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CHAPIN - 8

ABSOLUTE CONv'EnoENCE OF OhTHOGONAL StHlES

Let ^0n(x) j 

in the inteival [a,

be any orthonormai 

b] and let

system defined

(8.1.1) f(x)rv £ C,0,^x)
k=o

be the Fourier expansion of ft- L2 [a, bj , v^heie

D
C = / fix) 0 (x) axn J 'n

a
(2)

vvo shall denote by £n (f) the best approxima-
2 (2)

tion to f(x) in L and by w ( 5 , f) the qua atic 

modulus of continuity for fix)

r ,e.

(2}
£r if)n '

nun I MHx)
v-

Tu) ]2 dx^

where T(x) xo the partial sum of any order less than or

equal to n of an orthogonal series £ C 0 (x) with
n n

arbitrary coefficients Cn , and
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w2 ( & , f) sup

o h ^ S

b
/

a
[fix + h) fix) ]2

Let at denote a class of functions and *^0n(x)j

a given orthonormal system in [a, bj „ Let us form (for 

a fixed natural number n ) linear combinations of the 

functions 0 (x), 0x(x)f............(x) of the form

Snlx) =

with real ank

Let dn(f) denote the lower bound of the differe

nces

sup | f(x) - Sn(x) |

a ^ x ^ b

formed with every possible linear combinations Sn(x). The 

non-negative number

S„l$) sup
d ( f)

f(-3 n

' tis said to be the best degree of approximation attainable" 

for the entire class -S with arbitrary Sn(x).

Let dn^p\f) denote the lower bound of all the

numbers

fO
|>

-•
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/ IfU) -

1
p Ip

5 (x) | dp(xM

nformed with linear combinations 5n(x) ~ ^ ank^k^X^’
k—o

then
O SUP (p)

^ P) - tir-R d" tf)
n

is said to be best degree of approximation for the class

* p
H in the sense of - approximation.

Absolute convergence of Fourier series has been 
investigated by several authors such as Bernstein1 2 *,^ 

Szasz^, st«tPhkin , Zygmund4^ etc* While the

absolute convergence of orthogonal series has been studied 
in great details byStetchkin 3.3,^ Zinovev5 ^ Tanaori

Concerning the absolute convergence of Fourier 
7)

series Stetchkin S.B„ has proved the following theorem ;

Theorem A

Let fr* [o» 2u] and let

S oo

(8<>102) f(x) » + ^ Cancos nx + bn sin nx)
n= 1

1) Bernstein
2) Szasz
3 )Statfcchkin
4) Zygmund

; 13] 5) Zinovev [146]
’ 123. 6) Tan dor i K L 134]
117 7) btetchkin 3.81116]

;i5i;
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be its Fourier series, If we fix an increasing sequence 

of numbers n^, then

OG

Szasz has

for Fourier series with 

bounded variation.

< Z
k=l

i
k

(2)
w f).

.proved the following theorem 

the assumption that f(x) is of

Theorem & i

If f(x) is of bounded variation and

CO

l
n=l

Vw(-n~ ' f) < .

then the Fourier series converges absolutely.

In this chapter we have generalized the above 

theorems for orthogonal expansions of f(x). We prove the 

following theorem.

Theorem 1 Let f(-L [a, bj and (80l.l) be its

oxthonormal expansion. Then

(8.1.3)
CO

£
i;=l

-X
yit

(2)
w (4- , o <

1) Szasz [-11J
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implies the absolute convergence of

Theorem 2 If fC x) is of bounded variation^.

(8.1.4) £
k=l

CO

iSEiiS.2 absolute convergence of (8_.l^l).

Szasz has proved the following theorem D (refer
Alexits1^ \ for absolute convergence of orthogonal expansion

. 2)
of a function of a certain class, Bernstein has proved 

the theorem C for general orthogonal polynomial expansions.

Theorem C :

Let denote the orthonormal, polynomial

system, belonging to the distribution dp(x) and (Cn) the

sequence of the expansion coefficients of a function f(x) 

which satisfies a liptchiz condition of order a with 

a > , Then we have the relation.

I
n=c

C
n

C OO t

Thus, the pn(x) expansion of f(x) is absolutely 

convergent in any interval of bounagdness of pntx) *

l) Alexits G([5] , p. 334) 2) Bernstein [14']
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Theorem D :

Let ^0ntx}^| denote an orthonormal system and

j? a class of the functions such that the best L appro

ximation of the functions f(- by linear forms
*

nZ a 0. (x) 
k=o n-k

has the degree of approximation

$ 2) = 0( —) ( a > O )
n n

oIf 2 > B > ——- then for the expansion coefficients

Cn of arbitrary functions f(~ 5l, we have the relation

oo |3
£ 1 C 1 < »

n=l

We extend Theorem D, Theorem C directly follows 

from our theorep excluding one condition.

Theorem ; 3 Let ^0n(x)j 2£.^222£2?Ji

system and !$t a class of functions such that the best 

2L_ - aggroximation of the functions f(- R by linear forms

n
£

k=o
txj
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has the. degree, of approximation

3 (JC, 2) = 0(—A— ). a > o . '
n

If l>p(a + -jj-) > £+1, & > o then the expansion

SSSlIiSiSGll cn _2l 2D_ 2£b££$IEX functions f(-^, _we 

h ave the re 1 ation,

00 c (j
1 n | C j < « .

n=l n

Theorem 4 :- Let ^pn (x)^ denote the or th normal 

polynomial system,, belonging to the distribution dji(x) 

and Kl the seguence of the expansion coefficients of 

2 £2D£ii2G which 2 Liptchiz condition

of order a with a > o. Then we have the relation

2
n=o

Thus the

Cl ^ QO .n 1

Pn U)% expansion of till absolutely

convergent.

Concerning the functions of the class Lip a^Lorentz 

has proved the following theorem for Fourier series. 

Theorem E1^ :

If fir Lip a, a > - —I— ( o < p ^ 2 ), then
P ^

1) Bary N. K. ([ll] , p.215)
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( z (
k=n a.

c 1
2 ' p

We have extended the above theorem for orthogonal 

expansions of functions of any class.

Theorem 

and & a

gimation

_J> s- bet ^0n

22f functions such that the best L__3_a£E£o-

of _t>Y forms

UH denote an orthonormal system

OP

l a 0, (x) has the degree of approximations 
k=o nk K

s (X, 2) - 0 C -V ) •
n

Then, for the expansion coefficients 

arbitrary function ft- K we have the relation

of an
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£
n=l

2
U

n
<

Let us put

= 1 'S
k=n *

Then

CO
E U_ < 

n=l

o °° Vx-2- Z _jn
n y™ n*l n

1)
Lemma 2 s Let <^Pnix)^J be the orthonormal polynomial 

system belonging to the distribution dp(x) and let f(x) 

be a function continuous in [a, bj with the continuity 

modulus w(f, £). There exist a sequence lsn of

linear forms

Sn If. x) - £ ank pkCx)
K=0

for which

sup

a i * i b
fix) 3nCf, x) - n.

Proof of Theorem 1 t By Bessel's inequality we have

oq 2 b 2
2 cn \< / i fix) - S^ix) | dx

n=k k-1

l) Alexits G» ([5], p„ 304)
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U) ■
C Hk (f, 0) ] (Refer Alexits G.[l],p.23)

Using Lemma 1 we get.

COZ I c
k-1 k

2 °° v 00 o4 -zr z ' _i_ E c 2
V3 k=l k n=k n

9 oo . (2)
* E H, (f, 0).

V3 k=l Vk k

But by Jackson's inequality for approximations in2
the metric of the space . L , we have

(2) (2) 
c_ Cf) < C. w , f)

n n

Therefore,

E * Gk 
k»l K

< C0 £ -±
* k=l V'k

(2)
w ‘lb f)

But by we have

z ! c [ < *
k=l K

By Schwarz inequality we have,

(8.1.5) Z
w b oo f b o

/ |cj ouH I ck | ;e nodx
k=o a k=o a r

QU) E | C,
k=o

< oo
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Using B.Levy's theorem, we have

oo

2 | C 0RU) | < - •
k=o

Hence the proof.

Proof of Theorem 2 : - vVe have in fact
__________ ___ 1)

(2) v TD
w ( 6 , f) < 2 w (&,f)w(£,f)

Now f is a function of bounded variation, then

(1) 2)
w ( 6 , f) = CK 6)

Hence by above theorem,

£ [
k=l

Ck < £
k»l

(2)
w

< C,
CO

£
k=l Vk

1
k f)

oo f)

by (8*1,4).

But by idoieb) and then applying B.Levy's theorem,

1) Stechkin [116] 2) Bary [11]
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we h ave,

2 I CR0kU) | < ~k=o K K

Hence the proof.

Proof of Theorem 3 3y Holders inequality we have,

25 l 42n+l ^ P2 n k 1 C 1 v< 
k=*2+l K

r 2n+l 2 P 2 2n+2
I n Ck kk=2n+l k

V
Z 1 k=2n+l

n

=0(2
0n+! ^

P 2
2 n k Ckk=2n+l K

-g.
2 )

But we have,

\n+1 m 2
2 2 P£ C* k
k=2n+l ^

x<

(n+1) 2l

By Bessel’s inequality we have,

n+1 
2
Z C,1 „< i.

k=2n+l
„ 2
'k « k»2n+l

n+1
2
£ n Ck‘ 

k=2 +1 K

. JLI 2

Id 2
/ 4 f(x) - S (x)) ciM-Cx) 

;a 2n

4 §n (£, 2)2n = 0( ,2an

Therefore

n+1, as! HI£ C,.2 k^
k=2n+l

(n+1) 2£ JL2
= OU) 1 2 ,2an
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So we have

n+1

I Ck 1 OU) 2

Hence ,
as f) ™

£ rr i c | = £ (2
n=l n n=o

^ GO

Hence the proof.

Proof of theorem 4 t~ Let & denote the class of all

afunctions f ^ x) with w(f,£ ) = 0( S )•

According to Lemma 2 for the approximation of these 

functions by orthogonal polynomial we have

sn 'Ot -V )

n
But

So we have

9 n c*. 2) » 0 ^ } .
n

Because for a > o, we have a + 1
2

> 1
2
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thus theorem (4) follows from Theorem (3) with p = 1

and i &

Hence the proof.

..£g.SI-JL Vile know that by Bessels "inequality

for any n , we have ,

2n~l
z ck Z C

k=n K k=n K
(f(x) - S (xj)dx

4 Sn2 OL. 2) = 0(-i~ )
2 a

n

2n-l 2
2 C,

k=n k
0‘ n2“ '

Applying Holders inequality we have

2n-l 2n~l
2 |Ck| s<] £ (

k=n k=n

JB.
2)2 r 2n-l

)P Z 1 
k=n

2-p
1 2

2.^-1 2 
w i 2 C,l

K~f‘ 'k

P
>

0(1) 1
"2a

V
2 1 _ E.

C 2
l n
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0U> naP -E - 1
2

n

Ou)
p(a + -r)-l

Hence ,

2 i CL
k=n

P
A.
p

j+i
co

I
j = 0

n-1
_1
P

k=2Jn
' Ck

Z
3=o j ^ p(a + j

( J ) 4 n;

a +
n

1
P

f CO .

Z (-------i-
j=o pta+

s<
a + j..

p

Hence the proof.

CorLl : If p = 2 then we obtain

CO 2
£ C.

k«n k O'-y >

•h
! o. 

I'H
Ic

j
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G&£JLw 2If a > —sy , then above theorem for p = 1 

reduces to

Zk=n 0( —k— >


