INTRODUCTION

1.1 " . The theory of orthogonal series .was orﬁginaﬁed during
the discussion of the problems of vibrating string mbre than

two hundred years ago, considered by Euler in 1753 1in
‘connection with the work of Danilel Bcrﬁoulli. During
their discussion they had advanced the théopy of vibrating
gstrings to the stage where the partial differential equation

Yot ™ '2yxx was known. and the soluticn of the boundary

value problem had been found from the general solution of

that equation. Thus they have led to the possibility of repre-
senting an arbitary function by a trigonometrical series,

The problem of what functicns can be represented by trigono-
metric series . arise again later during the researches by

French wathematical Physicist 'J. B. J. Fourler.

The last saveral years have been the peiiog‘of
intensive dovelopmen£ in the theory of Fourier soriog Qith
respect to trigonometric orthogonal systems, Less attention
has been paid to the thegry of general orthogonal series., '

The present work is cméerning the theoxy of general orthogonal
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series. During the first half of the presentﬂcentux%. some

of the leading mathematicians like Fejdr, Hobson, Hardy,
Hilbert, Lebesgue, F.Rigsz, M.Riesz, Alexits, Wiener, Weyl,
Kaczmarz, Menchoff, Loreniz, Tandori and Meder were mainly
working in the field of convergence, summation and approxie
mation problems of general and special orthogonal expansions,
e would llke to discuss some of the problems connected with
the convergence and summability of general orthogonal series.
We shall start with a number of definations and .concepts

relevant to our work.

1,2 Throughout the thesis we shall make use of either
Stieltjes « Lebesgue integral“ or the Lebesgue integral.
The notion of orthogonality is introduced by means of the
stieltjes Lebesgue integral. Let u(x) be a positive boun-
ded and monotone increasing function in the closed interval

[a, b]. Such a function is called the distribution
1) I

function™’.

)
i

A real function f{(x) 4is called Lp - integrable,

if it is p - measurable and

b _
(1.2.1) S L £f(x) | an(x) < =
a

1) PFreud ([37]



i
If u(x) 4is absolutely continuous and

(x) = p'(x), then for any Lp ~ integrable function
f(x), the relation

b b
(1.2.2) J £f(x) du(x) = [ f(x) @(x) dx
a a

is valid. In this case we shall say that f(x) is L o(x) =

integrable function and we call §(x) a covering function
or weight function. If, in particular, @(x) = 1 then
we shall say in accordance with the usual terminoiogy that

f(x) is L - integrable.

2 w2
A function f(x) is called L 5 or L o(x) ~

integrable, 1if it is Lp or Lg(x) - integrable respectively

and 1if, furthermore,

J £7(x) du{x) < o or [ f9x)o(x) dx €
a a
holds. We shall talk about an ‘L2 - integrable function,
if 8(x) =1,

ORTHOGONALITY :- A finite or denumerably infinite system
'&ﬂh(x)‘k of sz -~ integrable functions is said to be

orthogonal with respect to the distribution du(x) in the
interval f[.a, b], if



b
(1.2.3) J SDm(x) ﬂn(x) du(x) = o, m# n.
a

holds and none of the functions pn(x) vanishes almost

everywhere.

A system {ﬂ)n(x)k is said to be orthonormal,

if in addition to the condition (l.2.3) the condition

b 2
f ﬂn (x) du(X) = 10 n = 0,1,2,.....
a
is also satisfied. Every orthogonal system .{Ah(x)} can be
converted in to an ONS by means of multiplying every one
of its members by a suitably chosen constant factor. For,

since none of the. functions Un(x) can vanish almost every-

where, the functiohs

¥, (x) .
= -~ b 2 /2
{\f §,(x) W)B ‘
\ a

2,(x)

exist and is immediately evident that they constitute an
ONS with respect to dp(x). If, in particular u(x) = x

ie. Bix) = §(x) = 1, then {ﬁn(x)} is simply an ONS
- :
in the oxdinary sense. ‘



ORTHOGONALIZATION :~ A system of functions .{fn(x)} is

called linearly independent in [a, b}, if the validity
of the relation of the form
E s £ (x)
a X =O,
k=0 k "k
for p ~ almost every xe [a,b]  necessarily implies the

relation

ao=al=...e'_..=an==o, for all n € N.

Every orthogonuki system {ﬂh(x)} is linearly independent§)

Conversely, any linearly independent system of functions
{_fn(")} can be converted in to an ONS {ﬂn(ﬂ} such that
for each n, ﬂn(x) is a linear combinations of functions

from {fn(x)B . The process of constructing an orthonormal

system from a linearly independent system is known as

Schmidt'SZ) general process of Orthogonalization .

ORTHOGONAL SERIES AND ORTHOGCNAL EXPANSION  3-

Let {.\»n(x)y be an orthonormal system. A

series of the form

(1.2.4) C, ¥,(x)

g

n=o

where‘Co, Cl’ 02,..... etc. are arbitrary real numberQ,

1) Alexits ([6] 5 p-4) 2)Schmidt [1083
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is called an orthogonal series. However, if the coéfficients

Ch in the series (1.,2.4) are representable in the form

' b
c, = —gz— J£(x) Y (x) anlx),
J ¥, (x) ae(x)  °®
a

n = 0,1'2,000-0
for a certain function f,

according to Fourier's manner, then we shall say that the

series (1.2.4) is the orthogonal expansion of the function
f(x) and we shall express this relation by

f(x) ~ g C, Wn(x).

In this case we shall call the numbers Cor Cpr Cpseeees the
expansion coefficients of the function f(x).
The orthogonal expansion and orthogonal series

differ from each other due to the following minimum property
established by Graml).

2
Let f(x) € LP {a, b] and {_;Dn(x)} be an arbi-

tary ONS., Among all expressions of the form

n
Sp(x} = kﬁo a P {x).

1) Gram [40]



the integral

b 2
I(s)) = [ [f(x) = s (x)] dp(x)
a

attains the least value for Sn(x} = sn(x), where

b
s (x) = ﬁo G Blx), G = [ELE) L) ante)

An immediate consequence of Gram's theorem is

the Bessel's inequalityl).

e b
n2 NS af £2(x) aul(x).
Bessel's inequality implies that the expansion coefficients

Cn of an Lzu - integrable function converge to zero as

n“‘,m °

The most fundamental theorem in the theory of
orthogonal series is the Riesz - Fischer theorem proved
nearly S$imultaneously and independently by Rieszz) and
.Fischer3). The above theorem was later on generalized by

4)

Fomin as follows,

Let {ﬂk(x)} be an ONS on the interval

1) Tricomi [ 140] 3) Fischer [33]
2) Riesz {103] 4] Fomin [35]



[a, b}, €& L9[a, b], k= 0, 1y 2, seee 1< q¢ =
and let p be given by the relation —%— + -é— = 1, if
q¢ew and p=ml if gq=o ., If there exist an
increasing sequence {Vk} of natural numbers, such that,

V, > « and

k

o b . k P
D g ST oag Ve Py ()| <e

k=0 Yk k+1  a

P
with a  7real, then there exists a function fcL [a, b],

such that

b
ak = f f(X) ﬁk(X) dx for k = b’ l’ 2,0'000
a

ORTHOGONAL POLYNOMIALS :

L]

The system of function {xn} , for integral n,
is alinearly independent system. An orthogonalizationl) of
this system by the Schmidt's process gives a polynomial of
degree exactly equal to n and it may be observed that
we- ¢an c¢hooge the sign of the highest degree termlin x in

the polynomial to be positive. This polynomial of .degree n
will be denoted by p,(x). i

Supposing that the orthogonalization of ihe

1) Freud [37]



system {xn} has been done under the distribution

du(x) = 8(x) dx, we could assign sﬁecial forms to
9(x) in order to obtain some welkknown systems of
polynomials. For example,

(1) Jacobi polynomials for :

« B
9 (x) = (b=x) (x=-a), ad>-1,B>=1.

Particular cases of Jacobi polynomials are

(A) Ultraspherical polynomials for,

& = B, a > =1,

a = «], b = 1,
(B) Legendre polynomials for,

a = f = o, a= =], b=1,
(C) Chebyscheff polynomials for,

asﬁa-"‘%", a=""l' b=1.

{(i1) Laguerre polynomials :

a=0, bue+w, o(x)=e*x* a>-l

(gxcept for a constant factor).
(14i) Hermite polynomials :
& = = oo, b=+¢o, .?(x)::e-x

( except for a constant factor).



N\n) - LACUINARY ORTHOGONAL SERIES : i

Let X(x) denote a positive function concave
from below, defined for x » 1, such that X(x) £ x, and
is increasing monotonely to infinity. We shall call the
orthogonal series

L C
I n Py (%)

A(n} - lacunary, if the number of its non-vanishing
cofficients C, with n < k § 2n does not exceed XNn).

Furthermore, we shall say that the coefficients have the

positive number sequence {Fn} as a majorant, 1f the relation

c, = O(gq)

n

holds.

1,3 We would like to define various summability methods
which would be wused in the body work of the thesis. In
each of the following defination we take

8

(1.3.1) v

n

il ™

n=o

as the infinite series and 5, to be its nth.partiaf sum.

. CESARO SUMMABILITY :

For a > =1,

10



i
a n+a |
let Ah = n ) denote the nth coefficient of the

binomial series

pog a N —t ( 2 )
L X = a + "'l, =iy eves
N=0 An (l-' X)l+a
We write
0 ) _
Gn = sn = sn == Uo + Ul + s000ee + Un
and
a n a-l n a U
S = I S, = L .
n = E ek kT I Ak Nk

is called the nth Casaro mean of order a of the

sequence {Sn} or simply (C, a) mean. The series(l.3.1)
is satd to be (C, a) - summable to Sl) if uha -—¥» S as
n——>ow .

The series (1.3.1) 1is said to be strongly
( C, a ) - sunmable with index k to the sum S, if

% o=l | s S ik —
- ——dr O as n=yow .,
~*—,€ Zo Ay | Sy
For a =1, this gives the defination of strong summability
(H, K.

11

I) Ceshro [25], Chapman [26], Knopp([56 [57])
2) Zygmund([149], p.180) , Bary . ( [11], p.2), Moricz [54]
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Riesz Summability :

Let&)\n& be a positive, strictly increasing
sequence of real numbers with )‘o = 0o and )\1 - o , as

n *%owm,

The series (1.3.1) 4is said to be summable by
Riesz means of order ¢ or summable (R, %n, @) (a > o) to
the sum S if

c:()\) = 22 (1 = —£— )aUk—*b'S as‘n--sroo.

1)
Here on“ (X\) 1is called the n®P (R, >\n' «) =~ mean of

the given series,

In particular for a =1

A

1l n n
= >~ = L l] - "—k""' U “—-L
% (A % (M) kzo( A+l ) ’\n+1 kf
( >‘k+1" A)S,

defines the n™" (R, >‘n’ 1) - mean of the series (1l.3.1).

€

Obviously, the Riesz method of summation is a
generalization of (C, 1) method, which is obtained by putting

>‘n = n. In case )\n = log n , the Riesz sumability is

known as Riesz logarithmic summability.

1) bas [30], Lorentz [ 71]



de-~la Valle'e - Poussin’s summability : i

Define
v = Sn + sn+l

n n

+ LI I Y O + 521’\-1

1)

th de~la Valle'e - Poussin's mean of the

called the n
series (103.1). If

Vg > S as n —
then the series (1.,3,1) 1is sald to be summable by de-la

Valle'e Poussin's method to the sum S.

Euler Symmability :

A sequence to sequence transformation given by

the equation

I(n = 0, 1’ 2"00...0-)
g
defines the sequence {;Tn B of (E, q) means (q > o),
) ,

known as Euler means .

If :
T (q)
n - S as n =i oo

then the series (1.3.1) is said to be (E, q) summable to S.

1) Tandori [133] 2) Hapdy [42)
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In particular for q.=1

1l
e

n n 2" x

e

() s
o k ) k

defines the (E, 1) ~ mean of the series (1.3.1).,

Norlund Summability :

Let {pn} be a sequence of nonnegative Teal

numbers. A sequence to sequence transformation given by

the equation

t . g p S

n P, =0 DN=k 7k
where Pn = Po t Py ¥ ecevee + Py Po > o, P, % O .
defines the sequence {tn} of Nérlund means? = of the
sequence {Sn}c The series (l.3.,1) 4is said to be

summable (N, p, ) to the sum S if

lim

tn = 50

n = o
I1t.1s well known that the method (N, pn) is regular, if
and only if,

1im
..ﬁnm 2 0 .
ne=kP o Pn

1) Norlund [86], Woroni [145]

o



;he sequence {pn¥f will be said to belong to
l .

class M® » for a certain real a »0, if,

(1) o ¢ Pan ¢ Payl for n= 0,1,2,....

or °<pn+l <p for n = 0,1,2,0000

n

(il) po+pl+ »..o.ﬁ'pnzpn T -]

lim npn

(111) M

13

Obviously, if [p L ¢ M | then the method (N, p,) is ¥egular.

1If for some sequence {pﬁk, conditions (i) and

(i1) are satisfied and moreover, if

n ap
nlf? - -—~5—2:£ = lea , where a ) o,
n

8P,_1 = Ppo1 = Pp ¢ then we shall say that the sequence
2)
{p&;belongs to the class M*

N, pn)' Summability -

The series (1.3.1) is to be (N,p) summable to the value S,

if PnZQ' Py 2 0, Pn.=’p6+pl+....‘+pn anql

- 1
= ——— 3 -} o,

Tn pk Sk B S as n
R‘ k=o

ot

1) Meder [78]
2)  Meder [80].
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The expressions T = will be called the (N, pn)

l s
means of the series (1.3.1).

The series (1.3.1) is said to be strongly (N, pn)
summable to the sum S if

2

n
«-%— L p, (S -9

> (o} as n "> o0,
n k=0 ’

.Logarithmic Summability :- The series (1.3.1) is

to be summable by first logarithmic means or summable
by (R, 1), if

S S . § '
Ln 3"1—%‘35 ( l + 2 T eoeee * n ) ) 5 as n“)

The expression Ln will be called nth - logari-
thmic means of sequence .{Sn } . It is known that if
a series 1s summable to S by the method (C, l), then
‘ 2
it is also summable to S by the method (R, 1) ).

An increasing sequence of natural numbers

nl ( n2< LN < nk <ooo-coo

1) Hardy [42)

2)  Meder  [77)



1s said to satisfy the condition (L) if the fseries

L =i
Pk
satisfies the condition (L) 3 4i.e.
| 1)
r -i —te
I == = (=2=) .
k=m "k O '

1.4 Lebesgue functions :

The concept of Lebesgue function was introduced
by Lebesgue2). He investigatéd the influence of these
function on the divergence of Fourier series.  Lebesgue
functions Lﬁ(x) are constants for the trigonometric system

and are therefore called the Lebesgue constants.

Summability Kernels and Lebesgue functions :-

The sums
n a
k (t,x) = £ §,(t) p(x) and ki(t,x) = z fﬂ%yik(tmk(x)
. k=0 - k=0 n ‘

(¢ » -1) are called the n*P_Kernel and nth(C, a)

Kernel respectively of the ONS {¢n(x)} , whereas

1) Bary [12].

2) Lebesgue [61]
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b a b o .
L (x) = af ;kn(t,x)x dp(t) and L (x) = 5f lkn(y.xxdp(t)

are called its nth Lebesgue function and nth Lebesgue
(C, a) function, respectively.

t th

The n*" - (N, pn) Kernel Nn(t’ x) and n
Lebesgue (N, pn) - function En(x) of the ONS {;¢n(x)}
are defined by

1

n A

N(t, x) = === T P k (t, x)

n*"?* Pn v=o Nev v ?

and

- b

2(x) = [ [N (t,0)] s (t).

a
N (t, x) A3 okt x)
X = p X

nt"! Pn veo vV V ’

and

b - f
Qix) = [ Ny (e, x) | aw (¢)
a
t

regpectively are defined as the n h (ﬁ, pn) Kernel and

(N, Pn) Lebesgue function for the ONS { ﬂb(x)}; .



1
!
{
|

Riesz Kernel and its Lebesgue function as

well as Euler Kernel and 1its Lepesgue function were

1)

defined by Kantawala P.S. in a similar way.

1,5 Singular integrals $- This concept was introduced

by Lebesguel) and it has 1important convergence proper-
ties. .

The partial sums S (x) of the expansion of an

L?(x) - integraple function in the functions of an 'ONS

{ﬁn(x)S are of the form : v

b .

(1.5.1) In(f',x) = J f(t) q:n(t,x)e(t) dt
a

where  § (t,x) denotes the sum

Eogt) p(x) . o

k=0

The nth~ sums

n
t.(x) = L a. .S (x)
n k=0 nk™k

of an expansion summed by a linear summation process are

also representable by the integral (1.5.1) where Wn(th)

1) Kantawala P, S. [50]
i) Lebesgue [61]
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denotes the sum

[ I oo e

@y jbk(t) ﬂk(x) .

o

g, (tox) = )

The integral In(f.x) is said to be singular

(with singular point x) if, for an arbitary number

©> o and for an arbitrary subinterval [a, B] of
[as b)v A

(1.5.2) é}_’;’w If an(t. x) §(t) dt = 1 and

1li
phe (0 80 et = o,

where I=[a,b] 0N [x-6,x+61], J = [a,B] - [x~6 ,x+8]

and

(15.3) ess, lyb. 19, (tx)] & P (8)

t€ [a, b] -« [x-6, x+6]

Shadd  holds.
Where § (8) is a number depending on & and. x but

l

independent of n.

If Y (t, x) satisfies uniformly the conditions
(1.5.2) and (L5.3) in an x = set E , then the integral

In(f. %) 48 sald to be uniformly singular on E.



1.6 Constant preserving and polynomial like

»e

Orthono:mél Systems

The idea of the polynomial - like orthogonal

system was introduced by Alexitsl). |

An  ONS {pn(x)} is called polynomial like,

if its n'M Kernel kn(t, x) has the following structure :
k (t,x) = x;: F (t,x) - % Y; (n) g (t) @ .(x)
nt X = k=1 k*"? i.3= i,j,k’ n+i n+J

Whexe p and T are natural numbers,independent‘of n

{n)

and the constants |V, P | 'have a common bound
4

independent of n, while the measurable functions Fk(t,x)
satisfy thecondition ‘

F(t, x) = O (=)
| t=x|

for every x € [a,b] . Here the function Prey - with
negative index 4is considered to be identically equal
to zero,

The orthonormal system <{¢%(x)} is called
constant preserving if @ (x) = constant. In this case

besides Co all the expansion coefficients of the constant

1) Alexits ([5]P.1l1)



2

"~ function f(x)' = C vanish and therefore, we ‘have

for the nthlpartial sum S (x) of its expansion

) |
Sp(x) = C S Po(8) Polx) an(t) = G-

i.e. a representation, preserving constancy.

The systeé of orthogoml polynomials '{Pn(x)g

and the trigonometrical systems are polynomial like.

1.7 Degree of Approximation of a Class of functions :-

. Let & denote a class of functions and
{:ﬁn(x)} a given orthonormal system in [a, b]. Let

us form ( for a fixed natural number n ) 1linear combina~

tions of the functions ¢°(x), ¢1(x),......, ﬁn(x) of
the form

n
Sﬁ(x) = kﬁo a, pk(x)

with real a,, . Let dn(f) denote the lower bound of

Sup
| £(x) = 5 (x) |

al x&hb
formed with every possible linear combinations Sh(x). The

non-negative number

Sup
$,R) = g dif) .
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f
{
3

- i
is said to be the best degree of approximation attainable
for the entire class R with arbitrary S (x).

(p)
If d, (f) denotes the lower bound of all

the numbers

b p 1/p
t 10 - 5,00 | au(x) §

n
formed with linear combinations S (x) = £ a, P§.(x)
n keo P

then, QnCR, pP) can be considered as best degree of appro-

p !
ximation for the class A in the sense of the Lp - approxi-

mation.

1.8 Convergence and Summability of Orthogonal series :-

( a brief history );-

The question of convergence of orthogoﬁal series
was originally started by Jerosch and Weyll) who pointed
out that the condition |

-3
cn = O(n 4 ) ’ €> O.

is sufficient for the convergence of the series

(10811) nEO, Cn ¢n(x)'

1) Jerosch and Wweyl [49]



Further, Weyll) has iﬁproved this condition by
showing that the condition,

is sufficient for2§he convergence of the series (1;8.1).
Later on Hobson modified the above condition to the

form

2
c nt <

L nn w, E> o0

- ]
z
N=
and Planchemel3> has solved the same problem with the
condition ‘

2 3

8 Cn lgn € =,
n=2

The Chain of ideas in this direction continued and
finally a masterpiece work regarding the converéence of
the orthogonal series (1.8.1) was carried out nearly,
simultaneously and independently of one another by
Rademacher?ind Menchoff®). They have shown that the series
(}98.1) is convergent almost everywhere in the interval of
orthogonality if the condition

2, I
2 C. log™n { =,
n=1 P

1s satisfied. Further generalizations of this theorem were

1) Weyl [144} 4) Rademacher [100}
2; Hobson [44 5) Menchoff [73
3} Plancherel [98] |
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!
given by Gaposkinl), Salemz),lTalalyana) and Walfisz ).

The theorem of Rademacher and Menchoff is the
best of its kind is obvious from the following fundamental

theorem of convergence theofy given by Menchoff.

If w(n) is an arbitrary positive monotone
increasing sequence of numbers with w(n) = o (log n), then
there exist an everywhere divergent orthogonal s?ries

= 4 (x)
L C § ix
n=0 n “*n

whose coefficients satisfy the condition

o 2 2
I Cn w (n) < w.
n=1

Another result which needs to be mentioned in
this direction is due to Tandorfi), who proved thai if

{Cn} +1s a positive monotone decreasing sequence of

numbers for which

o 2 2
I CD log n = o
n=1 :

holds, then there exist in [a, b] an ONS Y (x)

1) Gaposkin {39 4) Walfisz E1?3]
2) Salem lo4 » %) Tandori 136
3) Talalyan 126



depéndent on C, such that the orthogonal series

C, g, (x)

TRxK ]

n=0

is divergent everywhere in [a,b] .

For many special orthogonal series the condition for
convergenceé has still batter form. Kolmogoroff -
Seliverstoffl) and Plessnerz) showed that under the

condition

(1.8.2) I (an2 + bn2) logn < w,

n=1

the Fourier series,

F- o
(1.8.3) .52_ + I (an ¢os nx + b_ sin nx)

n=l n

is convergent almost everywhere.

Further, it was proved by Plessner that the condition
(1.8.2) is equivalent to

fzg f2n | f‘x + t) - f{x - t) !2

dt dx €< =
° o t ‘

where f(x) is the function whose Fourier series is (1.8.3).

1) Kolmogoroff - Seliverstoff [59]
2) Plessner [97]
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Besides the question of convergence, Menchoff

and Kaczmarz have discussed the Cesiro summability of
(1.8.1). The Fundamental theorem concerning the Cesaro
summability of orthogonal series was at first proved by

Menchoffl) and independently also by Kaczmarzz).

They have shown that if .Lw(n)} denotes a
positive monotone increasing sequence of numbers whose
terms are of order of magnitude win) = o (log log n) tﬁen
there exist an oxthogonal series |
o
z

a, $u (x)

n=1

which is nowhere A -~ summable although its coefficients
satisfy the condition

o«
£ a 2 w2 (n) < .,
n=1 0

&ebeggge functions on the converéence and summability of sggies

The question of convergence of orthogonal
expansion is also smoothed by means of Lebesgue functions
introduced by Lebasguea), who investigated the influenée
of these functions on the divergence of Fourier series. .The

effect of Lebesgue functions on the convergence of Fourier

1) Menchoff ([74}[7] )
2) Kaczmarz 52
3) Lebesgue {61}
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i

series was investigated by Kolmogoroff-Se11verstoffl?
2) !

and Plessner

The idea of Lebesgue functions in the convergence
and summability theory of orthogonal series was genera-
lized by Kaczmarz3), Tandor14), Meders), Zinovev6)

Alexits7) and Osilenkers)

Kaczmarz 9) has shown that if
Lix) = Q (N
where  A(n) & A(n+l)

2 2
Cﬂ >\ (ﬂ) < + oo,

and

8

then the series (1.8.1) converges almost everywhere. The
analogous result for (C, @ > o) summability was also in-

troduced by him.

The order of Lebesgue functions which plays an
important role in the convergence theory of orthogongl series
was éstimated by Moriczlo), Olev skii 11), Ratajskilz)
and Alexitsl3).

Kolmogoroff-Seliverstoff [59] 8) Osilenker [89]
Plessner [97 9) Kaczmarz [51]

Kaczmarz |51 10) Moricz [84]

Tandori ([127], [135]), [137])) 11) Olevskii ( [87],[8 }
Meder [775 12; Ratajskii[lo 1], {1
Zinovev [147] 13) Alexits [5]

~SSORRHWN -
T st s s N Nt

Alexits [5]
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The ¢hain of ideas was extended in this field of

1) 2)

functional series also by Alexits and Sharma Tandori

and Moriczaz Alexits and Sharma have proved that, if

1

=3 ¢ 2‘
L ay { w
k=0

and the Lebesgue funclions

1
Ln(x) = éf {ki {t,x)] du(t) whe?e k:(t.x) = kgogl_g:I) .

£,0t) £,(x)

of the sequence of p - integrable functions {fn(x)} on

p - measurable set E ¢ x, which is measurable with a positive

measure g, satisfy the condition l(x) = (N\.) wuniformly
n

on the measurable set E of finite measure, then the sums

n
o (x) = I (1-=K) a f£,(x)

k=0
1/2
have the order of magnitude ()x(>\r1 ) on E almost

evergwhere. Moreover, they have proved that, if the Lebesgue

1 (
functions Hn(x) are uniformly bounded on the measurable

set E of finite measure and

2

& an 4 o

1)  Alexits and Sharma [10
2 Tandori ([139], [1385 J
3 Moricz [83]



then the series

L af(x) is (C, 1) - summable almost every-
where,

Moricz has generalized these theorems of Alexits
and Sharma by estimating the order of Lebesgue

function corresponding to general summation process.

1) ‘
1.9 Sunouchi has found the order of- approximation of

k
| s,(x) = o,(x) |

(1.9.1) z , k>1
. n=1 n

under the restriction of boundedness of the function @ (x).

In Chapter II of the thesis we have esiablished

the convergence of

- 2
(s,(x) = T (x))

(1.9.2) T
n=1 n
and a 2
"w  [8y(x) =, (x) ]
z
Nl n

and also generalize this result as follows.

1) Sunouchi [118]

30



Theotem: If - P >0, Py o, npp = (O(P)) and

| #,(x) | €k, then

- q
b » IS (X) - T (X)l ™ q q-2
L L + ax = O(1) T jc | n 2.
a n=l n n=1
Theorem : If ]¢n(x)l < Kk , D =0,1,2,e000000
then q
a
b » |5 (x) =0 (x)] w q=2 q
£ - dx & £ n lcnt y 4 2.
a n=l n ‘ n=1

Moreover, in this chapter we have also dis=-

cussed the convergence of (1.9.2) with legerithmic

means, Further we have °  also discussed the convergence
of ? 2

w  £S,(x) = o (N,x)]

n=1 n
and

2

o [5,(x) =V (x)]

p> ‘l')‘ < » , P> l

n=1 n

in this chapter.

The order of approximation of the type (1.9.1) with

Euler and Riesz means was carried out by .

31
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1

l) ! .
Patel and for Norlund means,it was establis?ed by

2) f
Kantawala .

The approximation of summability means 1o their

generating function for the orthogonal series

«<
(1;993) B C ﬁ (X)

n=0 non

3) - 4)

has been studied by Alexits and Kralik , Leindler and

5) ; 4) o
Bolgov' and Efimov , Leindler has . proved the
followiﬁg the crems
Theorem A :- If

o 2 2 '

n=1

then -8
o lx) - flx) = oy ln )

holds almost everywhere in (a, b).

The same result in this direction for Norlund means and

. 2
Euler means was proved by Kantawala ),

1) Patel [94]

2) Kantawala [50]

2)  Alexits and Kralik [7]
4) Leindler [66]

5) Bolgov and Efimov [23]
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In Chapter III we have generalized the above

result to (N, Pn) means as follows @

N 1
Z'_heorem H 1f pné M s &> 5 then under the condition
(1.9.4) the relation

Tx) - #x) = o, (n) (0 ¢B <)

holds almost everywhere in {(a, b).

1)
Sunouchi has discussed the strong

2)
summability of (1.9.1). Maddox has generalized the

Sunouchi's result by considering the wWeaker hypothesis,
This result was extended by Kantawalaa) for strong Norlund

summability.

In this chapter , we extend the results of Sunouchi and

Maddox to (N, pn) means and Euler means.

In chapter IV we have estimated the order of

4)

certain summability means. Alexits has proved the

S
N

following theorem @

Theorem B 3= If the Lebesgue functions .
(1.9.5) (x) fb | z g k ) B, (x) |
1.,7.5 L x) = z t X dt .
2" a k=o K k | ‘

1) Sunouchi [120]
2)  Maddox [72]
3) Alexits [5]
4) Kantawala [50]



34

i
i
t
¢

of an ONS {[bn(x)} are uniformly bounded on the set
E c[a, b], then the condition

® 2
(1.9.6) r C, { w
N=0

implies the (C, @ > o) summability of the orthogonal

series (l.9.,1) almost everywhere on E .

Kantawal.al) has extended the above 7Tesult to Riesz
and Norlund summabilities ., Here.we extend the result of

.Kantawala and Alexits for Euler and (N, pn) meéns. Our

theorem are as follows.

}:he orem H

If the Lebesgue functions (1.9.5) of ONS {pn(x)} are
uniformly bounded in the set EC [a, b) then the relation
(1.9.6) implies the estimate

Tn (x) = Ox(n).

Theorem 3

If {pn“ﬁ ¢ M® and the Lebesgue functions, of an
ONs {¢n(x)} are uniformly bounded on the set E c(a, b],

then the orthogonal series (1.9.1) is (N, p,) summable
almost everywhere Under the condition (1.9.6).

bl

1)Kantawala [50]
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Morover in this chapter we have also diséussed
the order of magnitude of Norlund Lebesgue function and

(N, pn) Lebesgue function in the direction of Alexitsl).

Chapter ® 4ig devoted to estimate the order of
Lebesque functions for polynomial - like ONS, corresponding

to Norlund and (N, P,) means., We have also discussed in

this chapter the Norlund and (N, pn) summability of ortho-
gonal series., These results are extensions of the fbliowing

results proved by Alexits.

Theorem C 3

If the ONS {¢n(x)} is polynomial - like

and the condition

n 2
T 9 (%) = C)x(n)

k=o
is fulfilled in the set E, then the relation

1
L {(x) = O, 1)

X

holds almost everywhere in E.

Theorem D s

Let (x)\ be a complete constant preserving
n

polynomial like ONS with respect to the weight function

1) Alexits ([4], p.206,207)
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1

?(x). Suppose that the function Fk(t, x) are continuous

in the square a$ t& b, a x< b with eventual

exception of the diagonal t = x and that the two conditions

z ¢k2 (x) = O(n)

k=0

and
(1.9.7) o ¢ @(x) & constant

are alsc smtisfied in the subinterval [€, d) of [a, b].
If the L%’(x) = integrable function f(x) 4is continuous
in {C, d], then its expansion ‘

(1.9.8) £( ‘E c
_ X) o~ I Gy P.(x)

is uniformly {(C, 1) - summable in every inner subinterval

of [C, d], the sum being f(x).

We are stating below two of the theorems

proved by us,

Iheorem H

If the ONS e{’fzsn(x)]J is polynomial like and the

condition
B ix) = O,1)

is fulfilled in the set E, then the relation
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g, () = O,(1)

holds almost everywhere on E.

Theorem 3
Let {PD(X)B be a complete constant preserving

polynomial - like ONS with respect to the weight function
9(x). Suppose that the functions Fk(t, x) are?continuous
in the square a § t& b, al x< b with eventual

exception of the diagonal t = X and that the th condi-

tions.
g (x) =0 (D

and (1.9.,7) are also satisfied in the subinterval [C, d]
of [a, b]. If the ng( " integrable functionj f(x) 1is
continuous in [C, d], then its expansion (1.9.8) is uni-

formly (N, p,) summsble in every inner subinterval of (c, dl,

the sum being f(x).

1.10 Absolute Summabilities of Orthogonal Series :

Absolute summability of Fourier -~ trigonometric
series by Cesdro, Nérlund and Riesz means have been
engaging tﬁe attention of a large number of workefs in
this line. A systematic account of the available :litera~
ture on absolute summability of a Fourier trigonometric
3er1es has been given by ansadl).

1) Prasad [99].




In case of Fourier orthogonal expansion the

earliest result on |[C, a| - summability are due to

Tsuchikural) and Tandoriz). Tandori3) has proved that

the cendition
m+1 .
2

(1.101) T(r Ck2 ) < =

B0 k=2m'{;

is necessary and sufficient for |C, 1 | - summability of
(LeBe3), '

The necessity was later on extended by Bilﬁard4).

Leind;ers), Grepacevskajaé) and Patel7) have
extended Tandoris theorem to |C, a| -~ summability.’
Szalaya) has generalized these theorems for generalized

absolute Cesiro summability.

Absolute Euler summability of orthogonal series

has been studled by Patelgkthatnagarlo), Absolute Riesz

summability of orthogonal series was discussed by Alexits and
kra1ik}?, Moricz!?) and P.srivastaval®), while considering
the- absolute Norlund summability, Medez'*) has proved the

following theorem.

1) Tsuchikury [141] 83 Szalay 124]

2) Tandori ( [131},[133] ) 9) Patel 94]

3) Tandori 13 H 10) Bhatnagar [117]

4) Biluard [20 . 11) Alexits and Kralik [6]
5) Leindler 62 12) Moricz

6 Grepacevskaia 41] © 13) P.Srivastrre 113]

7) Patel 94 14) Meder 81]



Theoxem E §
i -1 ’
Let {pn} ¢ M , a> =3~ then (1LR.1) is

the necessary and sufficient condition for the sei:ies

(1.9.8) to |N, pnl summable in the interval [o, 1].

In chapter VI we prove the same result gf
Meder wunder the weaker condition for Norlund me ans,
" (N, p,) means and |V, A | means. Moreover- in this
chapter we have also discussed absolute harmonic summabi-

lity. We provse,

Ihgorem
1f npy = O(p,), then
: &
o 2
(1.102) z {? cvz-s < w
=0 V=0

implies the |N, pnl summability of (1.9.3).

Theorem g

It mp, = (J(P)) then (1.1Q:R2)Mmplies the
IN, p,| summability of (1..9.3).

}'_he orem s

Let A = {)“} be a monotonic nondecreasing
sequence of natural numbers with }‘n-i»l - >‘n 1 and

' 2

5 n;l 2
G
hwl {kﬁnm >-n”,"2,k } { o
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implies the |V, A | summability of (1.9.3). |

1.11 Convergence and summability of orthogonal polynomial

Series

The series of orthogonal polynomials i.e. the

series

(1.11.1) I G, op,ix)

N=0

carry their own importance. The convergence and Cesdro

summability was first discussed in great details by

1) 2)
Jackson . Subsequent papers in this line are due to Chen and

3) : :
Freud . Regarding the (C, 1) summability of the series

(lgpl@i)Jackscna) showad that if the weight function &(x)
is bounded and §(t) @°(t) is summable in the interval
(-1, 1) then the series (1.11.1)is summable (C, 1) to the
generating function f(x), @(t) being given by

f(t) -~ £f(x)
t=x

In chapter VII of our thesis we have generaliied

this result to the case of Norlund and (N, pn) means. Patela)

has proved the same result of Jackson for Riesz and Fuler

means.
1) Jackson [47] 3) Freud [36]
2) Chen [27]

4) Patel [94]
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Jacksonl) and Aiexitsz) have estimated the
]
degree of spproximation with the help of trigonometrical
system. Moreuver in this chapter we have also discussed
the degree ©f approximation for orthogonal polynomial

3)

system inthe directionof Alexits™", he has proved the

theorem for orthogonal system.

Some of the theorems vere proved by different

authors for convergence and summability of general ortho-

5)

gonal series, 2.9. Alexits and Kralik42 Tandori and

Léindleré) . Further in this chapter we extend the

above results of Tandori, Alexits and Kralik for ofthogo—

nal polyonomial system under weaker condition.

1,12  Absolute convergence of orthogonal series : -

i

|
Absolute convergence of Fourier series h'as been

7) 9

studied in great details by Bernstein ’ Barqa), gygmund )&

StetchkinS.B.lo). Absolute convergence of orthogonaiiseries
11) 12)

has been discussed by Steichkin s, Alexits™ 7,
Bccukarevla), Zinovevl4), Tandorils).

1) Jackson {46] 9) Zygmund [ 150]
2) Alexits [5 ] 10) Stetchkin S.B. [117]
3) Alexits [5 11) Stetchkin  [114]
4) Alexits and Kralik[7] 12) Alexits [5]) "

5) Tandori  ([128}[129),[130] ) 13) Bochkarev [22]
6) Leindler ([66][67][68]) 14)  Zinovev (146]
7) Bernstein [13] 15) Tandori [134]
8) Bary [12] .



In chapter VIII we have discussed the absolute
i
convergence of orthogoanl series., We extend the ¥gsults of
Szasz‘sl) for Fourler series to orthogonal expansion by

proving the following theorems:

Iheorem 3
Let f & L2 {a, b] and . f(x) ~ zcn¢n(x)
be its orthonormal expansion. Then

- 1 P
T — w ( ’ f) { =
k=l rk ¥

implies the absolute convergence of (1.2.8).

Theorem H

If f£(x) 4is of bounded variation, then

V1
- -, f
- w ( m ) . .
kel k

implies the absolute convergence of (1.&.&).

Moregver in this chapter we have also discussed
some’ results on the absolute convergence of orthogonal
expansions of the function of certain class and orthoéonal

polyonomial expansion in the direction of Alexitsz).i

1.13 In chapter IX of owr thesis, we have discussed

the summability and convergence of )\(n) - lacunary
Ve 4

1) Szasz '(1233 2) Alexits [5]



orthogonal series. Alexitsl) has proved the following
theorem for Cesiro summability of A(n) - lacunary

orthegonal series :

Theorem H

If the coefficients of A(n) - lacunary ortho-
gonal - series (1.9.3) have as a majorant a positive
nmonotone decreasing number sequence {gna , satisfying

the condition.

o H : n) qf\
(lvj'?-?;l) ) n ( =
n=l1
then the condition
I Cn { o

n=o

implies the (C, a) summability almost everywhere of the
orthogonal series (1.5.3). The same result was extended by
Bhatnagarz) and Kantaﬁalas) for Euler means and Naflqnd
means, In this chapter we proved the analogous result

for Riesz summability and (N, p ) summability of XNn) -

lacunary orthogonal series.

We have also discussed convergence of ‘X(D) -

*

lacunary orthogonal series in the direction .of: .Al‘e:é‘i'tsd‘)

1) Alexits [5]
2) Bhatnagar [17]
3) Kantawala %50}
4) Alexits 5]



