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CHAPTER - T11

ON DEGREE OF APPROXIMATION OF CERTATN SUMMABILITY
‘ MEANS TO THEIR GENERATING FUNCTIONS

e

341 Let {ﬁnéx)j (n=0,1,2+«+400+) be an orthonormal system
(ONS) of L°-integrable functions defined in the closed interval

[2,1] . We"consider the orthogonal series

P 00 5
§3.1.1) Z c B, (x) with Z C, <00
n=o ' n=o

By the Riesz-Fischer theorem, the series (3.1.1) converges in

12 to a squaré integrable function f(x) given by

f(x) = Zfi Cnﬂn(x) aees

n=o0
Moreover, the Fourier coefficients of f(x) with respect 1o

{ﬁn(xﬁ are the numbers C,, i.e.
b
¢, = S f(x)ﬁn(x)dx R N=0,71,2000es0s
a

The notations sn(x), tn(x) and {pn} E’Nthawe the same meaning

as considered in Chapter II.

If for some sequence {pn} the conditions



i) O“pn“‘pnﬁ: for n=0,1,2¢e00000

or 0<Pn+1‘“<ipn for n=0,1,2¢¢...

ii) DtDq Feeorones .+pn=PnT o

nA D,
i41)  lim n-1

) T = 1-x, where &z 0, Ap, =P, =P,

are satisfied, then we shall say that the sequence ipn} belongs

to the class T\EO(.Q

A sequence ipnj is said 1o belong to the class M*, if

()  p>o  (n=0,1,2.....0.),

(b) {pn} is convex or concave,

np 1)
(c) oc lim "Pp_Tim —-}-?-]9-<+ co
n——>50 Pn n —» o n
The n o8 Fuler mean or (E,1)- mean of the sequence of

partial sums isn(x)j of the orthogonal series (3.1.1) is

defined as

n

)= E%-Z (‘;)sk(x), N=0,1,2¢e0eees
o — .

The n o0 (Cy1)- mean 6;1(X> of the orthogonal series

(3.1.1) have been approxim ted by Meder,2) Tandori’’, Alexits
and xralik’) and Leindler? ) Leindler®) approximated the de la
1) Meder [49] 4) Alexits and Kralik [5]

2) Meder [45] . 5) Leindler ({401, 1)

3) Tandori [B4] 6) Leindler (138, [4Q} &1])



52

Vallee Poission mean of the orthogonal series (%.1.1).The

1)

Riesz means were also approximated by Leindler. Later on

the results of the above said papers were generalized to sirong

2) 5)

approximation of (C¢,®>0)- means by Sunouchi and Leindler

Moreover, Bolgov and Efimo 4? have géneralized the a@bove results

to the means generated by triangular matrices. In order to

state their theorem we onsider the following things.

Tiet
n

U, (x) = Z 1.5 (%),

k=0
denote the nth- mean for the linear method of summation, which
are computed from the partidl sums of the series (3.1.1) and
from a triangular matrix (ahk)’ K=0, 1y e0osell, N=0,7, 00000 fOr
which

n

(3-1 02) E ank=1, n;’:o,1,00300-o, ank=0, k>n,
k=0

(3.1.3) there exists p>1 such that for all n=o0,1,.ese0es
1= 1 .
P
Fn+1) 1EN) p< N

where M is an abs;olute constant and

n 1

1EN Hp “i}:: }ank]p}p for 1< p<m

k=0

fleall | = mex o]

ocken B

1) Leindler [39] 3) Leindler [42]
2) Sunouchi([78],[79]) 4) Bolgov and Efimov[15]

s 3



03

In this case, we say that (a k)EZA « Ve note that this method
of summability defined by matrlces satlsiylng (3.1.2) and

(3.1.3) is regular in the sense of Toeplitz.

Let {nmj be a sequence of nabural numbers which

satisfies

(3.1.4) 1< &

" £, mw=0,1, cecen., n =1

and let 1{n) be a positive nondecreasing function such that

(ap, )

x
(3.1.5) TG%T~:§K<y(o<m<1}

] x
We shall say that 1(n) belongs to the class A , denoted by
x .
1(n)EN if it is a positive non~decreasing function which

satisfies (3.1.5) and is such that

(3-?-6) iﬁ%}i 0.

1(n )
If we have 1~<:"K.l <W then we shall denote the

X
corresponding class by /\ « Observe that h?e/\if 13<o< o

Bolgov and Efimov have proved the following theorem.

THEOREM A : TLet T denote the linear method of summat ion
determined by the matrix (a k)eAP (p>1) Let U (x) denote the
corresponding means of the orthogo nal serles (3.1, 1) and let
v(n) denote a positive non-decr easing function such that the

condition



00
(3.1.7) Z an vz(n)<oo
] b o

implies the summability a.e. of the series using T. If the
1
function 1(n)eE ./\1 D , then for an orthogonal series whose

coefficients satisfy

[
(3.1.8) } Gg Vz(n)lz(n)<oo ,

n=1 ’ ‘
the T-means satisfy the following relation dlmost everywhere
on [a, 1] :

(3.1.9)  |u (x)-£0)] = o, ( 17my)s

where f(x) is the function of the Riesz-Fischer theorem to which
the series (3.1.1) converges. If the function 1(n)e A'™ 7 ,

then the condition

0
(3.1.10) Z cglz(nkoo
n= ’

implies (3.1.9) almost everywhere.

Purther I»eindler” proved the following theorem.

"THEOREM B : If

00

(3.1.11) Zcﬁ 1°P < o (o<p<1),
n= ’

1) Leindler [41]



then
G2 ()=1(x) = o (a7F)
holds a;e. in (a,b).

In this Chapter, we generalize the above result of

Teindler to NOriund means as follows ¢

By teking w(n)= loglogn a:ni’.l(n)-—--n;3 (0<$A<%), we

obtain from Theorem A that the relation
[, x)-2()] =0, (a”P)

holds almost everywhere in (a,b). But we can obtain the same

result under thevweaker hypéthesis as gtated below

THEOREM 1 : If {pnieﬁm , ®&>%, +then under the condition

(3.1.11), the relation

tn(x)-f(x)= ox(n'ﬁ?

holds almost everywhere in (a,b).

REMARK : Pirst of all we see that for the NSrlund means tn(x)

as defined above, we have

b
-k
(a) ankz_‘%"“ 3 k=0,1,.-.,., n, n=0,1’200-0o60
n
for which

. Ph-k
(l) ank= _‘F—'—"'—:1 , n=0,1,2000¢0
n-



and 2 =09 k>n.

(ii) ©Now, for o< pnT ’

1-—1- 1-—l I p¢ —1-
(n+1) P ”an“p =(n+1) ij(—%ﬁ) jp\<

B o « * -

. .
n sl
< (n+1) -§5<M as {pn§ e ', ®>3%,

where M is an absolute constant.
Thus for o<pn'[' i (ank)aAP with p>1.

On the other hand, if o<pn¢ , then for p=2
1

1=

@0 P gl

Il

(n+1?"j§ “ 2, “ 5

=(n+1)* n-k j
i]a::o Przl
(n+1) &= 5 }%
= \ - p .
el
=0(1) ﬁL—n;” i B iz
. Pn ‘ k=0 .3;?

= O =p)®)
- 2e-17. 7"
. 2
i.e. for o<pn¢ , (ank)eA .

Hence, for Norlund means (ank)eAz.



Taking w(n)=loglogn,

o 00
E Ci VZ(n) = E Crzl(loglogn)2<oo
n=2 o n=2 g

implies the (N,pn)- summgoility of the orthugonal series

(3.1.1) with {p je ¥ *>%. 1)

Also, 1(n)= n3(0<}3‘<%) is a positive non-decreasing function
satlsfylng the condition (3.1 5) with n -2 s TEO0, 1,20 e000an,

n=1 and l(n)e:/\?’. Then

Y
Z Ci \/z(n)l (n) i C (loglugn)2 2P<0q (o< ]3('—1-) implies
n=4 n=4 ’

|t (x)-2(x)] =0, (a7P)

almost everywhere on (a,b).

~

Now, we see that the condition (3.1.11) is wesker than the

condition (3.1.8). Considering

ok -
¢, = (rﬂ}"%(:}.ogrl)2 loglogn) !

we observe that the condition (3.1.11) is true but

00 po
Z GE vz(n)lz(n) = Z (n?"%(logn)% ].oglogn)"z(.'Loglogn)2 n°f

n=4 i i n=4

®

= Z (nlogn)—1 =00 .

n=4

1) Meder [49]
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i.e. The condition (3411) need not imply the condition (3.1.8).
But it is easily seen that the condition (%.1.8) implj:es the
condition (3.1.11). Moreover, in the condition(é.hﬂ) the range
of B is iarger than in the condition (3.1.8).

Considering the second part of tne Theorem A, we see
that l(n)=anK% (o< B<%) and the conditions (3.1.10) and
(3.1.11) are same but in condition (3.1.11) the range ofip is

larger than in condition (3.1.10).

A similar result for Euler means is also proved ¢

THEOREM 2 s £

E C§n2PH< o, (o<B<%),
n=1 )

then the relation

T (x)-£(x) = o_(a7F)

holds zlmost everywhere in (a,b).

32 We need following lemmas to prove the above theorems.

tEma-1 {) If ipn}gMO(, *>%, then

————————

n 2
lim -5 1
n—>0o P L (m$1)?  ZFT
2) ”
LEMMA-2 ¢ If {pn}e:M‘ , then

1) Meder (48]
'2) Meder [29]



pn~kPn_pnPnéH
sup T
ky,nzk n n-k

<+(XJ .

PROOF : We shall distinguish two cases : (1) ipnz is convex

and bounded (2) {pni is concave or convex and unbounded.

Passing to the first case, we notice that {pnjkthen

non-increasing. Therefore,
OB Py = PPy

?nwk

- Bk

= LY
- kpnpn~kF kpn kpn__k

P
<:kpgpn—k E%§k=<)tkpnpn-k?
for n=k, k+1, k+2, +.se., 2k.
For the remaining values of n we wrife
0< P Prok ~ PPy

= (P

n-k"p T Ppaggotereee pn)pn*k"Ph—kpn

n-k+1 . .

= B (P P) * PPy Py gy g e +2y)

= B [(Pmk”Pn-—kﬂ By ey 1 Pygerp)t e ¥ (B 7Ry >_] *

+pn—k(pn~k+1+pn-k+2 ceeesen +pn?.

The proof runs further after the following estimate :

=
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PP PP P
jel e k n-k n _ n-k _ _
P B _ o__. D
nen= n-k+ n-lk+

P
+loot't0+ "'""‘I;J.""“‘“‘
' L

P X;(n—k+1)(pn “Pn k+1) ) Py etet 1 n
ap, - Pr-ier1 Ppx

<

(n-k+2) (Pn-k+1"Pn-k+2) . Ppk+2 . A

+
- pn-k+ 5 : pn-k n-k+2
n(p, _,-p p
erane .ot 1 n}' 2 * % +
Py Phx

D _ b _ b, : b

+ I:lli.*."I 1+ nk+2 <+ nk+3+to’c--,ooo -+ n .
Py Pyt 1 Prder Pn-ter

#
Since {gazeslﬂ and non-increasing, we get from above inequality

Pnp

-P ‘D
n-k "n-kn (
= k)
pnpn~k C).,

for n=2k+1, 2k+2, 2k+3, «¢..., which completes the proof in

the first case.

Passing to the second case, we remark that {pn} is then

non~decreasing. Hence

e +D

_ p_ + o
|Bn Ppoac PP l, (pn p k)+ Pp-g+1¥Pn-ks+2
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Pn_ (n+1)(P Py - 1) n-k+1
(n-k+1)p T ontd
, n(p,_,~P _2) cnzkel Pt (k) (Pnekee 17 Pook) |
D1 n Py ; Pkt 1 ’
(k1) Pn-ks1]y
n-k+2. * P
n
D D
on-1 n-2 n—-k+1
+ (14 ot Rt )=O)x)

for n=k, k+1, k+2 «es.... which completes the proof of the

lemma.

REMARK ¢ TLemma 2 holds if we replace the class l&r by the class

T® with «>o0.

tmoa-3":  Writing

-1
=..3....E ( By-2k_
2n l‘ n+1

=0
we have
n
W<o for [-3-]+2$k<,n.
e TAE
k-1 :
. 2 2
l- () <% for 1gu=[Bl4 1,
oll i =~ 7512 = %
i=0 ’ .

A being an absolute constant and n=1,2,%+cc00es =«

LEMMA—S”: Por amy velue of g >0 , the following evaluation

1) Meder [46]

L

é) Ziza [9*5.]'
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is valid.
L
mex (ﬁmkquiE&%, n=1,2,300uens
TR

where the constant Bq does not depend on n .

343 PROOF OF THEOREM 1 : We have

b

»
ZT 2P {(o j)-2(x)f ax
L T

©

Consequently, by B. Levy's theorem, it follows that the series

[4.4] ~

Z 22n}3(s n(12;)--f(x))2 )
2 .o
n=
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c¢onverges almost everywhere in (a,b) and hence, it follows

that the relation

, B -n
(3.3.1) 5 n(x)=1(x) = og(2™F)
holds almost everywhere in (a,b).

Now, we proceed to prove that the x:elation

szn(x?-tzn(x) = oX( Z-HP?

holds almost everywhere in (a,b).

-

We have
n n

sy (K, () = ) OB (x) = =) p s, ()
" k=0 o 1. =6 s

= ickﬁk’(x)” —"%’; ipn-r Zr_—_ Ckﬂk(x?

k=0 =0 k=0

n 1

. n 1
-3 ) OA ) ) Gh) B
=0 r=k

k=0 k=0

k=1

-+ ) o) s,

k=0 r=0’

e
1

=)

B =5 Y=m—k+1

g

},

pj:j ijdk_(x? .

Therefore,

$41
2n

2
(3+3.2) i 020p ]i(szn(x)—tzn(x))zdx = zoo: EE;E i pigz G
. P ﬂ

. P -
= = k=0 ; L
n=1 a n=1 oM 2{} i



If o<pn'[‘ , then from (3.3.2), we have

0 b

Z 2211?3 K(SanX)-tgm(X??z dx
a

n=1 )

Thus, the series (%.3.2) is convergent, if 0<pnT .

61



In case o<:pn1,, then from (3.%.2) we have

00 . b
E p2nP &’(s o ()= n(x))2 ax
of on T
n=1 a
Mo
< p2np 22kl 242
= ¥=o  Pp° k
2ﬂ
) o1 5
~O(1) »20B k 2
: (2Bg+1)2 ¥
n=1 =1 +
00 n-1 o&1 .
n=1 =0 m (2" kﬂ)z 8
- k=2
1
A2
-0 o 2 028
={J{(1) k“¢
=0 jiil £ =qH- 1 (2n k+1)2
=0 k=0"¥ n=
v 1
o
o2np

Thus, the series (3.%.2) is comvergent, if o<pnl .

Hence, by B. Levy's theorem, we conclude that the series

Zznp(szn(x?-—t an) ?2< o)

n=1 2

almost everywhere in (a,b) and therefore, the relation

(3.3.3) 8 n (%)=t n(x)= oXFZ-nP?

holds almost everywhere in (a,b).
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Now, it remains to prove that the estimate

#

(3.3.4) 2P (4, ()=t (2)F = o_(1)

!

4B

k=2

holds almost everywhere in (a,b).

Assuming b_4= Pﬂ1=o y We can write
n n=1

- E - )
tn(x)~ﬁn_1(x)— —§; pn_ksk(x% P, pn_1_ksk(x)
) ) k=0 i k=0 C0

Y

n n

"1 1
N § pn-ksk(x? T pn-—?-kskcx?

k=0 n-1 k=0

]

1 n n

0 ,
: 1 §
_%; E‘, Glﬁrgx) Pn_k - Pl’l—'f Grﬁr(x) Pn-1-—k
r=0

k=r 1r=0 k=

it

i

L n
1 . - e
P § Pper Crﬁr(x? B, E Prer-1CpBax)
n

=0 =0

#

n
P1P z (pn~rrh"PnPn—r?crgr(X?
nn-1 r=o

it

n

?lP—"'1 Z (Pn-rPn“pnPn-r_) Cxﬂr(x?"

nn-t ST

i

Consequently

. b
. a -

=1
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Yl
’ p_ p
:inz'gn \(nkﬁ nnk)c
n= nn‘i

k=1

Il

k Z ( -k n pnPn k) 2?“

= FnFn-1

Decomposing the inner sum of the last expression in two sums
from n=k to n=2k and from n=2k+1 to n=+00 and applying first

Lemma 2 and then Lemma 1, we obtain

xR b
Z 2B+1 2.
n°P* g (tn(x)—tn_1(x)) dx = )
n=1 8 ) T
20 2k 2.2
P P
-0 Zk%i =k 2B+l .
C k=1 n=k Pn Pn-
2.2
%Y b P
n-n-k 2B+1
+ (1) k202 nF*
k PnPn 1
k=1 n=2k+1
) k 00
_ 2 2B Ik 2 o 2 OB-3
=0(1) ckk?—?- E p> +((1) E K0y n<P
T k=1 k n=0 k=1 n=2k+1
00
=0O(1) > 02x?P < o
" k=1

" Hence, by B.Levy's theorem it follows that the series

00
2B+1 2
E npt ('tn(x) tn_1(x))
et _ .
aonverges\almost every where in (a,b) and therefore, the

relation (3.3.4) holds almost everywhere 1 (a,b).
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Consequently, for ol n<2m'H

ltn(xz—'bzm(le = li Etkgx?f-t}{~1 (x))

—-
-

k=271
4 1
= Z kP“? (%(x)-—%_ﬁx))ﬁ:i
k=2 - -
2m+1 2m+1 1
OB+ 1 2 1 ®
<L P ) |
k=2'$1 _ k=27
= ox(z"mﬁz
= ox(n_}a)

holds almost everywhere in (a,b)

I3

i.e« The relation

(3.3.5) 6, ()=t (x)| = o_(n7P)

-1

holds for 2%« n<?2 almost everywhere in (a,b).

-

Hence, it follows from (3.3.1), (3.3.3) amd (3.3.5) that the

relation

6, ()-2(x)| =0, ()
holds almost everywhere in (a,b).

This proves the theorem complete ly.
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3.4 PROOF OF THEOREM 2 : As proved in Theorem 1, the estimate

(3e441) sén(x)—f(x)= ox(2"np)

holds @lmost everywhere in (a,b).

Now, we prove that the estimate
szn(x)- Tzn(x?= OX(Q-nP?

holds almost everywhere in (a,b).

We have
n n
1
s, ()= Ty (x) = Z;O O () - = ; (Do)
n n r
k=0 2 =0 © k=0
n
- Y et ) -5 TASDIN
=% r=0 k=0 r=
n k-1
k=0 =0
Hence
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Effecting lemmas 3 and 4, we obtain

) b
an 2
) 2P [ e a0 T ) e
n=1 a - o
44}
0 an 2
2 2.2
L C ?1"1—' Z k Ck
n= k=1

n=1 =0 k=2m1
1202 oenp
= C k 2N
m=0 k=2?}ﬁ n=m1
w1
w 2
Q2 2mp
_ z 2 § 2.2
- O(1 ) 22"m'""“ k Ck
=0 m
k=2
00
=0(1) > o2 k%< o0 .
’ k=0

Therefore, by B. Levy's theorem, it follows that the series

00
) P e Tuicn,

n=1

almost everywhere in (a,b).

Consequently, the relation

Gee2) e (0 =T () = 0 (27)

holds almost everywhere in (a,b).

-
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Now, it remains to prove that the relation

2m+1

1 . VY2
) )R (G- T )0
1c=2"

holds almost everywhere in (a,b).

We have

s

n-1
1 ‘ 1 -1
'(‘n(x)._ -(n--;(x) = -é-ﬁ—. ( iZSkFX)“ ;5:1 ;}: (nk ESK(‘K?

k=0
1 = 1 - 1
S ) @0 g ) e
=0 k=0
1 - 1
g Rl
k=0
Now (n) (n—'l) (1’.\."1)

Therefore

1 n
TG, =30 ) 1GID-00N 5
’ . k=0

n
43
- Egl_kz: @l )- (3] )jZ crﬁr(x)
n

ke=r

Il
DS ACE
=0
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Consequently,
“ o)

‘ b
> PP (T, 0= T )? ax
) :

2

B
1l

n

2

2B+1 1 n\2 x 2
n P+ 2§n § (k? =3 Oy

k=0 no.

™t

=
1
N

, n
2B~1 max n 2.2
< E—é—ﬂ-—ioélcsn (k)j K0y |
5 ; .

Q
[}

N

=
By virtue of Lemma 5, we obtain

00 b
Y P LT - Ty )P

=2

o
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Hence, by B . Levy's theorem, it follows that the series

o0
C ) PN T e

n=2
¢onverges almo st everywhere in (a,b) and therefore, the relation

(%3.4.3) holds almost everywhere in (a,b).

Consequently, for 2m< n<2m+1 3
n
1,09 Ty ][] (T T, 1)
- =0 -

1

1
E:: g (Tk(x>;rk~1(x>)"§£§'l,

k
k=241 :
2m+1 211&1 - %
s? }: £2Pt Te(x)- Tk_,,(xpz }: #13
k=21 k=291
= 0, (27"F)
= ox(n"]'a)

holds almest everywhere in (a,b).

i.e. The relation
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(3.4.4) \Tﬂ(x)— Tém(X)l = OX(n'F)

1

holds for 2%<n <2™ ' almost everywhere in (a,b).

Therefore, by (3.4.1), (3.4.2) and (3.4.4), it follows that

the relation

| T, (x)-£(x)| = o (nF)

¥

holds almost everywhere in (a,b).

This proves the theorenm.



