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CHAP T - 8

ABSOLUTE CONVEnGENCE OF OnTHOGONAL SEHIES

Let {¢n(x)} be any orthonormal system defined

in the intexval [a, b] and let

(=~}

(8.1.1) fF{x)rmv L

C, @ \x)
K=o k¥k

5 < 2 ,
be the Fourier expansion of fi L™ [a, bj, where

)
Cn = f f{n) Sﬂn(x) dx
a
(2)
we shall denote by 2 {f) the best approxima-
(2)

. . , 2 .
tion to f{x) in L and by w (&, f) the qua atic
modulus of continuity for f{(x)

lee,
Y

. I} . 2
En {(£) = ™D {4] Lf(x) ~ Tu«) ]2 dx) '

T a

where T(x) 15 the partial sum of any order less thin or

egual to n of an orthogenal series I C, ¢n {x) with

arpitrary coefficients Cn , and
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N~

2 Sup b , ) 2 &
= fix + h) - f{x) d
wo (&, f) <h‘<6§~af Lfix x) ]° dx

SN
Let & denote a class of functicns and {Qn(x)k

a given orthonormal system in [a, b]. Let us form (for
a fixed natural number n ) linear combinations of the

functions ¢o(x), ﬁl(x),......o¢m (x) of the form

il a3

Sn(x) = %nk ¢kkx)

k=0

. r )
with real ank

Let dn(f) denote the lower bound of the differe-

nces
sup | fix) - Sn(X) |
ad x$¢ b
formed with every possible linear combinations Sn(x). The

non-negative number

sup
® ) = a (f
. (R) g )

¥
is said to be the best degree of approximation attainable’

for the entire class R with arbityery Sn(x).

Let dn{p)(f) denote the lower bound of all the

numbers
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b P \
{; Jielx) = s (x) | du(x)& ,
a

n
formed with linear combinations Sn(x) = L C ¢FKX)»
k=0 i
then
sup {p)
9 (ﬁs P) = d (.f)

is said to be best degree of epproximation for the class

p

£ in the sense of Lp - appTroximation.

Absolute convergence of Fourier series has been

1)

investigated by several authors such as Bernstein™,

) etc.

o 2) & - - 3} s 4 1. 2
Szasz ’, gtewehkin 3.B.77, Zygmund While the

absolute convergence of orthogonal serizs has been studied

in great details by Stef chkin 508.3) Zinovev5}£~Tandori Ké).
Concerning the absolute convergence of Fourler

series Stetchkin 5.807) has proved the following theorem :

Eheorem A~

Let féaLz {o, 2n] and let

& co
(Bolo2) f{x) = —§2~ + L  {acos nx + b_ sin nx)
n==1 n n
1) Bernstein {13] 5) Zinovev [146]
2) Szasz (123} &) Tandori Kk [ 134]

3§Ste&chkin pn] 7) Stetchkin 5.8J116]
4} Zygmund 151



be its Fourier series., 1f we fix an increasing sequence
of numbers nys then
- o (2)
Eola +b | < I =i W <, 1).
k=1 Mg k k=1 Y k k
3zasz 1) has .preved the following theorem

for Fourier series with the assumption

bounded variation.

Theorem B :

If f(x) is of bounded
o 1
Pt 0
n=1 n

then

that f{(x) is of

variation and

an

the Fourier series converges absoliutely.

In this chapter we have generalized the above

theorems for orthogonal expansions of

following thegrem,

Theorem 1 3~ Let ¢ L" [a, b]
gfzégnormal expansicnﬁ Then
- 1P
(8.1.3) > W k
n=l

f(x).

and (8.1.1) be its

W . . W W
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We prove tne
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Theorem 2 :~- 1f f(x) 1is of bounded variation, then

o~ -~

Szasz has proved the following theorem D (refer
Alexitsl)) for absolute convergence of orthogonal expansion
of a function of a certain class. BernsteinQ) has proved

the theorem ¢ for general orthogonal polynomial expansions.

Theorem C

Let .ipnix}g denote the orthonormal polynomial
system, belonging to the distribution du(x) and {Cn} the

sequence of the expansion coefficients of a function f(x)
which satisfies a liptchiz condition of order g with

a > —%~ . Then we have the relation.

Thus, the pn(x) expansion of f(x) is absolutely

convergent in any interval of bouncsdness of pn\x) .

1) Alexits G([5] , p. 334) 2) Bernstein [14]
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Theorem D @

— ————"

Let §‘¢n&x)3 denote an orthonormal system and
n )

& a3 class of the functions such that the best L appro-
wimation of the functions f{= R by linear forms

»

has the degree of approximation

$ R, 2) = O(—-) (a > o)

n

If 2>8» _Qi o then for the expansion coefficients

C, of arbitrary functions fi- R, we have the relation

We extend Theorem D, Theorem C directly follows

from our theorem excluding one condition.

Theorem : 3 :~ Let {¢n(X)S denote an orthonormal
system and B a2 class of functions such that the best
L” - approximation of the functions fl- R by linear forms



has the degree of approximation

—_ns ane ——— - e - -

8, (®, 2) = O i“ ), « > o. |

- —— - - T -~ Gl " -

lga}ﬁ(a + -%—) > B+l, £> o then the expansion
3

C, _of an_ arbitary functions f(R, _we_

- o - - e e o - D SN D G ey S S G S G W o o ——

and (a)} the segquence of the expansion coefficients of

e o g T e S . s G . W 2 —_—— Y - W —

a function

- o o

of order a with a > o. Then we have the relation

——— A - S Y T S - - ——— - o N

- T ———

convergent.

- - \‘

Concerning the functions of the class Lip a,Lorentz

hus proved the following theorem for Fourier series.

Theorem El) H

If f& Lip a, a > -§~ -~ (o <pg2), then

1) Bary N. K. ([11], p.215)

i

65



L
oo p P p c .
Cella L +lp b)) & 1 1
k=n n(l?z"p

We have extended the above theorem for orthogonal

expansions of functions of any class.

Theorem 5 s~ Let {'Q‘tn(x)} denote an oIthonormal system

T - S — D W - o W o - S SO I G TG SOy W s S

and@g class of _:fgnctior_xg such _ghat the best L2 =_appIo=-

- - —— - e - — " o

- - - -

- ——— -~ - — "

kzc

1
Sn(ﬁs 2) = O( na ) .

Then, for the expansion coefficients Cn of an

arbitrary function fe& R we have the relation

, i
o P11 ®
| c | < S .
k=n n a+~l—" -
- n 2 p
For proving thesz theorems we need-the following Lemmas :
1)
Lemma 1 + Let U 3> o i (n =1, 2, eoenees )
T
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o
Eooa & (x) has the degree of approximations

1) stetchkin [1i6] l
L
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o 2
.= L U
n k=n k
Then
?ZQ u < 2. = Vrn
n=1 n V3 n=1 n

1)
Lemma 2 : Let .{pn(x)& be the orthonormal polynomial

system belonging to the distribution dp({x) and let f(x)
be a function continuous in [a, b] with the continuity

modulus w(f, 8). There exist a sequence {ﬁn (f, x)B of

linear forms

n
Sn \f, X) = kio ank Pk()‘f)
for which
sup 1
| fix) - Sn(f, x} | = O flwlf, . ) ],
ag xgb
Proof of Theorem 1 : By Bessel's inequality we have
o 2 b 2
nik C, & af | fix) - Sk_l(x) | dx

1) Alexits G. ([3], p. 304}
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(2) 2
= [ E, (f, @) 1] (Refer Alexits G.[1],p.23).

Using Lemma 1 we get,

Tolc | ¢ =1 11§ 2
k=l LS ¥3 k=1 k n=Kk n
- (2)
§ 2= 2= g, 9).
V3 k=1l Yk

But by Jackson's inequality for approximations in
2

the metric of the space. L , we have

(2) (2)

1
n (f) < Cl W ( n ? f)
Therefore,
oa o (2)
L ; Ck 1 < C? z ,i_ w (‘%”r f)
k=l k=1 Yk
But by {8.1.3) we have
b c | < =
k=1 k
By Schwarz inequality we have,
=P :MA (x) v Vb 2 |
5 1 —
(8.1.5 kio K | ¢, 8,(x | dx= C>(l)y£ | ¢ | éf Pk { x)dx

=0 I ||

0
{ .



Using B.Levy's theorem, we have

Tlc gx) | < .
k=0 k 7k

Hence the proof.

Proof of Thegrem 2 : -~ #e have in fact

1)

{2) ¥y (1)
w (6, f) < 2 w (&, f) wlg, f)

Now f is a function of bounded variation, then

(1) 2)
w (8: f) =O(S)

Hence by above theorem,

@ 1
Il |l ¢ I o= ow (5, f)
k=1 k=1 V&
o Fi g w0
3 k=1 V& -
o0 / w(*%* , f)
p=t C, E k
3 k=1
< «“

by (8.1.4).
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But oy (8.1.5) and then applying B.Levy's theorem,

1) Stechkin [116] 2) Bary [11]

-



we have,

8

c. @ (%) $ =
) G0 |

4

k

Hence the proof.

Proof of Theorem 3 :- By HOlders inequality we have,
n+l : n+1l 28 “% n+1 2-8
2 t § 2 5 B 2 5
£, k- jc, | &y, Gk t, 1
k=2"+1 k=2"+1 k=2"+1
n
(—2=8) g 3
2 on+l % 5 2
=02 £k C, )
k=2"+1

But we have,

noe

n+l

2 2
z c, < Y2 I, C
k=2"+1 k=2+1

S
o
+
| o
~
’O)'r\)
P
ol
+
’_l
N

28
P
k

By Bessel's inequality we have, (\ -

n+l ' /

& o & & " = JCf(x)=-5 R(x)) du(x)
k=2"+1 k=243 —A 2
2
$ 87 @R 2 - o == )
2

Therefore, ) -

£ L
2n+l , 28 ) (n+l)7%§-- )

B _ 1

k=241



So we have,

2n+l o (2:2-_5.)n +{(n+l)“%‘“ - 2‘1“} "%"
v ¥ o | = O 2
k=2n+l
Hence,
" : - (E-af + (1 - —=))n
: & c 1}’ = ¢ (2 2 )
n=1 n=Q
< o

Hence the proof.

Proof of theorem 4 %- Let & denote the class of all

functions fi{x) with w(f,8§) = QO 8a ).

According to Lemma 2 for the approximation of these

functions by orthogonal polynomial we have

n

3 () "O("i'a_)

But

1
b —
o K2 ¢ 8 Wi J w(x)) 2
a
So we have

o, B, 2) = OC =) .

Becausé for a » o, we have «a + "%* > —%—

i

’



thus theorem (4) follows from Theorem (3} with f =1

and &= ,,.%«,
w/-\Mﬂ(
Hence the proof. .
x\\
~ » “. ) ; i
Proof of Thecrem 5 :- We know that by Be;se;s’inEquality
LT

for any n, we have,

r ¢° ¢ ¢ ¢ = [ (f(x) = S (x]))dx
k=n X k=n X a n
¢ 8% R, 2 = O(——)
n2 a
. z C}( = O( 2q )
k=n ) n
Applying Holders ldnequality we have,
L2 1 -
on-1 2n-1 5 2172 ( 2n-1 52-5
rolel ¢ (icki)p} roa
k=n * k=n K=n

B
rww’"‘\
-
TR B
S
f—
O
"
()
U™
N
{-—-‘\.-"-\
o
[
!
nlo
| WL

172

el
2



1
= (1) T T p o,
2
n
1
=0 -
pla + “"2')-1
n
Hence,
1 . 1
o B P oo 2 n-1 P P
| C, | = L £ 1 Cy |
k=n j=o k=23n
L
o P
= z 1 1
j=o 3 pla + 5 )-1
(,7)
< L L Ly
b 1= -y
a+él.,_.l. j=o  plats )-1
P
n
1
© o+ = - -
n 2 P
Hence the proof.
Corl. 1: If p =2 then we obtain

PO

o 2
X C =

1
)
n%
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Corl, 2 s if a > =5~ , then above theorem for p =1

reducaes to

ft
O
—
[
S

z

| ¢ |
k=n k



