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CHAFTER - V

ON THE LEBESGUE FUNCTIONS AND SUMMABILITY OF SERIES

IN POLYNOMIAL-LIKE ORTHONORMAL SYSTEMS

5.1 Let {ﬁn(xg (n=0,1,2¢.+..) be an orthonormal
system (ONS) of LS(X)— integrable functions defined in the
closed interval [g,1°, with respect to a positive, bounded and

summable weight function g(x). We consider the orthogonal series

.

0

(5¢1.1) Z cnﬂn(x)

n=0

with real coefficients cﬁs.

The nth'Euler mean of order g>0 (or the nth (E,q)~mean)

of the sequence of partial sums{sn(xQ}of the orthogonal series

(5.1.1) is given by

1
(a) I N Ly a-k =0,1,2, 000
(SCUNES (Hq)n;<k?q o (x), 0=8,1,2, 4000 (230,
where n
5,(0)= ) Gy (x)
. k=0 ’

The series (5.1.1) is said to be Euler summszble: by means
of order g or more precisely (E,q)-summszble t s(x), if

1lim Tl(lQ)(X) = s(x).#
n—> o . . .
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The n""-Riesz mean of order oo (or the n b8 (R, )h,a()—

mean) of the orthogonal series (5.1.1) is given by

n
5% _ E - >k *®
n()\,X?-— . (1 ;::(—1:1) Okﬁk(X)

where D‘ni is a positive, strictly increasing mumerical sequence

with ) =0 and N —>0 asn —»ow.

The series (5.1.1) is said to be (R,Mn,co)-summable to

s(x), if
lim 6‘;:\()\,}:): s(x).
n~—3>00
An BNS {,@n(x)j is called polynomial-like if its ntb kernel
n
Ky(tx)= ) A (D)8, ()
B = )

has the following structure :

r 1Y
(5.1:2) Ky(6,300= ) Relox) ) YR g (08 ),

k=1 ij;-p

where p and r are natural numbers independent of n and the
constan ts 1'Y§_n? k{ have & common bound independent of n,
] y

while the measurable functions Fk(t,x) satisfy the condition
_ 1
Py (t,%x) = Olygzy

for every xef@,b] .We assume that ﬂn-i-i with negative index is

considered to be identically equéel to zero.



The ONS f,@n(x)} is called constant-preserving, if

}250 (x) = constant.

Define
B i
xP(4,%) _; 7 B (£)8, (%)
Lﬁ(x?= g ]Kﬁ(t,x)\ g(t)at , B>-1,
a

Then KP(t,x) and Lf(x) are respectively called the n' (C,B)-
kernel and nth—Lebesgue (C,}B)—function of the ONS Qﬂn(x)j.

FPurther define for g> o

e
(a) 1 ny, n-v
E B, x)= 9
S e g BT e
o
B = | 5% 0] eas
) ,
and forx>»o
- n
Up(E,x)= ) (1= )“ﬁk(t)ﬁk(x)
k=0
and .
V(%)= X [upXe,x) | S(t)at.
a .

Then Er(lQ)(t,x) and Ug(t,x) are respectively called the nth(E,q)-—
kernel and the n'® (B,)h,o‘. )=kernel of the ONS ‘lﬂn(xx whereas
Fx(lq>(x) and V?(x) are respectively called the nth—Lebesgue (B,q)~
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function and the nth~Lebesgue (R,@n,u)—function of the ONS

2, (z)}

The partial sums s (x) of tie expansion of an Lg(x)™
integrable function f(x) in the functions of an ONS {ﬁ) (x)}

can be represented by

Pl

Ian,x) = i‘Ft) ?n(t,x? g(t)dfs

where 7h(t X) denotes the sum

Z ﬁkm;ak(x)

The nth sum

n

tp(x) = Z 0%,y (%)

=0
of an expansion summed by a linear summation process has also

the same integral form, where Yﬁ(t,x) denotes the sum

. Z SAGINCE

The integral In(f,x) is said to be singular (with
singular point x), if for an arbitra;y positive number & and for
an arbitrary subinterval [%x,B] of fa,b], the following condi-
tions hold 3

(5.1.3) lim gv;l(t,x)g(t)dtﬂ and lim Sjgl(t,x)g(t)dt.—.o
N n-—-—#mI . . n - 00 I . .
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with I= B, UNx-5, x+s] , J =[B]- [x-5, xt§) .

(5.1.4). ess lub %, (5, x) s (S )
te Bl -Ges, =g ’

where V(§) is a number depending on § and x but independent of n.

If “})n(t,x) satisfies uniformly the conditions (5.1.3) amd
(5.1.4) in an x-set E, then the integral I (f,x) is said to be

un iformly singular on E.

The convergence of orthogonal series depends upon the
Lebesgue functions. This dependence was first investigated by

Kolmogoroff-Sel iverstoff1 ) and PlessnerZ)

for the case of
Fourier trigonometric series.later on it was extended to the
convergence and Cesaro summability and summability by first
logarithmic means by Kaozmarzﬁ? Tandori@, Meder5? and Patel
and Sapre6>. The convergence and mmmability of non-orthogo nal .
functions series is also studied by Alexits and Sharma'?? and

Tandorig) .

The behaviour of the Lebesgue functions for polynomial-like
ONS is investigated by Rataj skig) and Alexits10?. The convergence
and summability of orthogonal expansions for polynoniial—-like

system has been studied by Zinovév”) and Alexitsmz.

1) Kolmogoroff-Seliverstoff([351, [36]1) 7) Alexits and Sharma [10]

2) Plessner [66] " 8) Tandori([sd, 187,089 )
3) Kaczmarz [28] 9) Ratajski([68], 69 ) -~
4) Tandori([821, I851, [881) 10) Alexits([4], p.206)

5) Meder [47) - 11) Zinovev [94]

6) Patel and Sapre L6 12" Mexits([4], p.267)
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-

Alexits” has proved the following theorems 3

THEOREM & : If the ONS {f (x)} is polynomial-like and the

condition
n-—-
2
E g (x)= O,(n)
k=0 - o

is fulfilled in the set B, then the relation

Iy (%) = Qu(1)

holds almost everywhere in E.

THEOREM B ¢ Let {ﬂn(x)}be a complete, constant-preserving poly-
nomial-like ONS with respect to the weight function g(x).

Suppose that the functions Fk(t,x) are continuous in fhé. sguare
ast<b, asx<b with eventual 'é{ceptiom \of the diagonal t=x

and that the two corditions

n
’ \ Z ,@é(x) =O(n)
&:ncL. k=0 -

(5:1:5) - .7 *045(3:)‘5 const.
are also satisfied in the subinterval [c,d] of [&,b. If the

Li(x)-integrable function f(x) is continuous in [g,d], then

§
its expansion .

) o)
(5.1.6) £x)~) O ()
’ " n=o

is uniformly (C,1)-summable in every inner subinterval of [g,d],

the sum being f(x).

1) Alexits (14],p206,267)



We extend in this chapter the above results to nth ’

Lebesgue (E,g)-function and n 8 Lebesgue (R, }\n,oc)—function for
polynomial~like ONS and to the (E,q)-»summabillty.and &R,)h,ot)-
summability of orthogonal e‘xpanéion‘for the constant—preserving

polynomial-like ONS. Qur results are as follows :

THEOREM 1 : If the ONS iﬂn(x)j is polynomial-like and the

condition

(5.1.7) g, (x) =0 (1)

is fulfilled in the set E, then the relation

5,2 (x) = Q.(0)

holds almost everywhere in E.

THEOREM 2 : Let iﬂn(x)j be a complete constant-preserving

polynomial-like ONS with respect to the weight function g(x).

Suppose that the functions Fk(t,x) are continuous in the

square agt<b, a<x<b with eventual exception of the

diagonal t=x and that the two conditions

(5.1.8) g, (x) =01)

and (5.1.5) are also satisfied in the subinterval [e,d] of

[a,b] » If the L

i(x)—integrabie function f£(x) is continuous in

c,d], then its expansion (5.1.6) is uniformly (E,q)-summable

(g>0) in every inner sub-interval of [é,d], the sum being f(x).
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THEOREM 3 :+ If the QNS {ﬁn(xz} is polynomial-like and the

condition (5.1.7) is fulfilled in the set E, then the relation

?

Volx)= Oxmz

holds almost everywhere in E.

THEOREM 4 : Let iﬂn(x)f be a complete constant-preserving

polynomial-—lif{e ONS with respect to the weight function e(x).

Suppose that the functions Fk(t,x) are continuous in the square

setsb, agcxebd with eventuél exception of the diagonal t=x

and that the two conditions (5.1.5) and (5.1.8) are dlso satisfied /]

in the sub-imterval [g,d] of [2,4] . If the I:?(X)-in“tegrable

function £(x) is continuous in fe,d], fhen its éxpansion (5.1.6)

is uniformly (R, Ny i» & )~summable (o>0) in every inner sub-

interval of [g,d], the sum being f(x).

5.2 The following lemmas will be required for the proofs of

the theorems.

TENMA 15) : Tue expansion coefficients Cn of an Lﬁ-integra‘ule

function converge 1o gero as n is indefinitely increased.

LEMMA 02) ‘Tw order that an ONS {ﬂn(x)} should be couplete,

the validity of Parseval's equation

00

li fz(x)d/u(x) = Z o2
a

=0

1) Alexits ([41,p.7)
2) Alexits ([4], p.15)
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for all fG:L/i is necessary and sufficient.

LEMMA 31) : If the function f(t)e Lg(t) is uniformly con tinuous
in a subset E of [&,b] and the conditions (5.1.%), (5.1.4) and

b
X P (5,2 g(t)at =O(1)

a

are uniformly satisfied for xeE, then the relation
I,(f,x) —=£(x)

holds uniformly in E.

LEMMA 42) : A monotone sequence of continuous functions, whose

1limit function is contimuous, converges uniformly.

LEMMA 53) ¢ For any value of gq>o0, the following evaluation is

valid.
n
max E)qké Aq&qi’ 9 n=1’2,30-coctu
ogk=n vV

where the constant Aq does not depend on n.

5.3 PROOF OF THEOREM 1 ¢ We have

n
’ 1 Z{:: v
Er(lq?(t’x? ) (1+q)" 2250 ’g)qn K“),(t’X).

Let Pn(t,x) and Nn(t,x) be the characteristic functions

of the sets in which

1) Alexits ([43, p.260)
2) Alexits (4], p.266)
%) ziza [95]
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-
E ( 3" K, (t,x)z 0 mnd <o ,

v=0

respectively. From the definition of nth Lebesgue (E,q)- function
b ] .

Flt(lq,)(x> = X \Er(lq?(t,x)] g (t)dt =

P, (t X Z e Kg(t,x)g(t)dt -

1,60 ) (DR (60 s(6as,

V=0

iceo
b

n
N Z ( S)qn"’g P, (t,x) K ,(t,%) §(t)ds-
V=0 ’ - T
b

(4) (£)=
5.3.1 A =
(5-3-1) 1 ’SX,) (1+q)

n
(1+q)® Z_—_ ( St g Nn(t,x?Kv$t,x?g(t?dt,
To9=0 7 2

Our aim is to show that each of the sum om the R.H.S. of (5.3.1)
have the order of magn:.tude(g(((wq) ) for every xe E N(ate, b-—e)
with arbitrary € » o and therefore F(Q) (X) “O}éﬂ holds for

almost every xe E. We divide the mtegral
b
g B, (5, x)K,(t,x) g (t)at
3 . . .

for n;n€>-1é into two parts :

xn~ /2 x-n"72
T
1= , e - i

X__}{13/2 & x*ns/.g .

e first estimate |I,,,|



Using Schwarz's inequality

a2 A
15, J__}/ P2(t,x) s(t)as j i\(t,x)g(t?dt.
X~1 X"‘ﬂ

Now the conditions (5-1.7) and Pr‘l?(‘b,x)51 implies that

i 3/ 2
/

X"‘Il

=OX(\>n'3/2).

Hence by Cauchy's inequality and Lemma 5

R . ,
Z: ( ‘)) = 9,191‘\32 ( g)z qz(n-ﬁ-’? Z ngi <
Ile ‘)an

1

c.ioémjin( S ZW“}: V1 jg
G
22;
)+

» »-ne

..Omimqﬁn nF 572
= QX(@+q)ﬂn-1 n

i.e.
(5.3.2) Z ( qn'”]Im} =0, ((+q)n) .
' V=1 o

Now, we proceed to estimate
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n
Z ( )™ 15
55,

Tet us put
P (t,x)P (t,x) for t= @,,x-n"3/2_]UE;+n‘3/2,b] .
gk(-tax) =i ) o .
. 0 otherwise.
Now
n n \ x—n-§/2 b
Z(ﬁqn"v\%g'l =Z(§)qn'”\( Y +§ )R, (t,X)'
=, >=1, - ! "3/

K’>(t,x)g(t)dtI

Since, the system.iﬂn(x)j is polynomial-like and therefore using
the definition (5.1.25 of the kernel Kn(t,x), we have

Z(n)nvl D2 =

'\?:‘:ﬂ

an"B/e
Z L [ B AP EN ) Fku,x)i— AAS
X+n / = i, j=-p »
Pypi(H) A,H(x)g(t)dt }
_n=3/2
CDEP ) a0 - )*
2.4 1>3~-P>~3-n > } ’J’kl l vt Xi l i xgn'yz’

Pn(t,x)Fk(t,x?,@wi(t) g(t}dt{

Using, the definition of the function gk(t,x), we obtain

Il

NS
¥ e

n~9l 2!:
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b
X gk(t,x)ﬂ9+l ) (t)dt}
a

T p n o
=0, ) ) Pt | RGO A %<“°>d’°\ _
" %=1 I==p =0  ~ a
i.e.
(5.3.3) }: O (1) E 5 ($)d" gku:,x)-
, - et .
;6,,+i(t} g(t?dﬁ}
Now Fk(t,x) =X 1t-x]—1) and l‘b-x];n;j/z imply shat
& (3| & P.n(t,x) ka(t,x)jz-O?nWZ?.
1. gk(t,x) is bounded for a fixed n.
iee. gk(t x) is integrable, which means that the integrals

on the R.H.S. of tbe alove relation are the exmpmnsion coefficients
of Lg(t)—in’cegrable function (with fixed i) which tends to zero

as¥ —» & due to Lemma 1.

Now, let us choose n large enough and fix it.
Since

b
5 (1; x)ﬁw_l(t)g(t)dt ——0 as ¥ ——>
‘a

for givenes»o ,J n,>o such thatx);no implies
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S AMROIOLE RS

a
Let
b
M = max i }S g, (%, %) gfﬂi(t) g (t)dtf , where v=0,1,2.....n0-1,€j
a - - . . , -
Then n b
> @0 [ g 508,, (0 s (8)as]
»=0 = a ’ ’

n
-9
S H > &)
V=0 .

= M(1+q)".

Consequently, from (5.%.3) we get

I
(5.54) ( D&, =Qara)™).

V=1
&

Hence, it follows from (5.%.2) and (5.3.4) that

n_ b
> @ [ 2065 k (nus(oat = Qara)™)
V=0 . a ’ ) i i

is true for almost every xe E [} [ate, b-e] and in similar wey

we obtain that the estimaite
n b
ny n=vy n
> D [ mx, (508998t = Qlora)®)
D=0 a : -

holds for alwost every xe EM [ate, b-€] whence due to (5.3.1)

we obtain that the estimate
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(4) 4y =
0w -0
holds almost everywhere in E.

This completes the proof of our theorem.

5.4 PROOF OF THEOREM 2 : For xe [c+s, d=§]

X-5 b
i( g+ g)f(t?Eng)(t,x)S(’u?dt}

T a Xt

Xx~& b

| g g)f(t?

& X+

o ¢ | Sizi

X+d i,3=-p

i

Z-_ B € (s x)s(t)at |

i

1 (0P, (x) s(v)as ,

x-5 b

~Deo L
}(Lq)n %—1 123__p>’)*0(%?qn \}w‘i:?,k ¢v+j(X)F g; §+S)f(t} k(B x)

it

B, (8) s (D)at]

Now, let us put
f(t)Fk(t,x), tefo, x~s] U [x+$,b]
k(tax) i ) ) .
0 otherwise.

Then we have
x-$ b
\( §+ S )f(t)Er(lQ)(t,X)g(t)dt} <

8 X+§
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< (w?-q)nz__ Z_. L_ Sl 1(:)3,1:1 20456 th(t xr

g

I+1

<t>g<t)atj

Further by Cauchy's inequality

x-S b
(g g JE£(%) E(Q) (t,x) g(t)dt‘
a 45 .
r p n 1 b
=om>§* Z: 1n@z:kﬁq‘§:}§m?”1gmgmm'
k=1 i=-p (1+q) V=0 _v=0 a

i

EAMORIOLY §2 ]2

i.e.
x=£ b

G [ e e mesmas -
a %+S

r D b
= (1) Z [(Hq)n Z (1)) n- ‘Qiy hk(t X)'@'\H*l(t) s (t>dt§2}
k= - =0 a

k=1 i=-p

The imtegrals on the right hand side of the apove relation are
the (»+1)"" expansion coefficients ¢, ,(x) of the function
hk(t,x). Mso, the system {ﬁn(x)i is oomélete and hence (with
fixed i) according to Lemma 2.

00 b

(5+4.2) Z 092“(::) = j hﬁ(t,x)g(t)dt

S=—i a

S b, (6,x)8, . (%) g(t)d’cl

i



Now, we proceed to prove that the function

b
6, (x) = g hZ(t,x)g(t)at
R

is continuous on [otg, d-g

It is given that f(t) is continuous on [e,d] »

-~

Define :
£(t)=o0, t&lc,d].

Since Fk(t,x) is continuous in the square a<tsb, a<xgbd
except for tne diagonal points t=x, for each t and every
xe [B,0b] , x£t, Fk(t,x) is continuous as a function of x only..

. - __&. . . o
Hence given€e>o,d ‘51x>°’ such that °<\m<51x<5<4]{ implies

€

2 2
(}i‘k(‘b,x%»h?— Ek(t,x)\< W) |

where M1 denotes the bound for f. (Since the s chosen &ghove is

arbitrary, we may take &< f}z'_' , Where K>o0 denote the bound

for the functions £ ('t)Fk(t x) and f (t)Fk(t x+h) in the
interval s[x=s, x-g+h] and [x+s, x+£+n3 I'espectlvely. This is
possible as the function £(t) is continuous in [e,d] and By (+, x)
are continuous in the intervals [x-8, x~s+h] and [Gts, xts+h]

as the functionsof t.

!

Now, for xe [G#s5, d-5] and o<|h|<§ <5< 15

X

b b

X hﬁ(t,m—b)?(t)dt- S hé(t,x) g (t)dt
- - a -

le(x—kh')-—Gk(x)f =
' ’ a
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xth-§ x-§ b
= |+ [ R e amas [+ [ Pmminn stha
xrhvg T ’ a Xt ’ )
Let us put

E= Ea,X"‘S'*‘@ U I[xts, b] I’H:C,d]'
Then, the contimuity of Fk(t,x) is true for any $=E and all x

ad therefore

|6, (x+h)-6, (x)] =

XHS+h

= \(é £2(6)FE (b, %00) 3(4)at- S £2(4)B2 (4, 2+h) g(4)at)-
’ ) ’ X+8
X=-5+h
—(é'fg(t)yi(t,x)g(t)dt— S fz(t)F§<t,x)g(t>dt)s
: T e .
= \ g £2(£)P2( 4, x+h)S(t)at ~ % £2(6)FE(,%) s(t)at |+
yo " : - -
x=-§+h x+§+h
+ l g £2(4)F2(,x)s (+) dtm S fg(t)Fi(t,x+h)g(t)dt)
X~5 ) i *x+§ ’
x-5+h
= & £2(4) |BE(t, x+h)-F2( %, %) g ($)dt + g £2(4)B2 (4, %)8 (t)atr
xt+g+h ‘ e
+ g £2 ()P (4, x+h)g (t)at
X+8 . .
2 c
< S 2K b
1 2M$(d-c) B +2xin]
< £+ K f% = €

Hence, it follows that Gk(x) is uniformly continuous.
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Now, we proceed to prove that Gn(x) is also wniformly conti-
nuous im Lc+s,d-—s]. As noted above, since for each + and every
xe[@, ] , %#t Fk(t,x) is comtinuous as a function of x only

for given e > o0, J 52X> 0, o<|h§<e§2‘X<<§' 3

i?k(t,X+h>—Fk(’t,X)i< W% '

Now, for xe& [e+s,d-g] and |h| <52X, by Couchy's inequality
b b
\cn(xm)-cn(x)\:\ j hk(t,x+h)ﬂn(“t? g (t)dt- S by (£, %), (%) g(t)dt[
. - 3 .

b > b 1
SIS %.bk(’s,x+h)—hk(t,x)§ S(t)dtiQﬁ(t)g(t)dt}%
) , ,
X 2

£

by
(6) (B (5, 00) T (5,)) P s(0)as | -

Hence, it follows that Cn(x) 18 also uniforwmly continuous on
[c+g,,d-g]. Consequently, it follows from (5.4.2) and Lemma 4

-

tmt the series

Converges uniformly and therefore, it follows that the
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sequence {C§+1(X2} converges uniformly to zero as w—o00 and
this implies that the n o (E,q)-mean of {Q5+i(x)§ also converge

un iformly to zero, i.e.
n

1 Z (2) g ﬁ E hk(t,x?ﬂ%i(t) g(t)at f:om).

n
(1+q? D=0 a

Thus, it follows from (5.4.1) that for xe [o+s,d-g]

=5 b
( g + g )f(’c)Er(IQ)(t,x)s(t)dt=0(1).
a ' X+§ ’

Since, this relation is true for any Li(t>—integrable function
f, coutinuous in f[e¢,d], in particular taking £(t)=1, te [a,0],

we have

—

S '
4.3 ([+ DEf e gnaso(n).
] a  X+g

W
No n

(a) 1 ny n-v _ -
E, Y (t,%x)= ) (M)a™ " K(t,x)=
8 (1+0)" 5= K

n

1 ny n-v
= (Mo E g ()8 (x)

V=0

8}

i
(11 )ni B0y (x) ) (D",
+4

=0 =

i

Hence, it follows from the constant-preserving property of

the systenm iﬁn(xzf tm|t
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b

XE(Q)(t 08 (£)at 1 ﬁz o (6)p_(x) Z 2 ”fg(t)ah
(1+q)n Z Z(n) n*vhjg m(t?%{t)gﬁ;)ﬁ

a
.
B 1. 2 oy n->3
= (1t )n (g)q
q Y =0

Consequently, it follows from (5.4.3) that

x+$
(5.4.4) &' B 2 (6,%) s(6)at=1+0(1).

Thus, it follows from (5.4.3) and (5.4.4) that the relation
(5.1.3) is uwniformly satisfied in [c+5,d:-,s] with ”fi‘l(t,x)=E]gQ) (6,%x) .
Further, for xa B+s,d-s] and teld,x-s1¥ [x+s,Db]

\E(q)(t x) 1+q) Z(g)q K}()t X)l

=] = - . 2 )
"] (1+9)" Z ($a" Z Fk(t”‘)Z "ij)a-,fc
- P=0 k=1 i, 3=-p |
'gv+i(lt)ﬁ~a+j(x)|
< — - - = n n-\).y"l(\))
- (1+Q)m Z Z le(.t’x)IZ (v)‘l ) i,j,k“ﬁW:L(t)’ '»‘*‘J(X)]
k=1 i, j=-p ~ =0
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=O(1) Z 7 5, )|

~ -~ -
—

=OC et )
-0( 7))
Thus -
lEDQ)(t )| < peed .

i.e. The relation (5.1.4) is uniformly satisfied in [c+s,d-g]
with V%h(t,x)=Eéq?(t,x).”In otherwords, we have proved tiat

the means -(-éqZ(X) of the expansion (5.1.6) are uniformly

s lngular in the g.nterval [c:+§,d-s_] . Also J;.‘:c'om Theorem 1, the
validity of the relation

W(x) =O(1)

follows in every subinterval L—c+$,d~s] of (c,d) Consequently,

it follows from Lemms % that

L (£%) = D Vs (x) =

<1+q>n }: D Z ()

n

n
(1lq)n E:: Oy (%) E:: e
) ﬂk:ol - -

=k

{
—~
P Y
A\/
¥
N
1
VoY
-
+ s
Q
g
B
!‘\/l
St

i

]

n 4}

b
1 * ‘ ny n-y
e L ] s ) G

]

K:O —-k
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1
1 n n—ﬁj
f(?)i(ﬂ'q)n kg=o %étzﬂk(xz ikf\;?q s(t)at

il
LAV ¢ o
3

2= Z G n“"Zfo' ()8, (x)| s(w)at

£Qt) Z (.,,) n=vg (%) g (t)dt.

1+q_

£()ES Y (3,38 (4)as

it
Oy ¢ O Pl T

converges to f(x) uniformly in fe+s,d-s].

With $his the theorem is proved,

55 PROOF OF THEQREM % : We have

UgTE, )= Z (1- anMKHMK(X)

Effecting Abel's transformation, we obtain

U, %)= Ziﬁ -;‘L 0‘-(3- i"“ >°‘§ Kv(t,x?:

n+ 1

Let B, (t,x) and N, (%, x) denote the characteristic functions

of the sets in which

n
A o4 \v+1 %
E AR S
iﬁ P ? (1 %H?? jK(tzd> o and < ©

V=0

respectively.
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From the definition of n’> Lebesgue (R, Nys 0 )-function, we

have
b
(5.5.1) VXx) = g U°‘(t 0 (v
’ o
‘ b
v+1 oK
}: i(‘# >&1+1) a( o ) } ;P (+, x) K4(t, X)g(t)dt-—
n A , b
- 1- % D ’ ’
; 5( )\m (1- n+12 E ;Nn(t X?Kv(t x)g(t)at

Our aim is to show that each of the sum on the R.H.S. of
(5.5.1) have the order of magnitude OX(U for every
:ze}ﬁﬂzakg, b-¢) with arbi%rary €>0. Ve divide the integral

b

S Pn(‘b,x)K\)(t,x)g(t)dt

a

for nz n€>1/e into two parts :

x+1a"2 x-n"% b
o= g ! INPE S + [ 5
x-n a xtn <

We first estimate lI\)ﬂ

Effecting Schwarz's inequality we have

-2 - X+
2 ¢ Po(t,x)g(t)dt K5 (%,x)_(t)ds.
wn=? ’ X=n

We infer from the condition (5.1.7) and B-(%,%)< 1 that



x+n

15, < g __2?"(1:)(11; Z ﬂk(x)

X~-n
=0, &n?)

Consequently,by Cauchy's inequality we have

L 107 R0 i
"

EZ 0= —I—:i;)o‘-(?» é’;)“} Z - J
[Z 3(1- 5;—-) --(1- ’\n+1 f;eq;(vn—Z?Ja
=C)}((n~1) {n(n—ns—!—’l? } [Z i('l-— — ) -—(1<- t:}

n %
Qi3 1R ?"‘-“-%"":}?@‘ET |

Il

n

Z ) NN >\J+1 el
— - B } e —7\___
Q{(”v:o i(q +1) (7 n+1 ) j

Thus

n
; A *® Aw‘l
. - — Y
(5.5.2) 5= i“ i1 ) ,(1 7}l+1

Now, we proceed to estimate

n N -
A IR IS Tl BT Y A .
e 2o s
[

j\lml = Q(1).

113

=5

-
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Let us puti?n(’c,x)?k(t,x) for te [a,mﬁzj 0[x+n"2,b]

gk(tyx)"
N 0 otherwise.

o=n n+1
G ’
n A, N x=n"% b '
=) {0- 200N ]+ [ e ok emsat | |
vzne n+1- n+1. 2 X+n—2’ i ) .

Since, the sys tem &ﬁn(x)} is polynomial-like and therefore, by
definition (5.1. 2) of the Kernel K, (t,x) JWe have

Zﬁ(% n+1) G- Z;l)(xf [Foel

)\) x-n_ b T
- Z j01- Do yet (4 o«j X X P, (%) » B, (t,%)
\)=n6 al xtn 2 ) =1
i &:Z)l o1 (F )ﬂvﬂ(x) g(t)dt)

i, j=-p

- . A A (%)
OQ >\ K R
S—f_ >_‘ (1- er) x] ) } i, 3, kl\¢v+ggx?{'

k=1 1,J=-p ﬁ:n

IN

X"'Il b
a <+

Using the definition of the function gk(t,x) amd the comdition

(5.1.7), we obtain



‘S(t)dt]
Applying caUChY'S inequality, we get B
(1- —2.\2._—) __(1
;5 Mt 1
= Q.0 1= D9 )% (g a+1)
| )]>‘~ 2-’-“13[23-—11 i( }‘nﬂ ( Mne . f
A 1 ? 5 3
D+
Z:ﬁe B R ) i n+1,) ﬁi g (%) X)’G\)—rl(t)g(t)dt}J
\P n N N 1
:O 1 (1__ ¥ )0‘__ 1= D )K .
X( )2131 i.[—:-p {Z=O§ m ( )‘n+1 j .
- A A 1 F 2 5
. b weitialtals wortl) t,%)8 -(t)g(t)dt} J
;i;é i( P+ 1 ) Ant1 z § gkf F o1 .

n

. )\)-M -

(5.5.%) g: 10 »\;1)0‘ (- a\w?m} [Tz -
=n

- O(1) TS&XD— ji- ;;ﬂ)“m- )
V=

S 5=T 5o n+1w

%

2
ig gk(t,x?ﬁwi(t?gﬁl)dtj ]
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Now, Fk(t,x)z O 1t-x [_1) and |t-x| ;n_z imply that
g (tx)| < P(tﬂ}EQ%ﬂl=D@%~

i.e. gk(t,x) is bounded for a fixed n and ben'ce it is inte~
grable. Therefore, it means that the imbegrals on the R.H.S.
of the above relation are the expansion coefficiénts of

Li(t)-integrable function (with fixed i) each of which btends

0 zero as v —>»00 due to Lemma 1.
Now, let us choose n large enough and fix it.
Since

b
S gk(t,x)ﬂ,‘”i(t) 2(t)dt —>0 asv—> @
2 , . .

for given €»>0 ,J n,>o such that ¥zn,  dimplies

b ,
& gk(t,xm%i(t)g\(ﬂax{.: €.
a ) ’
b
Let M= max & ly gk(t,x),@v_‘_i(t?g(tZdt\ , Where»=b,1,2....
& ...no-‘l’e}

Then

n b
> jo- ;;i——) (1= "”>°‘jjilgkﬁyx)ﬁwi(*’)s(t?dtjz

:)—-ne

n
)\p 1)+'! oﬂ.
Mg; i(T- )\1+1 - 0= n+1

N
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Hence, it follows from (5.5.3) that

(5.5.4) Z fo- 2 oo "“*‘:1>°‘j Lo =0

l’l

Hence, it follows from (5.5.2) and (5.5.4) that
n A\ N b
x V1 % ~
o B 2o s Qo

is true for almost evexy x€ Ell[a+¢,b-¢]and in similar way,

we obtain that the estimate

= b
- Ao K SN 0
; i('i M1 (1 X——_n+1? j gNHFt,X?K\)(t,X)ﬂt)dt X(Q

holds for almost every x«B [ [a+e,b-€], whence (5.5.1)

implies that the estimate
votx)= O.(1)

is valid almost everywhere in E.

This completes the proof of the theorem.

5.6 PROOF OF THEORHM 4 :- For xefe+g,d-§]
x~5 b ‘
(& g )E(4)T, x4, x)g(t)dﬂ
g X+
x-£ b
_ ) g K)f(t) Zi(i-— —~2)% (1--)\"H )}K (%, x)g(t)dt]
B XS . n+1 n+1
[ Do [5 T
= (| + >f<t>[ (1- 2o (- (t,).
ag xié v:oi AIH n+1 .
4
"fg_‘;"a?m_ By 1 ($)8,, 5 (%) g(t)dt}
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r 11
N\ >‘1)+1 X +y (V)
b wetki e werl S
x-§ b
L Proms, x)ﬂwl(t)e(t)dt\

e xts

A 1,3,k 9+3(X>’
k=1 i, j=-p =0 ‘

Now, applying Cauchy's inequality we obtain
x-§ b «
| [+ Decomgiemgan] -

a X485

o) }__L D__ j- 5 52—) = (1- ‘:; “ .

k=1 i=-p

Zi(% ;i—>°‘-(1 ”"” “}i& ny (5,%)8,, (t)gmat} ]

55 n+ 1

o

where h
hk(t,x)r-{f(t.mk(t’x}’ t & [a, x~g ¥ [X+5,b]

0 otherwise.

i.e. s |
(5.6.1? l( &4« g )f(t?Ug(t,x)g(t)dt} =

a x+§

B

0 ] 3]) o oy

k=1 d=~-p
o o 1%
E j hk(t,x)ﬁwi('t)g(t)dtj J
a ’ .

The integrals on the R.H.S. of thne above relation are the

("0+i)th expansion coefficients C’)“_i(x) of the function hk("h,x).
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Also, the system iﬂ (x§ is cowplete and hence (with fixed 1) .
according to Lemma 2

o8 b
(5.6.2) z:: c§+i(x) ='§ 02(t,x)¢(t)as.
R SR S

The continuity of the functions
b

¢, (x)= g hi(t,x)g(t)dt

a

and cn(x) in the interval [o+s,d-$] follows on the same line

as prm—red in Theorem 2. Consequently, it follows frua (5.6.2)

~

and Lemma 4 that the series

Sf: ~9+i(x)

V==l
converges uniformly and therefore, it follows that the sequence

{\%l(x)j converges un iformly to zero asv»—> o0 and this

implies that the n® (R, Apr &K )-mean of jlc-o-t-i(x)j also converge

uniformliy to zero, i.e.,

n X % ) b 2
Z 5(1.. o) 0L (- L )‘ﬁ & b, (4, )8, ; (%) ¢(t)at f =o(1)

— +1. n+ i
V=0 a

)

Thus, it follows from (5.6. 1) that for xze[cts,d-s)

=85 D
( K & )f(t)U°%t x)g(t)dt—o(1)
a X -

Since, this relation is true for any ng(t)-in’cegrable function
f continuous in [e,d], in particular taking f(t)=1, t€[,b],

we have -5 b

(5+6.3) ( S X>U (‘G,X)s(t)dt"om)

a XS
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I
Now U;(t,x? = Z (1~ }\E:)ef'i'@k(tzﬁk(x?'

k=0 -
and therefore, it follows from the constant-preserving

property of the system S_ﬁn(k)_} that

b n
>\k
t, £)dt= 1~ %
QU;% x)g(%) k_}:o (1= 55 P (94, (8 (912

i
ja]
I g PR

b
N &
(- S () if"k(“g(“dt
Me o D™ i |
= 1- ) t t) $(t)dt
I vt et yk( )8, (%) $(+)
>‘0 (¢ 8
——(1 )\IH-?

Consequently, it follows from (5.6.3) that

X+§
(5.6.4) X Ug(t,x) g(t)dt= 1+o0(1),

X~
Thus, it follows from (5.6.3) and (5.6.4) that the relation
(5.1.3) is uniformly satisfied inf [c+s , d-§] with 'fh(t,x):U:(’c,x).
Further, for xe [¢+s,d-g] and t& [a,x-g U]x+s, Y] f )

n
[0t ) =L; j0- l‘j;?“—m— X% g, x)]
A M
- %zﬂ}%“_ nJ:1 0‘} Z ) ;—p
A oy
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r
_| S 2 "—(w— 2orl yod y(9) g (g, x).
& %___1 1’3_____p 7)"0& . &l’t“’ - 1 J k k .
'¢9+j(x)¢v+i(t?{

r

SIPEPM T,

k=1 i, j=-p v=0

< A
n+1 t-a- %Zt1 / }iﬂ S 3, kl\Fk(t,X)!

gy O 1y s (8]

r
=0(1) |7 (%)
S
]
- O 13-%] :
]
= O z )

]Ug(t,x)[-g «p(s?.

i.e. The relation (5.1.4) is uniformly satisfied in [o+§,d-§]
with Th(t,x)sUgit,x). In otherwords, we have proved that tne
means Gg?),x) of the expansion (5.1.6) are uniformly singular
in the interval [o+5,d-S]. Also from Theorem 3, the validity

of the relation
V:(X)=O(1)

follows in every subinterval[c+$,d-g]of f{¢,d]. Consequently,
it follows from Lemma % that

n

L& 0)=6000m)= ) (1= 350, (x)=

k=0 o+ ’ '
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)% [ s e ms

+1.- 3

I
B

o7

e

T
o

B

I

M &
/\ﬂi) ﬁkmﬁk(x)j §(t)at

L]
Py
c.{,.
¥ N
—ry
—
§

(

T
o

I

f(t)Ug‘(t,x)g(t)dt.

1

B ey T W

converges to f£(x) uniformly in Je+§,d-§] .

With this the theorem is proved.



