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CHAFTER - IV

ON THE ORDER OF CERTAIN SUMMABILITY
. MEANS

4.1 Let iﬂn(x)} (n=0,1,2, ¢e+¢.) be an orthonormal
system (ONS) of L-integrable functions defined in the closed
interval [a,b] . We consider the orthogonal series

00

(4.1.1) }: ¢, 2, (x)

=0

with real coefficients Cﬁs.

. & *
The notations sn(x?, tn(x?, ipn}eM and ipnjeBVM mesn

the same as referred in Chapter II.

n
Define Kn(t,x) = Zﬂk('ﬁ),@k(x)
k=0 ) ’

and

b
Iy (x) = [|%, (6,2 at
) :

Here Kn(t,x) and Ln(x) are respectively called the nth kernel

and n oo Lebesgue function of the ONS iﬁn(x)j .

The behaviour of Lebesgue functions effects upon the
convergence of orthogonal series. The connection between the

behaviour of Lebesgue functions and convergence was first

1) 2)

discovered by Kolmogoroff-Seliverstoff / and Plessner for

1) Kolmogoroff and Seliverstoff ( [35], [36])
2) Plessner 66]

2
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the case of Fourier trigonometric series. It was then extended
to orthogonai series for the comvergence and Cesdro summebility
by Kaczmarg) and Tandoriz) and for summability by first
Logarithmic means by Meder.g? Sunouchid‘? has also worked in
this dierection for Riesz means. While discussing the influence
of Lebesgue functions on the Cesaro summauvility of orthogo nal

series Alexits5? has proved the following theorem.

THEOREM A ¢ If the Lebesgue functions

» 2
(4.1.2) Lgn(}:) = XZ B (8)f () | at
: L= ,

of an ONS ﬁpn(x)j are uniformly bounded on the set Ec[a,b] ,

then the condition

o)
(4+1.3) Z Cﬁ < 0
) n=o0

implies the (G, ®>o0)-summability of the orthogonal series

(44141) almost everywhere on E.

In this chapter we extend the above result to Riesz and NSrlund

summability as follows :

THEOREM 1 : If the Lebesgue functions (4.1.2) of an ONS {f (x)}

are uniformly bounded on the set E& [a,b] , then the relation

(4.1.3) implies that the estimate
6,(N,x)= o_(n)

1) Kaczmarz [28] 4y Sunouchi [77]
2) Tandori [82] 5) Alexits ([4J, p.185)
3) Meder [47]
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holds almost everywhere on E.

THECREM 2 ¢ 1

—

(4.1.4) {pn}e: BT >4

and the Lebesgue functions (4.1.2) of an ONS iﬁn(x)} are
uniformly bounded on the set Ecfa,b], then the ortﬁogonal

series (4.1.1) is (N,pn)- summable almost everywhere under

the condition (4.1.3).

Further, while discussing the Cesiro summability of the

1)

orthogonal series (4.1.1) Alexits '/ has made the following

assertion

THEOREM B s+ If the coefficients of the orthogoral series (4.1.1)
satisfy the condition (4.1.3) and the series (4.1.1) is
A-summable almost everywhere, then the relation

(4.1.5) 6, (x)= o_(loglogn)

holds élmost everywhere.

An attempt has been male here 10 prove the above theorem
without the A-summability cmdition. In what follows we prove

the following theorem

THEOREM 32): If the coefficients of the orthogonal series (4.1.1)
satisfy the condition (4.1.3), then the relation (4.1.5) holds

almost everywhere.

1) Alexits ([4, p.129)
2) Kantawala {3Q]
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4.2 1In order to prove the above theorems, we need the following

lemmas s

LEMMA 11) : Under the condition (4.1.3) the relation

%n(x)—%(x) = o_(1)

is valid almost everywhere fHr every index sequence {’)ni with

U

Tl > q >1.

B'Ll

LEVNA 22) s If the coefficients of the orthogonsl series (4.1.1)

satisfy the condition

00

E Ci(loglogn)2< o, ]

n=1

then the series (4.1.1) is (C,00~ summable for every >0 .

LEMMA 33? : If :L)“nf is a positive, non—-decreasing number Sequence

for which the relation

L%§X?=O(>~,,n) ( % cenennss)

holds in a set E & f,5 , then for the partial sums s, (X)j of
n z
the orthogonal series (4.1.1) under the condition (4.1.3), the

estinmate )
)
%n(x> = qs(}\’n?

holds almost everywhere on E.

1) Alexits (4], p.118)
2) Alexits ([4], p.125)
3) Alexits ({41, p.172)



73

th partial sum of the orthogonal

LEMMA 41) : Let sn(x) be the n
series (4.1.1) wi‘ch(cc;efi‘ioients Cn satisfying thé condition
(4.1.3) and {nk} be an arbitrary increasing sequence of indices
satisfying the condition

Nyerq
Ay

1<« g < :g.r‘ for k=0,1,2e440

where: r and ¢ are constants. If
B .S 3
{pn} & BVIL, 0Q>-2
then the ortuogonal series (4.1.1) is (W, pn)-— summable almost

everywhere if and only if the sequence {g, (x)} is convergent
X .

almost everywhere.

LEMMA 5 3 Let
- 00

)

n=0
be a given series with {snj and {65; as its sequences of partial

sums and nth (G,1 )= means respectively. If {mhg ig a convex null

-

sequence ard

(4.2.1) 6,=0(1)

then
6,(X,m) =o(n) -

where 6;1( A,m) denotes the (R,)h,ﬂ- mean of the series

PROOF 3. Using Abel's transformation, we obtain

1) Meder [48]
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n
8 ’ g;; . )m*1?Ukmk

n
X
= ; SkUk, where 5k=(‘l- %Rmk :

n
B (8= 81 )8t 5,5,
k=0
n
ksk* g 8 @ where Sk“ﬁk St
k=0

Hence, it follows on account of 5h:5£ by Abel's transform that

) n
6;1( )Hm) = Z %{Skz

) ) k=0
n-1
Zs (r1)6 5, (ae1)6,
k.—.

where S£=5£~5£+1

The second difference Sﬁ may be represented as follows 3

S S Spur=

= 8,28, 1t8,,

= (i~ %:1)4\% (1- %ﬁ 2SI
)‘u;; ~X )m1<+1+ (w ) mk+2

n+7
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where Am}'i: mk'mkﬂ .

Therefore,

6, (A,m) —}: (1- —-- )(k+1)6‘dnnk -

n+'l
n-1
)‘k+‘l
- Z; (1- )\n+1)(k+1)6'Amk+1
n-1
Mer 1™
* Z ( +)‘n+1 Mkﬂ)g’mkﬂ

+ (1~ n )(n+1>5‘m
)‘n+1 .

From condition (4.2.1), we get -

n-1 n-1
6, (A,m) =0 (1) Z (cr1)ama0 (1) ) (1) Am s
' ’ "~ k=0
M .
+ (1) Z (—— +;‘n+1 ’Fk+1)mk+1+

+o(1 Z ( Ak+1 >k+2 )I(k+1?mk+2+

n+1

+O(1)(1- 7{' )(n—i-‘i)m

+1.



Since {mn} is a convex null seguence
nAm = o(1)

and consequently

' n-1 N )\
6, (A, m= o(n)+ o(n) +((1) ( —— k'H )(k+1)mk+1
k=0
n=1
Ak-1_Ak
+ (1) —”‘XI;T- }(k+1?mk+2+o(n).

=o(n)+O(1) %k'” ?k )(1<:-%~1)£3.mk+1
Aol :

il
o
N
B
~r
+
o
Eaain
-—
-

il
o
—~~
B
~—

With this the lemma is proved.

LEMMA 61) : pr‘n} is positive, concave, monotone increasing
and tending so slowly to infinity thata)hr— O(n_1), then (G, 1)-

summability of the series

)"
n
implies the estimate

62 (X )= o( )\

where 61;1( M) denotes the nP (G,1)~ mean of the series

(&3]

> U

n=0

1) Alexits (4] , p.74)



83

LEMMA 7 The sequence {loglogn{ is concave and Aloglogn =
C)((ﬁlogn) ), where for any sequence{%n}‘we mean AA=A Ay

and 43Ak7'A}k Myrq.

PROOF : VWe observe that

4ﬁ210glogn = loglogn + loglog(n+a) - loglogz(n+1).

Thus in order to prove the seqence {loglogn} t0 be concave,

we mist have

Log( 1ogn.log(n+2) )<;0
. log (n+1)

~

or

(4.2.2) logn.log(n+zl
log (n+1)"

Now
logn*log(n+1 1)
1og(n+1) + log(1— ”—T)-
loet
(40203) 10gn= log(n+1)"‘ (nl.]) hand 1 2 = s eses e
. ) . 2(n+1)
and ‘ ]

log(n+2) = log(n+1+1)

ioec’
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1 1
(n+1)  2(n+1)2

+ ¢ & e 0

(4.2.4) log(n+2)= log(n+1) +

Hence, from (4.2.3) and (4.2.4)

1
2{n+1

-+

logn. log(n+2) <& 1og2(n+1)+log(n+1)i— - s
(n+1) )

+ 1 - s eeesvtce ™ 1 - 1 = s ssesse
3(n+1)3 (n+1) 2(n+1}2 ;}
2 1 1
= log“(n+1)- log(n+1) + Fevenaes
§.(n+1)2 2(n+1)% }

<;log2(n+1).

This proves (4.2.2),

Now, we proceed to prove that
A(loglogn) =(j((nlogn)-1).

+ We have

| Loglogn ~ loglog(n+1)l

1l

fékloglogn]

il

loglog{n+1)~ loglogn

log(n+1)

ax
X

it

logn

log{n+1)-logn
logn

In
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Since A logn =O(n‘1), we have

IA loglogn| = TZ@T O™ )==O((n.'l<?gl’l)m1 ).

This completes the proof of the lemma.

4.3 PROOF OF THEOREM 1 s Since

o8]

E 2
Cn<oo

n=o

there exists a monotone number sequence i/uﬁ j, such that

/xn-—» 00 and

@0

E 2 2
Cn/un<m .

n=o

It is also easy to construct (for instance geometrically) a

strictly increasing concave sequence imn} with

2 2 2
mné/mn’ mn -~ i”:u and

00

§ 2 2 ‘ N
Gnmnz; o0 .

=0

Since {m,} is concave and tending to infinity, i‘i/mnj is a

convex null sequence. Let sn(m,x) and 6;1(m,x) denote the n'P

partial sum and the nth(c,ﬂ— mean of the orthogonal series
‘00
E Cnmnﬁn(x?

n=0o

respectively.
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From our assumption atwut the uniform boundedness of the
Lebesgue functions (4.1.2), it follows by Liemma 3 that the
felation

s p(mx) =Og(1)
holds almost everywhere on E.

Hence, the relation
Optmx) = O

is valid almost everywhere on E due to Lemma 1.
Also )

6 (m,%) ~ 6 (0,x) —>0 ')

l’ln~ ) 2p . -~

almost everywhere with 29<;n¢:2p+1 .

Therefore, the relation

Gu(mx) = Op(1)

is valid almost everywhere on E.

Since the series
e8]

Z Cpf x>

n=o
arises. from the series

o0

(4.3.1) Z ¢, m A2, ()

n=o
by multiplying by tums the terms of the series (4.3.1) by
the terms of the convex null sequence 5j/mn} , it follows by

1) Alexits (41, p.119)
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Lemma 5 that the estimate
61’,1( Mx) = ox(n?
holds almost every{vhere on E.

This proves the theorem completely,

4.4 PROOF OF THEQOREM 2 ¢ From the given conditions, we can

conclude by Theorem A that the orthogonal series (4.1.1) is

(¢, %>0)-summable almost everywhere on',E. Therefore, Lemma 1

i?nplies\'the convergence of the sequence -is n(x)}of the partidl
2

sums of the series (4.1.1).

Hence by Lemma 4, it follow that the orthogonal series

(4.1.1) is (N,i)n)- summable almost everywhere on E.

4.5 PROOF OF THEOREM 3 s+ We have

§ 2
On<oo,

) 2

C
i.e. > — (Loglogn)’<.o0
= (Loglogn)“ -

Consequently, it follows from Lemmsa 2 that the orthogonal series

) C
) e 2 (x)

is (G, )-summable for every &K>o0.
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Moreover, due to Lemma 7, it follows that the sequence S_loglogng
is positive, concave, monotone increasing and tending so slowly

to infinity and A(loglogn)= O(n~1), hence Lemma 6 implies that
(n(x) = oX(loglogn?

vis valid almost everywheree.

With this the theorem is prowved.



