CHAPTER - IV

ON THE ORDER OF CERTAIN SUMMABILITY

MEANS

4.1 Let $\{\emptyset_n(x)\}$ (n=0,1,2,....) be an orthonormal system (ONS) of L²-integrable functions defined in the closed interval [a,b]. We consider the orthogonal series

(4.1.1)
$$\sum_{n=0}^{\infty} c_n \phi_n(x)$$

with real coefficients C_n 's.

The notations $s_n(x)$, $t_n(x)$, $\{p_n\} \in \mathbb{M}^{\alpha}$ and $\{p_n\} \in \mathbb{BVM}^{\alpha}$ mean the same as referred in Chapter II.

$$K_{n}(t,x) = \sum_{k=0}^{n} \emptyset_{k}(t) \emptyset_{k}(x)$$

and

$$L_{n}(x) = \int_{a}^{b} |K_{n}(t,x)| dt$$

Here $K_n(t,x)$ and $L_n(x)$ are respectively called the nth kernel and nth Lebesgue function of the ONS $\{\emptyset_n(x)\}$.

The behaviour of Lebesgue functions effects upon the convergence of orthogonal series. The connection between the behaviour of Lebesgue functions and convergence was first discovered by Kolmogoroff-Seliverstoff¹⁾ and Plessner²⁾ for

- 1) Kolmogoroff and Seliverstoff ([35], [36])
- 2) Plessner [66]

the case of Fourier trigonometric series. It was then extended to orthogonal series for the convergence and Cesàro summability by Kaczmar¹ and Tandori² and for summability by first Logarithmic means by Meder.³ Sunouchi⁴ has also worked in this dierection for Riesz means. While discussing the influence of Lebesgue functions on the Cesàro summability of orthogonal series Alexits⁵ has proved the following theorem.

THEOREM A: If the Lebesgue functions

(4.1.2)
$$L_{2^n}(x) = \iint_{a} \sum_{k=0}^{b} \phi_k(t) \phi_k(x) | dt$$

of an ONS $\{ \emptyset_n(x) \}$ are uniformly bounded on the set $E \subset [a,b]$, then the condition

(4.1.3)
$$\sum_{n=0}^{\infty} c_n^2 < \infty$$

implies the $(C, \propto > 0)$ -summability of the orthogonal series (4.1.1) almost everywhere on E.

In this chapter we extend the above result to Riesz and Nörlund summability as follows :

<u>THEOREM 1</u>: If the Lebesgue functions (4.1.2) of an ONS $\{\emptyset_n(x)\}$ are uniformly bounded on the set $E \in [a,b]$, then the relation (4.1.3) implies that the estimate

$$\mathbf{o}_{n}(\lambda, \mathbf{x}) = \mathbf{o}_{\mathbf{x}}(n)$$

1) Kaczmarz	[28]	4)	Sunouch1 ['	[77]		
2) Tandori	[82]	5)	Alexits ([4	4] ,	p.185)	
3) Meder [4	[7					-

holds almost everywhere on E.

THEOREM 2 : If

 $(4.1.4) \qquad \{p_n\} \in BVM^{\alpha}, \ \alpha > \frac{1}{2}$

and the Lebesgue functions (4.1.2) of an ONS $\{\emptyset_n(x)\}$ are uniformly bounded on the set $E \subset [a,b]$, then the orthogonal series (4.1.1) is (N,p_n) - summable almost everywhere under the condition (4.1.3).

Further, while discussing the Cesàro summability of the orthogonal series (4.1.1) Alexits¹⁾ has made the following assertion :

<u>THEOREM B</u>: If the coefficients of the orthogonal series (4.1.1) satisfy the condition (4.1.3) and the series (4.1.1) is A-summable almost everywhere, then the relation

holds almost everywhere.

An attempt has been made here to prove the above theorem without the A-summability condition. In what follows we prove the following theorem :

THEOREM 3²: If the coefficients of the orthogonal series (4.1.1) satisfy the condition (4.1.3), then the relation (4.1.5) holds almost everywhere.

- 1) Alexits ([4], p.129)
- 2) Kantawala [30]

4.2 In order to prove the above theorems, we need the following lemmas :

LEMMA 1^{1} : Under the condition (4.1.3) the relation

$$s_{n}(x) - s_{n}(x) = o_{x}(1)$$

is valid almost everywhere for every index sequence $\{\gamma_n\}$ with

$$\frac{\frac{\nu}{n+1}}{\frac{\nu}{n}} \ge q > 1.$$

<u>LEMMA 2²⁾</u>: If the coefficients of the orthogonal series (4.1.1) satisfy the condition

$$\sum_{n=1}^{\infty} C_n^2 (\log \log n)^2 < \infty ,$$

then the series (4.1.1) is (C, α) - summable for every $\alpha > 0$. <u>LEMMA 3</u>³: If $\{\lambda_n\}$ is a positive, non-decreasing number sequence for which the relation

$$L_{\mathcal{Y}}(\mathbf{x}) = O(\lambda_{\mathcal{Y}}) \qquad (\nu_1 < \nu_2 < \dots)$$

holds in a set $E \subset [a,b]$, then for the partial sums $\{s, (x)\}$ of the orthogonal series (4.1.1) under the condition (4.1.3), the estimate

$$s_n(x) = O(\lambda_n^{\ddagger})$$

holds almost everywhere on E.

- 1) Alexits ([4], p.118)
- 2) Alexits ([4], p.125)
- 3) Alexits ([4], p.172)

<u>LEMMA 4</u>¹⁾: Let $s_n(x)$ be the nth partial sum of the orthogonal series (4.1.1) with coefficients C_n satisfying the condition (4.1.3) and $\{n_k\}$ be an arbitrary increasing sequence of indices satisfying the condition

$$1 < q \leq \frac{n_{k+1}}{n_k} \leq r$$
 for k=0,1,2....

where r and q are constants. If

$$\{p_n\} \in BVM^{\alpha}, \alpha > \frac{1}{2}$$

then the orthogonal series (4.1.1) is (N, p_n) - summable almost everywhere if and only if the sequence $\{s_{n_k}(x)\}$ is convergent almost everywhere.

LEMMA 5: Let
$$\sum_{n=0}^{\infty} U_n$$

be a given series with $\{s_n\}$ and $\{\overline{c_n}\}$ as its sequences of partial sums and nth (C,1) - means respectively. If $\{m_n\}$ is a convex null sequence and

$$(4.2.1)$$
 $6_{n} = O(1)$

then

$$G_n(\lambda, m) = o(n)$$

where $f_n(\lambda, m)$ denotes the $(R, \lambda_n, 1)$ - mean of the series

$$\sum_{n=0}^{\infty} \mathbf{U}_n \mathbf{m}_n \cdot$$

PROOF : Using Abel's transformation, we obtain

1) Meder [48]

$$\begin{split} & \delta_{n}^{-}(\lambda, m) = \sum_{k=0}^{n} (1 - \frac{\lambda_{k}}{\lambda_{n+1}}) U_{k} m_{k} = \\ & = \sum_{k=0}^{n} \delta_{k} U_{k}, \text{ where } \delta_{k} = (1 - \frac{\lambda_{k}}{\lambda_{n+1}}) m_{k} \\ & = \sum_{k=0}^{n} (\delta_{k} - \delta_{k+1}) s_{k} + \delta_{n} s_{n} \\ & = \sum_{k=0}^{n} \delta_{k}^{\prime} s_{k} + \delta_{n} s_{n} m \text{ where } \delta_{k}^{\prime} = \delta_{k} - \delta_{k+1}. \end{split}$$

Hence, it follows on account of $S_n = S'_n$ by Abel's transform that n

$$\delta_{n}(\lambda, m) = \sum_{k=0}^{n} \delta_{k}' s_{k} =$$
$$= \sum_{k=0}^{n-1} \delta_{k}'' (k+1) \delta_{k} + \delta_{n}' (n+1) \delta_{n},$$

where $s''_k = s'_k - s'_{k+1}$

3

The second difference s_k'' may be represented as follows :

$$\begin{split} \delta_{k}^{"} &= \delta_{k}^{'} - \delta_{k+1}^{'} = \\ &= \delta_{k}^{-2} \delta_{k+1}^{+} + \delta_{k+2} \\ &= (1 - \frac{\lambda_{k}}{\lambda_{n+1}}) \Delta m_{k}^{-} (1 - \frac{\lambda_{k+1}}{\lambda_{n+1}}) \Delta m_{k+1}^{-} + \\ &+ (\frac{\lambda_{k+1}^{-} - \lambda_{k}}{\lambda_{n+1}}) m_{k+1}^{+} + (\frac{\lambda_{k+1}^{-} - \lambda_{k+2}}{\lambda_{n+1}}) m_{k+2}^{-}, \end{split}$$

١

where $\Delta m_k = m_k - m_{k+1}$.

Therefore,

~

~

$$\begin{aligned} & \mathcal{G}_{n}(\lambda, m) = \sum_{k=0}^{n-1} (1 - \frac{\lambda_{k}}{\lambda_{n+1}})(k+1)\mathcal{G}_{k}\Delta m_{k} - \\ & - \sum_{k=0}^{n-1} (1 - \frac{\lambda_{k+1}}{\lambda_{n+1}})(k+1)\mathcal{G}_{k}\Delta m_{k+1} + \\ & + \sum_{k=0}^{n-1} (\frac{\lambda_{k+1} - \lambda_{k}}{\lambda_{n+1}})(k+1)\mathcal{G}_{k}m_{k+1} + \\ & + \sum_{k=0}^{n-1} (\frac{\lambda_{k+1} - \lambda_{k}}{\lambda_{n+1}})(k+1)\mathcal{G}_{k}m_{k+2} + \\ & + (1 - \frac{\lambda_{n}}{\lambda_{n+1}})(n+1)\mathcal{G}_{n}m_{n} . \end{aligned}$$

i

From condition (4.2.1), we get

$$\begin{split} & \mathcal{G}_{n}(\lambda, m) = \mathcal{O}(1) \sum_{k=0}^{n-1} (k+1)\Delta m_{k} + \mathcal{O}(1) \sum_{k=0}^{n-1} (k+1)\Delta m_{k+1} + \\ & + \mathcal{O}(1) \sum_{k=0}^{n-1} \left(\frac{\lambda_{k+1} - \lambda_{k}}{\lambda_{n+1}} \right) (k+1) m_{k+1} + \\ & + \mathcal{O}(1) \sum_{k=0}^{n-1} \left(\frac{\lambda_{k+1} - \lambda_{k+2}}{\lambda_{n+1}} \right) (k+1) m_{k+2} + \\ & + \mathcal{O}(1) \left(1 - \frac{\lambda_{n}}{\lambda_{n+1}} \right) (n+1) m_{n} \,. \end{split}$$

$$O(1)(1-\frac{11}{\lambda_{n+1}})(n+1)m_{n}$$

,

1

,

Since $\{m_n\}$ is a convex null sequence

$$n \Delta m_n = o(1)$$

and consequently

$$\begin{split} \widehat{\sigma_{n}}(\lambda, m) &= o(n) + o(n) + O(1) \sum_{k=0}^{n-1} \left(\frac{\lambda_{k+1} - \lambda_{k}}{\lambda_{n+1}} \right) (k+1) m_{k+1} + \\ &+ O(1) \sum_{k=0}^{n-1} \left(\frac{\lambda_{k+1} - \lambda_{k}}{\lambda_{n+1}} \right) (k+1) m_{k+2} + o(n) \, . \\ &= o(n) + O(1) \sum_{k=0}^{n-1} \left(\frac{\lambda_{k+1} - \lambda_{k}}{\lambda_{n+1}} \right) (k+1) \Delta m_{k+1} \\ &= o(n) + o(1) \\ &= o(n) \, . \end{split}$$

With this the lemma is proved.

<u>LEMMA</u> 6^{1} : If $\{\lambda_n\}$ is positive, concave, monotone increasing and tending so slowly to infinity that $\Delta \lambda_n = O(n^{-1})$, then (C, 1)summability of the series

$$\sum_{n=0}^{\infty} U_n$$

implies the estimate

 $\widetilde{\mathfrak{G}_n}(\lambda) = \mathfrak{o}(\lambda_n)$

where $\widetilde{b_n}(\lambda)$ denotes the nth (C,1)- mean of the series

$$\sum_{n=0}^{\infty} u_n \lambda_n .$$

1) Alexits ([4], p.74)

<u>LEMMA 7</u>: The sequence {loglogn} is concave and $\triangle \log \log n = O((n\log n)^{-1})$, where for any sequence $\{\lambda_n\}$ we mean $\Delta \lambda_k = \lambda_k - \lambda_{k+1}$ and $\Delta^2 \lambda_k = \Delta \lambda_k - \Delta \lambda_{k+1}$.

PROOF: We observe that

$$\Delta^2$$
loglogn = loglogn + loglog(n+2) - loglog²(n+1).

Thus in order to prove the sequence {loglogn} to be concave, we must have

$$\log(\frac{\log \log(n+2)}{\log^2(n+1)}) \leq 0$$

or

(4.2.2)
$$\frac{\log n \cdot \log(n+2)}{\log^2(n+1)} \leq 1$$
.

Now

$$logn=log(n+1-1) = log(n+1) + log(1-\frac{1}{n+1}).$$

i.e.

(4.2.3) logn= log(n+1) -
$$\frac{1}{(n+1)}$$
 - $\frac{1}{2(n+1)^2}$ -

and

$$log(n+2) = log(n+1+1)$$
.

i.e.,

$$(4.2.4) \quad \log(n+2) = \log(n+1) + \frac{1}{(n+1)} - \frac{1}{2(n+1)^2} + \cdots$$

Hence, from (4.2.3) and (4.2.4)

$$\log(n+2) \leq \log^{2}(n+1) + \log(n+1) \left\{ \frac{1}{(n+1)} - \frac{1}{2(n+1)^{2}} + \frac{1}{3(n+1)^{3}} - \dots - \frac{1}{(n+1)} - \frac{1}{2(n+1)^{2}} - \dots \right\}$$
$$= \log^{2}(n+1) - \log(n+1) \left\{ \frac{1}{(n+1)^{2}} + \frac{1}{2(n+1)^{4}} + \dots \right\}$$
$$< \log^{2}(n+1).$$

This proves (4.2.2).

Now, we proceed to prove that

$$\triangle(\log \log n) = O((n \log n)^{-1}).$$

.

· We have

-

$$|\Delta \log \log n| = |\log \log n - \log \log (n+1)|$$
$$= \log \log (n+1) - \log \log n$$
$$\log (n+1) = \int_{0}^{\infty} \frac{dx}{x}$$
$$\leq \frac{\log (n+1) - \log n}{\log n}$$

Since $\Delta \log n = O(n^{-1})$, we have

$$|\Delta \log \log n| = \frac{1}{\log n} O(n^{-1}) = O((n\log n)^{-1}).$$

This completes the proof of the lemma.

4.3 PROOF OF THEOREM 1 : Since

$$\sum_{n=0}^{\infty} c_n^2 < \infty$$

there exists a monotone number sequence $\{\mu_n^2\}$, such that $\mu_n \longrightarrow \infty$ and

$$\sum_{n=0}^{\infty} C_n^2 / a_n^2 < \infty$$

It is also easy to construct (for instance geometrically) a strictly increasing concave sequence $\{m_n\}$ with $m_n^2 \leq /u_n^2$, $m_n^2 \xrightarrow{\infty} \infty$ and $\sum_{n=0}^{\infty} c_n^2 m_n^2 < \infty$.

Since $\{m_n\}$ is concave and tending to infinity, $\{1/m_n\}$ is a convex null sequence. Let $s_n(m,x)$ and $\overline{6_n}(m,x)$ denote the nth partial sum and the nth(0,1)- mean of the orthogonal series

$$\sum_{n=0}^{\infty} c_n m_n \phi_n(x)$$

respectively.

,

From our assumption about the uniform boundedness of the Lebesgue functions (4.1.2), it follows by Lemma 3 that the relation

$$s_{2^{p}}(m,x) = O_{x}(1)$$

holds almost everywhere on E.

Hence, the relation

$$G_{2^{p}}(m, x) = O_{x}(1)$$

is valid almost everywhere on E due to Lemma 1. Also

$$\overline{G_n}(\mathbf{m}, \mathbf{x}) - \overline{G_p}(\mathbf{m}, \mathbf{x}) \longrightarrow 0^{-1}$$

almost everywhere with $2^{p} < n < 2^{p+1}$.

Therefore, the relation

$$G_{\mathbf{n}}(\mathbf{m},\mathbf{x}) = O_{\mathbf{x}}(1)$$

is valid almost everywhere on E.

Since the series

$$\sum_{n=0}^{\infty} c_n \phi_n(\mathbf{x})$$

arises from the series

(4.3.1)
$$\sum_{n=0}^{\infty} c_n m_n \beta_n(x)$$

by multiplying by turns the terms of the series (4.3.1) by the terms of the convex null sequence $\{1/m_n\}$, it follows by

1) Alexits ([4], p.119)

Lemma 5 that the estimate

$$6_n(\lambda, x) = 0_x(n)$$

holds almost everywhere on E.

This proves the theorem completely,

4.4 <u>PROOF OF THEOREM 2</u>: From the given conditions, we can conclude by Theorem A that the orthogonal series (4.1.1) is $(C, \alpha > 0)$ -summable almost everywhere on E. Therefore, Lemma 1 implies the convergence of the sequence $\{s_{2^n}(x)\}$ of the partial sums of the series (4.1.1).

Hence by Lemma 4, it follow that the orthogonal series (4.1.1) is (N, p_n) - summable almost everywhere on E.

4.5 PROOF OF THEOREM 3 : We have

i.e.
$$\sum_{n=0}^{\infty} c_n^2 < \infty ,$$
$$\sum_{n=3}^{\infty} \frac{c_n^2}{(\log \log n)^2} (\log \log n)^2 < \infty .$$

Consequently, it follows from Lemma 2 that the orthogonal series

$$\sum \frac{c_n}{\log \log n} \phi_n(x)$$

is (C, α) -summable for every $\alpha > 0$.

Moreover, due to Lemma 7, it follows that the sequence $\{\log \log n\}$ is positive, concave, monotone increasing and tending so slowly to infinity and $\Delta(\log \log n) = O(n^{-1})$, hence Lemma 6 implies that

$$6_n(x) = 0_x(\log \log n)$$

is valid almost everywhere.

With this the theorem is proved.