
50

CBARfSR - III

OK DEGREE OF APPROXIMATION OF CERTAIN SUMMABILIIY 

MEANS gQ THEIR GENERATING FUNCTIONS

3.1 Let {j#n(x)j (n=o,1,2..............) be an orthonormal system

2(OKS) of L -integrable functions defined in the closed interval 

[a,Id] . We consider the orthogonal series

0Q 00

J ' On^n(x) with J Cn<(?o
n=o n=o

By the Riesz-Fischer theorem, the series (3.1.1) converges in 

21 to a square integrable function f(x) given by

f(x) £r>=n
C P (x) S. «0 •

Moreover, the Fourier coefficients of f(x) with respect to

|0n(x)| are the numbers On, i.e.

b
Cn = j f(x)jZSn(x)dx , n=o, 1,2...............

a

The notations sn(x), t^Cx) and W e Mohave the same meaning 

as considered in Chapter II.

If for some sequence |pn*. the conditions



i) 0 <pn< Pn-H:

or o

for n=o, 1,2. 

<pn+1^>a forn=°>1>2'

ii) Po+Pt +...................+Pn=i>n? 00

MPV
iii) lim ■n-1

n —
1-oc, where cx^o, AP^fP^fP.

n

are satisfied, then we shall say that the sequence "belongs
to the class M0^.1 ^

‘H'A sequence ^p^j is said to belong to the class M , if

(a) pn> o (n=o, 1,2----- *"**).

(b) jpnjis convex or. concave,

(c) °< Q^C lim np.n
1)

<. + 00

n~-~*0o PQ n —* oo n

thThe n Euler mean or (E,1)- mean of the sequence of 

partial sums ^sQ(x)j of the orthogonal series (3*1*1) is 

defined as

n
/ ^k^"^ * n=o ,1,2..............
k=o 

"fch
fhe n (0,1)- mean 6^(x) of the orthogonal series

(3.1.1) have been approxima ted by Meder, ^ I and or i^, -6-1 exits 

4) 5} 6)
and Kralik 7 and Leindler 7C leindler 7 approximated the de la

1) Meder 0-9J
2) Meder [45J
3) Tandori £84]

4) Alex its and Kralik [5J
5) Leindler ( [4(0 » &1J j

6) Leindler ( B-QJ &1J )



Vallee Poission mean of the orthogonal series (3*1»l).Ihe
1)Riesz means were also approximated by leindler. ' later on 

the results of the above said papers were generalized to strong 
approximation of (C,oc>o)- means by Sunouchi2^ and leindler^.

" A )
Moreover, Bolgov and Efimov * have generalized the above results 

to the means generated by triangular matrices. In order to 

state their theorem we consider the following things.

let
n

k=o
*feti

denote the n - mean for the linear metnod of summation, which 

are computed from the partial sums of the series (3.1.1) and

from a triangular matrix (a^), k=o,1,..........n, n=o,1,.......... for

which

(5.1 .2)
n

/ ^k^’ ■a=0> ^>*•'*•***> Qfofr-"0> E>n,
feo

(3*1 *5) there exists p>1 such that for all n=o, 1,..............

1- -

<n+1) pIKilP<«
where M is an absolute constant and

for 1< p<flo

“*£, Klc|_______________________________________

1) leindler C39J 3) leindler C42j
2) Sunouchi( E78j , C79j ) 4) Bolgov and Efimov£}5j



In this case, we say that (an]£)€:^* note that this method 

of summability defined by matrices satisfying (3*1*2) and 

(3.1.3) is regular in the sense of Toeplitz.

Let be a sequence of natural numbers which

'satisfies

(3.1.4) 10Y * m=o,1, ............ , n0=1
m

and let l(n) be a positive nondecreasing function such that 

(3*1*5) TTiH'1'" 4g</(o<«<1).
'x nr

. , <K
We shall say that l(n) belongs to the class A , denoted by 

l(n)^A if xt is a positive non-decreasing function which 

satisfies (3*1*5) and is such that

(3*1 *6) J o.
n

1 (*«*•,)
If we have K&,

r*corresponding class by A

then we shall denote the 

Observe that tt? if ^ <o<, »

Bolgov and Efimov have proved the following theorem.

THEOREM A J Let I denote the linear method of summation 
determined by the matrix (an]j:)^^P (p>1)* Let Un(x) denote the 

corresponding means of the orthogonal series (3.1.1) and let 

v(n) denote a positive non-decreasing function such that the

condition
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(3.1.7)
oo C2 v2(n)< os

implies the summability a.e. of the series using 1. If the
1-1

function l(n)e A p , then for an orthogonal series whose 

coefficients satisfy

(3-1 .8) V2(n)l2(n)<c» ,

the 1-means satisfy the following relation almost everywhere 

on [a, bj :

(3*1.9) |Un(x)-f(x)| = ox( j|^),

where f(x) is the function of the Eiesz-Fischer theorem to which

2the series (3.1.1) converges. If the function l(n)<=: A ~ P , 

then the condition 

QQ
(3.1.10) O2l2(n)<oo

fcr
implies (3*1.9) almost everywhere.

1)Further leindler ' proved the following theorem.

THEOREM B : If

go
(3-1.11) ^ C2 n2?< oo (o<^<1),

1) leindler p-1j
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then
6^(x)-f(x) = oz(n"P) 

holds a.e. in (a, b).

In this chapter, we generalize the above result of 

leindler to No'rlund means as follows :

By taking v(n)= loglogn ani-l(n)=nP (o<^ <|f), we 

obtain from Iheorem A that the relation

|tn(x)-f(x)| =ox(n“?)

holds almost everywhere in (a,b). But we caa. obtain the same 

result under thewweaker hypothesis as stated below :

ok >4, then under the condition

(3.1.11), the relation

tn(x)-f(x)= ox(n“?) 

holds almost everywhere in (a, b).

THEOREM 1 : If jp

REMIRE s First of all we see that for the Ibrlund means t (x)
------------ tt
as defined above, we have

p
(&) ®nk~ p » k=o,1,....., n, n=o,1,21

n

for which 

n n P.n-k(x) \ a , - \ —rp------ 1 , n-o,1,2.
1—-- L  -Sn
k=o k=o

« • • •



and ank=o, k>n.

(ii) Sow, for o<pn| ,

(n+1)1"5 KI|p=(nfD1'5jr(^)?

p^ (n+1) ^<M as Jpnj e. <*>¥

where M is an absolute constant.

Thus for o<pn| ± (aQk)e.bP with p>1.

On the other hand, if °<Pnj , then for p=2

2i.e. for o<pn^ , (ank)<£A .

2Hence, for Horlund means •

i
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Taking v(n)=loglogn,

00 00 
_ 1------

e cB ■ r C2 (loglogn) 2<ao

n=2 n=2

implies the (N»Pn)- summabililgr of the orthogonal series 

(3.1.1) with [pnJeiK, (*>•#.

Also, l(n)= n?(o<p<-§-) is a positive non-decreasing function 

satisfying the condition (3*1 *5) with nffl=2m, m=o,1,2.............,
i

n=1 and l(n}eAs- Then

J~ C2 ^(n)l2(n)= C2(loglugn)2 n2? < ccj,(o<p<^-) implies

n=4

|tn(x)-f(x)| =ox(n“?) 

almost everywhere on (a,h).

Now, we see that the condition (3»1»11) is weaker than the 

condition (3*1 *8}. Considering

°n = loglogn)""1

we observe that the condition (3»1»11) is true but 

oo po
J... . C2 v^(n)l2(n) = y.... (n?f2(logn)8 loglogn) 2(loglogn)2 n2?

n=4 n=4

00
^ (nlogn)"

co
n=4

1) Meder [49]
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i.e. 3!he condition (3i'1l) need not imply the condition (3.1.8). 

But it is easily seen that the condition (3.1* *8) implies the 

condition (3*1*11). Moreover, in the condition(3* 1 *11) the range 

of £ is larger than in the condition (3.1.8).

Considering the second part of tne theorem A, we see 
that l(n)=n?e,X^ (o< p<^) and the conditions (3*1*10) and 

(3*1.11) are same tout in condition (3*1*11) the range of ^ is 

larger than in condition (3*1*10).

A similar result for Euler means is also proved :

THEOREM 2 s If

holds almost everywhere in (a, to;).

3.2 We need following lemmas to prove the atoove theorems.

ao , (o< £< i)

then the relation

*T (z)-f(x) = o (n”P)
Xl JL

LEMMA-1 P !f oO|, then

lim
n—}~0o

2) .
LEMMA-2 j If |pnJe:M- , then

1) Meder 0-8J
2) Meder g-9]
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sup
k.nz k

I pn-kPn-pnPn-ki
kp p , <+0° •

FnFn-k

PROOF : We shall distinguish two cases : (1) ^pn| is convex

and "bounded (2) ^Pn| is concave or convex and unbounded.

Passing to the first case, vte notice that -|pnjiuthen 

non-increasing, therefore,

o<^B p , - P , p ^-nFn-k n-kFn

P P= kT) B f fn _ )
spnpn-kk kpn kpn_k'

<kf«Vt m “O^rA-k52k

for n=k, k+1, k+2, ......... , 2k.

For the remaining values of n we write

0< Pnpn-k Pn-kp
n

(Pn-k+pn.k+1+ Pn-k+2+' + Pn ^ pn-**k-Pn-kpn

= P ,(P •, *“P ) + P t(P , , *+p i , „+n-k'Fn-k Fn' Fn-k^Fn-k+1 Fn-k+2
+pJ

n'

= P.n-k
(p , -p , ,.. )+(P n-k Fn-k+1' s 'n-k+1_pn-k+2^+ •+(pn-rpn)

+pn-k(Vk+1+Vk+2+ + P ) • Fn'

The proof runs further after the following estimate s



GO

^n^n-k ^n-kPn 

pn®n-k
n-k

P P i ■^n n-k
^pn-k pn~k+1 ^pn~k+1 pn-k+2^+ •**•* +

+(pn.,-pn)
pn-kpn-k+1

P P i ■^rrn-k

pn-k+2 . pn-k+3 . 
--------+ —----------+pn-k+1 pn-k+1

+....... + •n
• n-k+1

n
npn

(n-k+1)(pn-k-Pn-ta.l) Vk+1 n

pn-k+1 pn-k ’n~k+1

(n-k+ 2) (pn-k+1 ~pn-k+ 2) pn-k+2 n

•n-k+2

n(Vrpn) pn
P-n -n-k

'• pn-k ‘ n’k+2

n
n

+

+
pn-k+1

-n

"-]+ Pn~k+2 + pn-k+3 +,.; ‘ , + pn

Pn-k+1 Pn-k+1 pn-k+1

ftSince |pn| -e M and non-increasing, we get from above inequality

^npn-k ^n-kpn 

pnpn~k o<k>
for n=2k+1, 2k+2, 2k+3, ...... which completes the proof in

the first case.

Passing to the second case, we remark that |pn| is then 

non-decreasing. Hence

lPn pn-k~^n-kpn( , Pn-k N, pn-k+1+pn-k+2+

pnpn-k
■^pnpn-k l,n"t»-1[)t

+ P.n

-n



Gl

"n-k(n-tol jpn_k L
r (n+l)(pn-pn_,)

n ±n--1 n-k+1
P.n

n^pn-1_pn-2^ n-*k+1 Pn-1 .
*T IUJ "" r " V • “ _1 *T • • • • » • • • T

P.n-1 n P

n+1

(n ~k+ 2)(pn-k+1~pn-k) 
pri-k+1

(n-k+1) *n-k+1
-n-k+2- * p.

n

+ o+%ii + +............... +

n •n P,n

for n=k, k+1, k+2 

1 emma.

which completes the proof of the

REMARK : lemma 2 holds if we replace the class W by the class
M0^ with oC> o.

1)
LEMMA-3 J Writing

k-1

i=o

we have

Wnk<0 for L|3+2^k^.n.

LEMMA-4‘1^ :

k-1 2 2

hJZ ( for 1«k^§j+ 1-i=o n

A being an absolute constant and n=1,2,3...................

o)LEMMA-5 i For any value of q.>o , the following evaluation

1) Meder C46J 

g) Ziaa [95J
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is valid.

„„„ -n ( 1+Q
max )q ^ B -—, 

o ^ k q 4/n n=1,2,3

where the constant B^ does not depend ran. *1

3.3 PROOF OF THEOREM 1 : We have

J~~ 22n? J(8 n(x)-f(x)f dx

n=T a 2 '

= ^ 22nP ^ 02

n=1 H=2I1+1

» 00 2™-1
p2np \ V q
2 z_ Z_0

n=l m=n i „m k=2 +1
.hh-12 in

n 02 yz ***k=2m+1 11=1

00 2_____

on) e n®=i

hh-1

k=2m+1

(X> 2m+1
. v o o'a= 00) E E r f<"
m=1 b=2m+1

Consequently, hy B. Levy's theorem, it follows that the series

po
22nF(s n(x)-f(x))2



G«1

Converges almost eveiywhere In (a,h) and hence, it follows 

that tne relation

(3-3-1) s (x)-f(x) =

holds almost everywhere in (a,h).

Now, we proceed to prove that the relation

s2n(x)“t2n(x) = °x(2~nP)

holds almost everywhere in (a,t>). 

We have
n n

n (x)-tn(x) = 0A(x> - 4- Y_ pn-r3r(x)k=o

n

r=o 

n r

k=o ' n 1----r-o

n n
1̂ n

k=o r=o

n k-1

ii E °AW Ek=o r=o-

n n
1 *V" p ?

" Pn
k=o

| E_ Pi 
u=n-k+1 J

n-r P

n n
rF °]A(x> H Vr
"k=o ' r=k

•n-r

Therefore,
-,n

00 "b i** 2nB c-~ r r—~ .2(3.3.2) f 2^P j(. (x)-t <x))2d, - firlliH ^ °

n=1 a ' n=1 gn k=o

IV
 i\>



If 0 <Pnt , then from (3.3.2), we have 

go b
^... 22nP ^(s n(x)-t m(x))2 dx

n=1

£ *** J
n=1 2n &=0

£50 -,rx
= 0(1) 5 22n^ ^ k2C?

' fer 22n k=

= 0(1)

n=1

pDH-1
f-A2

ts: / k
m=o , „m., k=2*1

.dh-1(Jo 2 " ' go

oo)y~~y~ k2c2L___4___ ^ L__  2m=o 0m. n=m+1k=2

22np
Ta

,mf1

-0(1) e 2 2 k °k

m=o k=2®1

Thus, the series (3.3.2) is convergent, if o<p.
n



In case cxp^ , then from (3-3• 2) we have

b
22nP J(s^n(x)-t^n(x))2 dx

OQ . b
r
n=l

go 2n n2
22nP V V

n=1 k=o ]

06 2n

=o(o y 2snf yn=1 k=1

00 n-1

Jk
-.n

->nH-1

cxd y 2*$ y y^ ' L_ L— L— (2n-k+l)2 °k
n=1 m=o % ^

* Q®*-1pb 2 pa

»“£rc fc
OO)

he=° n=nH-1

2mH _o>

k2°k 22nJ5

JZ tS" <0°
m=o n=nH-1k=2'+1

2
$

Thus, the series (3.3.2) is convergent, if o<pn| . 

Hence, by B. levy's theorem, we conclude that the series

22nP(s (x)-t (x) )2< ao

n=1
2n' - 2n

almost everywhere in (a, b) and therefore, the relation 

(3-3.3) s „(x)-t _(x)= 0 (2"nP)
2n ' 2n

holds almost eveiywhere in (a,b).



GG

¥ow, it remains to proye t hat the estimate

gUH-1
(3*3*4) ^ = ox(1)

k=2^1

holds almost everywhere in (a,b).

Assuming p_.j = P_.j=o » we can virite

n n-1
4- T~ VA(l)- T-J~ Pn-1-A(x)

vi   _ - n — 1 fa-   

n

-n <_____ "n-ksk' „ - ^

n k=o n ‘k=o

n
-4- JZ Pn-kskW- 1^1 pn-1-kBkW

k=o

n

k=o

‘n

£ «a« £ v« - *, £ "A« £»-«

tST ' k=r n r=o k=r
r=o

nI] Vr - ir-, Y2r-o r=0
n

V- H VrVpA-r)(Wx)
P P n n-1 r=o

n

Consequently

hO rr^1 ] (\(2)-viw)2 te=
H=T - a

1___ \ (p P -pP ) G0 (x).
p / '•tn-r n *n n-r' r rv £

n n— 1 ^**...r=1
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(P„ n P-p,? ,■^n-k e *n n-k
P P 
n n- 1

; c2
k

go oo

E«£EC-k=1 n=k

pn-kPn pnPn~k )2 n2?*1 

rnn~1

Decomposing the inner sum of tne last expression in two sums 

from n=k to n=2k and from n=2k+1 to n=+oo and applying first 

lemma 2 and then lemma 1, we obtain

oo b
n2^"1 J (tn(x)-tn_1(x))2dx 

n=1 a

do 2k 2 2

no) y n2p*i
k=1 n=k n n-1

+
oo

0(1)E
k=1 n=2k+1

2 2
pnpn-k „21+1
— —_ n i

PnPn-1

00 k oo oo

0(1, ,2? -V ]T 4 -00) £ A2 £ ^
k=1 k n=o k=1 n=2k+1

oo
0(1)) 02k2P<c»

k=1

Hence, by B.levy's theorem it follows that the series 

CO
n2^1 (yxJ-t^W)2

n=1

Converges almost every where in (a,b) and therefore, the 

relation (3*3*4) holds almost everywhere in (a,b).
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Consequently, for 2I5Wn<2IlM"1

n
t (x)-t m(x) n 2m 1 (x))

k=2|l

n

XI ^
k=2^1

oDH-1

w

,IW-1

r
OTli 1 . O \ -|k ^ ^(x)-!^ (x)) ”2Bf

_ ^ mmm It j

i7?

k=2+1 k=2™1

= 0^2 ~T)

= °x(n‘P)

holds almost everywhere in (a,b) 

i.e. The relation

(3.3-5)

holds for 2m<n<2ult'1 almost everywhere in (a,b).,HH-1

X
(ni3)

Hence, it follows from (3*3*1), (3*3*3) and (3*3*5) that the 

relation '

tn(x)-f(x)

holds almost everywhere in (a,b).

This proves the theorem completely.
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3*4 EROQF OF THEOREM 2 ; As proved in Theorem 1, the estimate 

(3-4.1) s (x)-f(x)= o (2“nP)
gii JS.

holds almost everywhere in (a,h).

Fow, we prove that the estimate

s n^x^“ ^ n^= °3r(2”n:P)
pi* pll

holds almost everywhere in (a,h).

We have

sn(x)- Tn(x) ( J)sr(x)

n

k=o
W*> -4°A«

r=o k=o

1
gn

n »_
■> °A(x) XI
feo ' r=0

n n
) °A(x) H
k=o r=k

n k-1

) °a(x) r
k=o r=o

Hence

r=o
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Effecting lemmas 3 and 4, we obtain 

oo b

II *** 5 vx)'Vx))2axn=1 a

oo
■0‘dE c; < 0O .

k=o

Therefore, by B. Bevy's theorem, it follows that the series 

oo

Y 2£n? (s n(x)- I n(x))2< oo2-2n=1

almost everywhere in (a,b).

Consequently, the relation

■(5.4.2) s (x) - T nU) = o (2_nP)
2n x

holds almost everywhere in (a,b).
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Now, it remains to prove that the relation

,hh-1
(3.4.3) r k2^1 ( TJ=)- T (X))2=0,(1)

k=2-^1
L---- ' 'k k-1

holds almost everywhere in (a,b). 

We have

n n-1

Wx) - ir) < in E <Vk<*)

Bow

k=o

n

k=o 

n

k=o

n
n)-2(n;1)j Bk(x).

k=o

Therefore

i (xj-T^W-Sk(x)
n . - <rr— , . _k=o 

n
_1_
.n k=o

n

r=o

-L
A

r=o

n

k=r

(?) I
r=o



Consequently,
CD b

r.En= 2 

oo

n
2p+1 (Tn(x)- I^x)) dx

a.

oo n 0E fl (fc)2 ^ 0
n=2

oo

k=o

2
k

n
k202

n=2

By virtue of Lemma 5, v?e obtain 

oo b

k=1

y n2?*1 Tn(x)- In-1(x))2dx

n=2 a

op n^ B, j~ ^ f k2C*

' n=2 k=1

co 2 ta
->'J+1

n

00)7“ zral2:P-i) y~ 2« y
^ L__  - L__ L__

m=o -o=n . $

c

oo

^ = 0 

z^1
k=2+1

a^y^y o2 y~
„ fawwMB Cmmmmb bawMHH

' ^=° k=zii B=v

,■0+1

oojf’^r o2-^
L__ L__

2 v(2p~*0

s>=0 k=2+1

C
V

J ,M



7,3

QO 2,->>+1

=0(1)7” y~
^~° k=2+1

03 2,v+1

od) rr <$*?»■
L__ /....... . •K* < co

k=2+1

Hence, by B . Leva's theorem, it follows that the series 

oo

n=2

Converges almost everywhere in (a,h) and therefore, the relation 

(3.4.3) holds almost everywhere in (a, b).

Consequently, for 2m<n<2I1H’'1 ^

= ox(2-”P)

= 0X(a*"^)

holds almost everywhere in (a,b). 

i.e. fhe relation
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(3*4.4) |Tn(x)- T m(x)| =

1|j -prj j.. “J
holds for 2 <n<2 almost everywhere in (a,h).

Therefore, by (3*4.1), (5.4.2) and (3*4 *4), it follows that 

the relation

|Tn(x)-f(x)| = ox(n"f)

holds almost everywhere in (a,b).

This proves the theorem.


