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CHAPTER - IV

01 THE ORDER OF CiRTAIl SUMMABILITY 

MEMS

4.1 Let fn( x)j (n=o, 1,2, .....) "be an orthonormal
O

system (ONS) of L -integrable functions defined in the closed 

interval fa,bj . We consider the orthogonal series 

oo
(4*1.1) > °A(x)

n=o

with real coefficients C’s.
n

She notations sn(x), tn(x), |Pn]e:M and |pQj eBVIr mean

the sane as referred in Chapter II.

n
Define K^C^x) =

feo

and ^
I^Cx) = j]ln(t,x)| dt 

a
"fellHere Kn(t,x) and L^Cx) are respectively called the n kernel 

and n Lebesgue function of the ONS Y0n(x)j *

She behaviour of Lebesgue functions effects upon the

convergence of orthogonal series. The connection between the

behaviour of Lebesgue functions and convergence was first
1) ?)

discovered by Kolmogoroff-Seliverstoff and Plessner for

1) Kolmogoroff and Seliverstoff ( )
2) Plessner [6^3



the ease of Fourier trigonometric series. It was then extended

to orthogonal series for tbe convergence and Cesaro summability 
1) ' 2)by Kaczmarz;' and Tandori ' and for summability by first

logarithmic means by Meder.^ Sunouchi^ has also worked in

this dierection for Biesz means. While discussing the influence

of Lebesgue functions on the Gesaro summauility of orthogonal 
5)series AL exits ' has proved the following theorem.

THEOREM A : If the lebesgue functions

(4.1.2) 1 n(x)
b 2*

„ k=oQl

dt

of an OHS ^n(x)j are uniformly bounded on the set E'C[a,b] f 

then the condition 

oo
(4.1 .5) En=o

On < oo

implies the (C, cx> o)-summability of the orthogonal series 

(4.1.1) almost everywhere on E.

In this chapter we extend the above result to Riesz and Horlund 

summability as follows :

THEOREM 1 j If the lebesgue functions (4.1.2) of an OHS iPn(x)| 

are uniformly bounded on the set E-.c: [a,b] , then the relation 

(4.1.3) implies that the estimate

6^( ox(n)

1) Kaczmarz £28]
2) Tandori £82]
3) Meder [47J

4) Sunouchi [77J
5) kfexits ([4J, p.185)
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bolds almost everywhere on E«

THEOREM 2 { If

(4.1.4) JK>i

and the Lebesgue functions (4.1.2) of OHS ^0 
uniformly bounded on the set Ecfa,b1, than the orthogonal 

series (4.1.1) is (N,p )- summaple almost everywhere under 

the condition (4*1.5).

Further, while discussing the Ces&ro summabilily of the
1)orthogonal series (4.1.1) Alexits ' has made the following 

assertion :

THEOREM B % If the coefficients of the orthogoml series (4.1.1) 

satisfy the condition (4*1.5) and the series (4.1.1) is 

A-summable almost everywhere, then the relation

(4.1.5) r(x)= ox(logLogn) 

holds almost everywhere.

An attempt has been made here to prove the above theorem 

without the A-summability ccndition. In what follows we prove 

the following theorem j

p NTHEOREM 5 ;: If the coefficients of the orthogonal series (4*1*1)

satisfy the condition (4*1.3), then the relation (4*1*5) holds 

almost everywhere.

1) Alexits ( [4j, p.129)
2) Kantawala [jO]

n(x)j



4»2 In order to prove the above theorems, we need the following 

lemmas s

LEMMA 11 ^ : Under the condition (4*1»5) the relation

(x)-6^ (x) = o (1) 
n * n - „

is valid almost everywhere fi>r every index sequence with

£ U >1- 
n

LEMMA 22^ ; If the coefficients of the orthogonal series (4• 1 • 1) 

satisfy the condition

oo
/ C2(loglogn)2< oo 
L__ u
n=1

then the series (4• 1 -1) is (C,Oc)- snmmable for every (&>o .

LIB 3)A 3 : If is a positive, non-decreasing number sequence

for which the relation

L, (x)=0 ( )
n- - n

K 1 2< )

holds in a set E C. gi,b] , then for the partial sums (x)i of
n r

the orthogonal series (4• 1.1) under the condition (4.1.3), the 

estimate

\(x) = Q^n5
n

holds almost everywhere on E.

1) Alexits ([4], p.118)
2) Alexits ( [4J > p-125)
3) Alexits (C4J, p.172)
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LEMMA 4^ ^ s let sn(x) be the n^*1 partial sum of the orthogonal 

series (4.1.1) with coefficients 0^ satisfying the condition 

(4.1.3) and be an arbitrary increasing sequence of indices

satisfying the condition
nk+1

1< q —^r for fc=o,1,2.........
nk

where’ r and q are constants. If

(pnj e: oc.> I

then the ortnogonal series (4.1.1) is (l,p )~ summable almost
*n

eyerywhere if and only if the sequence «,s (x)} is convergent
1 nk }

almost everywhere.

LEMMA 3 : let
00

Ea
n=o

be a given series with and {6^; as its seguenoes of partial
sums and n^ (C,1 )- means respectively. If is a convex null

sequence and

(4.2.1) ^0(D

then
6^0 ,m) = o(n) •

where 6T( A,m) denotes the (£,^,1)- mean of the series

oo

L v, •
n=o

EROOE Using Abel's transformation, we obtain

1) Meder &8]



BO

4__ „ >Vk 

A_s_ ^X 4v wllere
k—“0

ra

k=o

n

Sic+1>sk+Vn

4kV «nV *ere ^=^"4+1
k=o

Hence, it follows on account of S^-S^ by Abel's transform that

n
K.%=

n-1
= k+1)rk+4(n+1)6-ni

k=o
where f£=f£-4+1

The second difference may be represented as follows ;

4- i- 4m=

= V2Sk+1+<Sk-i-2

= (,'vi)4v(1'fel%l +

+ (”Xrrp >V1+ ( :Vi‘~';,V2 ) <V+2
11+1 ' ^n+1 ' ’

A,m) =



where Ac^= *

Therefore,

n-1
^(A,m) = S (1- )(k+l)6^.Amk;

T~—— - JQ+ 1 -k=o

n-1 A
An+1 ^Al“k+1 + 

^k+1~\
4*

k=o

n-1

p
n-1

An+1
)(k+1 )^.mfc+1

+
k=o

(AtTA.t.2 )(k+1)^+ +

+ (1_fc1)(n+1?rA
From condition (4*2.1), we get

n-1 n-1

k=o ' ' k=o

+ ocoE (At£r)0c+1H+i+

+o(i) E (--EE+2 >(k+i),\+2+
k=o n+1

+ 0(1)0- ~— ) (n+1 )m .
Ai+1- , - n
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Since ^in^j is a convex null sequence

nAmn = o(1)

and consequently

n-1
m)= o(n)+ o(n) +Q(1) 2__ ( .■ *■■■ )(k+1)mfc+1 +

k=o /vu+1

^k+1 ~^k

n-1
+ 0(1) (

k=o
)(k+D\+2+o(n)

n-1=o(n)+Q( 1) ) (-^A-)(k+i)Am

'Vt-1 - - *+1

= o(n)+o(1)

= o(n).

With this the lemma is proved.

1 )
LEMMA 6 : is positive, concave, monotone increasing

and tending so slowly to infinity thata>;q= 0(n""1 )> then (0,1)- 

summability of the series

oo
U

n
n=o

implies the estimate

>- °< v

where 6^( A) denotes the n^ (0,1)- mean of the series

oo

II Dn >n .n=o

1) A1 exits ([4]’ , p.74)
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LEMMA. 7 j Che sequence pnglognj. is concave and ziloglogn = 

0((Alogn) )t where for any sequence^ j we mean -^fc=A|E-A]j;+1 

and /x \= ^

PROP! : We observe that

2 2 A loglogn = loglogn + loglog(n+a) ~ loglog (n+1).

fhus in order to prove the sequence {loglognj to be concave, 

we must have

log( i£ffliil°gi£±2l o
log^(n+l) ' .

or

(4.2.2) l°ga.-A°g,(at.2l g !
log^(n+1)"

low

logn=log(n+1-1)

■i

= log(n+l) + log(1- jjpj-) ,

i.e<

1(4*2.3) logn= log(n+l)“ 7r,yr - ------------n
- Kn ' 2(n+1)

and

log(n+2) = log(n+1+1)

i • © • j
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(4.2.4) log(n+2)= log(n+1) + - -^~^z“4" • • * • •

Hence, from (4.2.3) and (4.2.4)

logn. log(n+2)-£~r log^(n+1 )+log(n+1) $——
L (n+1(n+1) 2(n+1)

+ 1
3(n+l)3 (n+1) 2 (n+1}‘ I
*j

log (n+1)- log(n+1) i (n+1)' 1
2(n+1)/

+ . 'I
<log (n+1).

This proves (4.2.2).

How, we proceed to prove that

A(loglogn) =Q( (nlogn)”1)

We have

jAloglognJ = j loglogn - loglog(n+1

= loglog(n+1)- loglogn 

log(n+1)
f

“ ) 2 
logn

<_ l°g(n+~^ )-logn 
logn
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mm 1Since <£ logn = Q(n ), we have

jAloglognj = O(n"1)=0((^gn)“1).

This completes the proof of the lemma.

4-3 PHOOP OP OHEOEEM 1 s Since

00
„20^< 00

n=o

there exists a monotone number sequence such that

A""”* and

00

Y1 CHA^c0 •n=o

It is also easy to construct (for instance geometrically) a

strictly increasing concave sequence with

2.22 _
“n^/^n’ mn~—and

00
2 2

0 m < 00 . 
n n

n=o

Staoe fly is concave and tending to infinity, is a

convex null sequence, let sn(m,x) and 6^(m,x) denote the n
4j U

partial sum and the n (0,1)— mean of the orthogonal series 

00

th

Y1 °nWx)n=o

respectively.
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From our assumption about the uniform boundedness of the 

Lebesgue functions (4*1.2), it follows by Lenina 3 that the 

relation
s^p(m,x) = Ox( 1)

holds almost everywhere on E.

Hence, the relation

6^p(m,x) = 0X(1)

is valid almost everywhere on E due to Lemma 1.

Also
<TXm,x) - rp(m,x) —*»o ^

almost everywhere with 2^<cn<2®+^ .

(Therefore, the relation

^(m,x) « 0X(1)

is valid almost everywhere on 1.

Since the series

oo

IIn=o

arises-from the series

oo
(4.3.1) Y~ cyyyx)

n=o
by multiplying by turns the terms of the series (4*3*1) by 

the terms of the convex null sequence ^1/m^j , it follows by

1) Alexits (C41, p.119)
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Lemma 5 that the estimate

6^( A,x) = ox(n)

holds almost everywhere on E.

This proves th e theorem completely,

4 *4 PROOF 01 THEOREM 2 } From the given conditions, we can 
conclude by Theorem A that the orthogonal series (4.1.1) is 
(0,o<>o)-summable almost everywhere ouJe. Therefore, Lemna 1 

implies the convergence of the sequence 
sums of the series (4.1.1).

Hence by lemma 4, it follow that the orthogonal series 
(4.1.1) is (Ef,Pn)- summable almost everywhere on E.

2n (x)jof the partial

4.5 PROOF OF THEOREM 3 s We have
CD

rn=o
CD

1. e.

„2On< 00

n
n=3 (loglogn)

(loglogn) <^00 ,

Consequently, it follows from Lemma 2 that the orthogonal series

h______ ^ / \

loglogn 'na ^

is (0,QC )-sunnnable for every o(>o.
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Moreover, due to lemma 7, it follows that the sequence' ^loglogn^ 

is positive, concave, monotone increasing and tending so slowly 

to infinity and A(loglogn)= 0(n ), hence lemma 6 implies that

= ox(lo#ogn)

sis valid almost everywhere.

With this the theorem is proved.


