series

i

n=o
is said to be strongly (N,pn)—summable to s, with
fepeu’, x> o (pf ), i

n
1—1-_?_—1- E (TK-—-S)2 —0 85 N —2+00
k=0

k
where o = 1 (
L Pie—5Pimp-17%

YV=0

1) Meder [g
2) Meder (49

-~ s -
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)

and p_4=0-.

GENERALIZED NORLUND MEAN

Let p= {p;lz and q={é(,aibe non-negative sequences of real

numbers. We write
n

I'n = E Pndﬂqo

V=0

and assume that Ty is non zero for all values of n.

The nth generaliged Norlund mean of the sequence of partial

sums {s { of the series

is given by

(pya) _ 1
N

r

n pﬂ"kq'ksk’ n=0,1,200--.

k=0

The method (N,p,q) reduces 10 the NSrlund method when

a=1 and to the metnod (F,q) when p =1.

An increasing sequence of natural numbers
1’11<_ n2<,,,:<1‘5(. es e
is said to satisfy the condition (L) if the series -

1
By

1) Meder [49]



satisfies the condition (L), i.e.

oo 1)
z 1 1
— O( L ).
k=m nk i nm -

1.4 LEBESGUE FUNCTIONS

“ The éoncept of Lebesgue function was introduced by
LebeSgue-2 He investigatéd the influence of these functions
on the divergence of Fourier series. In the case of trigono-

metric system the Lebesgue functions Ln(x) are constants and

are therefore called the Lebesgue onstants.

CESARC KERNEL AVD IEBESGUE FUNGTIONS.

The sums
n n Aﬁ‘
Kultx= ) A (08 (x0) ma Ktx= ) 3 B (8 ()
" k=0 T i ’ A k=0 7 ’

(x>=1) are celled the nth—kernel and nth (¢, ) -kernel

respecfively of the ONS iﬂn(xg , Whereas

b . b
Ln(x)= j lKn(t,x)! %p(t) and Lgix)= j(Kﬁ%t,x)}@u(t)
T ooa o ’ ’ ’ T8 ]

are called the n°® Teb esgue function and nth Lebesgue (C,x)-
function of the ONSniﬂn(xQE respectively.

RIESZ KERNEL AND LEBESGUE FUNCTION

The sum

Il
A
Ut x)= ;_; (1- &fw?“gk@ﬁk(x?

1) Bary [11
2) Lebesgue [37]
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and the integral
b
V::(x) = K’U:(t,x” au(t), oo
) Y

are respectively called the nth(R,)\n,oﬁ)— kernel and nth

Lebesgue (R,),, o) function of the ONS{ﬂn(x)}

EULER KERNEL AND LEBESGUE FUNCT ION

The 1P (Byq)- kernel Er(lq?(t,x), (ad>0) and n o0 Lebesgue
(E, q)-function Fl,(lq?iX), (q>o) of the ONS {ﬁn{x)j are defined by

Z () Ey(t,x)

£{%) (4,x)=

1+q)n

(1+q)n Z@ (+)8,(x): }': (8)g2T

. |
79 () = (12 (4,2) | u(e). |
L , ,‘

NORLUND KERNEL AND LEBESGUE FUNCTION

We define the nth(N,pn)-kernel and nth Lebesgue (N,pn)-
function for the ONS {ﬁn(x)i by ~ /

n
P -k
Gn(t,X) = ; %n ﬂk(t)ﬁk(x)

and b

H,(x)= ; ]Gn(t,X)ld]u(t)

respectively.
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POLYNOMTAL-LIKE AND CONSTANT-PRESERVING

ORTHONORMAL SYS TENS .

The concept of the polynomial~like orthogonal system was

1)

introduced by Alexits.

An ONS iﬁn(xy is called polynomial-like, if its nth

kernel Kn(t,:x) has the following structure :

b

K, (t,%)= E P (t,x) W; 3,k B,4i(t )ﬂ g (%)

) i k=1 ° la J: -p )
where p and r are natural numbers independent of n and the
constants ‘ (n k;’ have a common bound independent of n,

i, 3,

while the measurable functlons Fk(t,x) satisfy the condition

Fk(t,x)= O(_W )

for every xela,b] . Here the function ﬁn«-l

index is considered to be identically equal to zero.

(X) with negative

It is clear that the system of orthonormal polynomials

{pn(x)§ and the trigonometrical systems are polynomial-like.

The ONS {f, (x% is said to be constant-preserving if
ﬁ‘o(x) constant. In this case beside G, all the expansion
coefi‘lclents of the constant function f(x) =0 vanish and there-

fore, we have for the nth partlal sum s, (x) of its expansion
8 (x) = W (+)7 (x)d/u(t)

i.e. a representation preserving constancy.

1) Aexits [3]
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SINGULAR INTEGRALS

7

The concept of singular integral is due to Lebesgue

and it possessesimportant convergence properties.

The partial sums'sn(x) of the expansion of an L§<X)-
integrable function in the functions of an ONS {ﬁn(x)} are of

‘the form
b
(1.4.1) I, (£,%)= X £(t) % (t,%) e(t)at

where "fﬁ(t,x) deno tes the sum

-

n
) A8 ().
k=0 T
The nth sums
. n
ty(x) = Z %Sy (%)
T k=0 T

of an expansion summed by a linear summation process are also

representavle bSr the integral (1.4.1), where Yn(t,x) denotes

~

the sum n

%(tyx):‘ E %kﬂk(t)gk(x)’
; = - .

The integral In(f,x) is said to be singular (with simgular
point x) if, for an arbijcrary number d> 0 and for"an arbitrary

subinterval [oc,;zj of [& 1]

1) Lebesgue [37]
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(1.4.2) 1im W(t x)g(t)d“b* and lim S'*fln(t x)g(t)dt_o,
1’1—““,»001 - Il—-‘-PcO

where I=[a,4 N [x-§, =8, JI=[8B] -—X;x-é, xS,

(1.4.3) ess lub lﬂ#n(t,x)‘é_mk(é)
te B, - x-5, 8] i -
where ¥(&§) is a number depending on §amd x but independent

of n.

If wyn(t,x) satisfies uniformly the conditions (1.4.2)
and (1.4.3) in an x-set B, then the integral In(f,x) is said

to be uniformly singular on E.

Let the functiodf(x) be defined in the intervel [&,1 . Then,
1)

of the function £(x) in the interval

-~ -~

the continuity modulus
(2,0 is defined as
w(£,8,28,b)= sup |£(t)- f(x)l
 lt-x|<8 ,

t,x&@, ] .

We denote by (&) a majorant function of e(f,§,2, b), i.e. a

function satlsfylng the condition

w(§) zw(f,§,a,b)

1.5 Some of the important and general results of real
analysis which are to be used quite frequently in the course
of the proofs of our theorems shall be referred in this

section.

1) Bery (01 ,p.37).
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1),

B-Levy's Theorem

If ifn(x)} is a monotone increasing

sequen ce of L/u-imt egrable functions and furthermore

b

t an(x)diu(x) (é(}, (0=0,1,2, 00004
2 . o :

then the limiting function

£f(x)= 1in £ (x)

. A—>00
is also L}l—integrable and the relation
b b
1lim =
25, [Bpen [ e
a

holds,
If, in particular ub(x), 'U.1(X), ceseees are

Lm—integrable functions such that

o0 b
Z J |4 ()| dulx) <00,

then the series

0]
Z un(x?

1n=0

is (absolutely) convergent almost everywhere.

Kronecker's lemma ¢ If i)‘ni is positive, monotone increasing

and tending to infin ity, then the convergence of the series

1) Alexits ([4],p.11)
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implies the estimate

B

8,=0 ( ;\n) , where 8= Uy,
: k=1

1.6 Convergence and summability of orthogonal series.

The problem of convergence of orthogonal series was
originally started by Jerosch and Weylnwm pointed out that
the condition

C, = (n-z-e)’ €>0

is sufficient for the convergence of the series

06
(1.6.1) Z C 2, (x)

=0

Further, Weylz) has improved this condition by showing that

o0

Z 2 B}
cn NB < po

n=1

is sufficient for the convergence of the series (1.6.1). Later

the condition

on Hobson3) has modified the above condition to

Co
E 0121n€<°°’ €>0
n=1

end Plancherel® has tackled the same problem with: the

condition
m—-
E Cs log3n<m.
n=2
1) Jerosch and Weyl [26] 3) Hobson [25]

2) Weyl [92] 4y Plancherel [65]



2
The chain of ideas in this direction continued and finally a
masterpiece work regarding the convergence of the orthogonal:
series (1.6.1) was carried out nearly simultaneously and
independen tly‘o:ﬁ‘ one another by Rademacheru and Menebo:ff.z)
They have shown that the series (1.6.1) is convergent almost

everywhere in the interval of or*bhogonality\ if the cmdition

S 6%1og%n < oo

=1

is satisfied. Further generalizations of this theoren were

5) 6)

given by Salemm Talalyp.mé’), Walfisz”’ and Kantorovitch ~ who’

proved the following result

b
o1 2 oo 000 [

The theorem of Rademacher and Menchoff is the best of its
kind is obvious from the following fundamental theorem of

convergence theory given by I&llemchofi‘.2

If w(n) is an arbitrary positive monotone increasing
seguence of numbers with w(n)=o(logn), then there exists an

everywhere divergeni: orthogonal series

0
e tate
n=o0 N

1) Rademacher [T 5) Walfisz [91]

2) Menchoff [50] 6) Kantorovitch[31)
%) Salem [71] - S

4) Talalyan (81]
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whose coefficients satisfy the condition

0o

g 0§W2(n)<oo )
n=1

Another theorem which needs to be mentioned in this direction
1)

is due to Tandori”, who proved that 1if {Cn} is a positive

monotone decreasing sequence of numbers for which

; 2 2
Cn logm= 00
n=

holds, then there exists in [B,b] an ONS {’7‘{1(3{)} dependent on
{an such tmt the orthogonal series

%)

A

n=o

is divergent everywhere in [&,%b] .

The question of convergence of orthogonal expansion is

also smoothed by means of Lebesgue functions introduced by

2

Lebesgue™, who investigated the influence of these functions

on the divergence of Fourier series. The effect of Lebesgue

functions on the convergence of Fourier series was investigated
by Kolmogoroff-—seliverstoffg) and Plessner4)who showed that

under the condition
0o
(1.6.2) (a2+b2)1ogn<oo
n n ’
n=1 ’
the Fourier series

1) Tandori [87] %) Kolmogoroff A. ard Seliverstoff

2) Lebesgue (37] ¢. B4l ,
4) Plegsméries] . -
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(1.6.3) ap__+

I

(ancosnmbnsm nx)
n=1 ’

is convergent almost everywhere.

Further, 1t was proved by Plessner that the condition

t

(1.6.2) is equivalent to

o7 on 2
j“ g }f(mt%—f@-t? | dtdx < po
O O

where f(x) is the function whose Fourier series is (1.6.3%).

Over an above the question of convergence, Menchoff ad
Kacgmarz have discussed the Cesdiw summability of orthogonal
series (1.6.1). The fundamental theorem concerning the Cesadro
summability of orthogondl series was at first proved by
Mencho ffi)am independently also by Kaczmar-zz'). They have
shown that if{w(n)} denotes a positlvé monotone increasing
sequence of num]ge;s whose texms are of order of megnitude
w(n)=o (loglogn), then the:re exists an orthogonal series

PO

n=1 -
which is nowhere A-summsble, although its coefficients
satisfy the condition

00

E aiwz(n)< 00 -
n= "

1) Menchoff (517, B2 )
2) Kaczmerz [27) /



The concept of Lebesgue functions in the convergence
and summability theofy of orthogonal series was generalized
)

by Kaczmarsz °, Tandori2), Medexj), Zinovev4>, Alexits5) and

Osilenker6). Kaczmarz;o has shown that if

L, (x)=0(\,)

where »)\(n)g}\(nﬂ)
. 0o -
and Z 02 X(n) oo

1
then the series (1.6.1) converges almost everywhere. The
anglogous result for (C,x>o0)-summability was also esté.blisbed

by hime

The order of Lebesgue functions which plays an important

role in the convergence theory of orthogonal series was

7) .8 9.

estimated by Moricz”, Olevskii™, Ratajski™ and Alexits.m)

This chain of ideas was extended in the field of functional

series also by Alexits and Sharmaﬂ), Tandorim) am Moricz13').

Alexits and Sharma have proved that, if

00
> <o
k=0
and the Lebesgue functions
1) Kaczmarz [28] 7) Moricz [53] -
2) Tandori (U821,0851,[881) R Olevskii ([56],[57])
3) Méder ‘TATH © 9 Ratajski (068],[69])
4) Zinovev L94] 1) Alexits([4], P.179, 206 )
5) Alexits [4] 19) Alexits and Sharma [10]
6) 0sil enker [58] 12) Tandori ([871, [69])

i} o 13) Moricz [59]
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, g n
1 1 1 k

L, (x)= fl K, (t,x) [ dn(t) where K (%,x)= E (1= =) £ (1) £ (x)
- B B k=0 ' T

of the sequence of u-integrable functions ifn(x)} on u-measu-

rable set ECX, which is measurable with a positive measure /u,

satisfy the condition L (:x: )\n) uniformly on the measuraile

set E of finite measure, ‘bhen *ﬁhe sunms
n

GE) =) (- e (o

k=0
1
have the order of magnitude Ox( }\ng) on E almost everywhere.
Moreover, they have proved that, if %he Lebesgue functions
I‘;z(X) are uniformly bounded on the measurable set E of

finite measure and

™ e,
Z anfn(x?

is (¢, 1)=-summable almost everywhere.

-

then the series

Moricz has generalized these theorems of Alexits and
Sharma by estimating the order of Lebesgue funchtion corres-
ponding to general summation process.

1)

1.7 ©Sunouchi ' has discussed the convergence of

1) Sunouchi [76]
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= , k>1

2. s (x)-6(x) lk
S Xj= X
(1.7.1) > LU 4
) n=1

under the restriction of boundedness of the functions ﬁn(x).

In chapter II we discuss the convergence of

2 (s, (x)=t, (x)

n

n=171

and also generalize this result as follows :

If PO> 0, B.>0, npn:O(Pn) an d Iﬂn(X)l§K7

n/‘
then
b2 s (x)-t_(x) : s q .
Sﬂ Z | 8y nn X' l ax =O(1) Z‘cn | nd72 a3 2
a n=1 n=1

The convergence of the series of the type (1.7.1) with Buler

D

and Riesz means was carried out by Patel ™

Moreover, we have proved in this chapter the analogous
result for N8rlund summability of /u(n)—lacunary orthogonal
series proved by Alexit82>and also genéralized the result
for generalized NOrlund summability proved by Patel R.K. and

Patel C.M.57

The approximation of summability means to thelr generating

function for the orthogonal series

1) Patel [69] R I L -
2) Alexits ([4], p.130)
3) Patel and Patel [63%]
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R
(1.7.2) g Gnﬁn(x)
’ n=0 )
has been studied by Alexits and Kraliku, Leindlerz)and Bolgov

and Efimovs).l:eindlerz) has proved the following theorem.

CHEOREM 4 : If
po

(1.7.3) ) AP, o< pa
n=1

then '
6;;(x)-i‘(x) = oX(n”P?

holds almost everywhere in (a,b).

In Chapter III we generalize the above result to Norlund

means as follows 3

If {pn} = 'ﬂloi *®>% , then under the condition (1.743),
the relation
tn(x?—f’(x) = o_(n ?)
holds almost everywhere in (a,b).
A similar result for Buler means is also provéd in this

chapter.

Chapter IV is devoted in estimating the order of certamn
sumpability means where we extend the following theorem of

Mexits® to Riesz and Nérlund summebility.

1) Alexits and Kralik [5] At
2) Ieindler [471] 4) Alexits ([4], p.185)
%) Bolgov and Efimov [15] ‘
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THEOREM B If the Lebesgue functions

1 2n
1.7. L = %
(1.7.4) ~zn(x2 i:lg;; g, ( ?ﬂk(x? dt

of an ONS iﬂn(x)j are uniformly bounded on the set Ec [a,b] ,

then the condition

2
(1.‘7.5? icne\’m

n=0 ,
implies the (G, > o)-summability of the orthogonal series
(1.7.2) almost every{vhere on E.

We mention here one of the result proved by us 3

If the Lebesgue functions (1.7 4) of an ONS {}25 (x} are
uniformly bounded on the set B Ja, ’oj y Then the rela'tlon
(1.7.5) implies that the estimate

6, (N, x)= OXFHE

holds almost everywhere on E.

Chapter V deals with the order of Lebesgue functions
for polynomigl-like ONS, corresponding to Euler and Riesgz
summation, processesMoreover, We have also discussed in this
chapter the Euler and ’Riesz summab ility of orthogonal series.
These results are the extensions of the following results

proved by Alexits. R

1) Alexits ([4], p.206,267)
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THEOREM C : If the ONS {f (x)} is polynomial-like and the

condition

1
) A2 =0y
k=0 o

is fulfilled in the set B, then the relation
)=
I‘n@?" O (1)

holds almost everywhere in E.

THEOREM D : Let iﬂa(x)j be a complete constant-preserving
polynomiél-—like ONS with respect to the weight function g(x).
Suppose that the functions Ek(t,x) are coatinuous in the sq{lsre
a<tgh, a<x<b with eventual :exception of the diagonal t=x

and that the two conditions

11
) Fa(x)=Otw)
k=0 ’

and

(1.7.6) 0< ¢(x) £ const.

are also satisfied in the subinterval fe,dl of [a&,b]. If the
I‘g(x)— integrable function f(x) is continuous in [e,dl, then

-

its expansion

0]
(1.7.7) f(x)"’Z ¢ 2, (x)
’ " n=0

is uniforuly (C,1)-summable in every inner subinterval of

[e,d], the sum being f£(x).
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We are stating below two of the theorems proved by us.

(i) If the ONS {ﬁn(x)} is polynomial-like and the condition

g (0= )
is fulfilled in the set B, then the relation

Fr(lq) (Xz = OXQ z

holds almost everywhere in E.

(ii) Tet {ﬂn(x)} be a complete constant-preserving polyno-—
mial-like ONS with respect %o the weight function @(x).
Suppose that the functions Fk(t,x) are continuous in the
square ast<b, a<x<b with e;rentual exception of the

diagonal t=x and that the two conditions
g, (x)=0(1)

and (1.7.6) are also satisfied in the subinterval [c,d] of

2
“e(x) ,
kc,d], then its expansion (1.7.7) is uniformly (E,q)-summable

[a,b]’ « If the L ~integrable function f(x) is continuous in

(g >0) in every inner subinterval of @,d), the sum being £(x).

1.8 ©Btrong approximation of orthogonal series

In this section we discuss the strong summability
of orthogonal series. The strong (C, 1)—summability of Fourier

series, conjugate Fourier series and orthogonal series has

been investigated by several amthors such as
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Alexits1>, Bernsteinz), Alexits and Kralik32 Alexits and

Le :imdlerd’), :E‘ine5 >, Sun Yong Sheng@ and Sunouchi7) .
AlexitsSJ has proved the following theorem :

THEOREM A ¢ Let {ﬁn(x)f be a constant-preserving polynomial-
-like ONS with respect to the weight function ¢(x) satisfying

the conditions
n

(1.8.1) ﬂﬁ(x) =) (n)
and og g(x) £ const.

Uniformly in phe sub-imterval [ga4] of La,b] |
Let sn(x) denote the nﬁh partial sum of the expansion of an

Ig;i—;integfable and on [e,d] continuous function f£(x) with the
continuity modulus o(f,§, c,d). If w(f,8, c,d) péssesswa
majorant: function &{ &) such that w(§ )/é%n'{ with some fixed
Y>>0 1increases mono*f;onély to infinaty és §—>o0, then the

relation

1l
E%T Z )f(x)-*S,J(X)‘ = O [ ;?; 1
y=0 A

_ holds uniformly on every interval [ctg,d-€] = (c,d).

In Chapter VI we generalize this ftheorem of Alexitis
to
trensferring[the strong (C, o >0)-summability as follows

1) Alexits(1I31, 4], p.295) 5) Fine [19

2). Bernstein T3] ' 6) Sun Yong Sheng B0
3) Alexits and Kralik (I[67,I181) 7) Sunouchi [7§

4) Alexits and Isindler [9] ©8) Alexits ([4], p.295)



33

Let iﬁn(x)} be a constant-preserving polynomial-like
ONS satisfying $he condition (1.8.1) uniformly in the
subintervel ,d of [ 8 . Let s,(x) denote the n' -partial
sum of the expension of an ﬁz~integrab1e ad on[g,d] continuous
function f(x) with the continuity modulus w(f,§,c,d). If w(é)/g%"'v
with some fixed ¥> o increases monotonely to infinity as §— o,

then the relation

"‘%i" A::j) s, (x)-£(x)] =OE’{%)]
b 5%

holds uniformly on every interval [cte, d-€lc(c,d) - In this
chapter, we have shown that the analogous result for strong
Euler summability is also valid. Moreover, we have also
externded in this last chapter the resultsof Sunouchiv and

Maddox to strong (N,pn)—-suxmnability.

1) Sunouchi [7§]
2) Maddox 44



