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CHAPTER - 1

INTRODUCTION

1»I theory of‘ orthogonal' aeries was originated during

the discussion of the problems of vibrating string more than

two hundred years ago, considered by Euler in 1753 in

connection with the work of Daniel Bernoulli. During

their discussion they had advanced the theory of vibrating

strings to the stage where the partial differential equation 
2ytt " * Yxx wa® -known, and the solution of the boundary

value problem had been found from the general solution of 

that equation. Thus they have led to the possibility of repre

senting an arbitrary function by a trigonometrical series.

The problem of what functions can be represented by trigono

metric series arise again later during the researches by 

French -mathematical Physicist J. B. J, Fourier.

The last several years have been the period of 
intensive development in the theory of Fourier serials with 

respect to trigonometric orthogonal systems. Less attention 

has been paid to the theory of general orthogonal series.

The present work is concerning th® theory of general orthogonal



2

series* During the first half of the present century, some 
of the leading mathematicians like Fej4r, Hobson, Hardy, 

Hilbert, Lebesgue, F.RIqsz, M.Riesz, Alexits, Wiener, We\)l, 

Kaczmarz, Menchoff, Lorentz, Tan dor i and Meder were mainly 

working in the field of convergence, summation and approxi

mation problems of general and special orthogonal expansions. 

We would like to discuss some of the problems connected with 

the convergence and summability of general orthogonal series. 

We shall start with a number of definations and concepts 

relevant to our work.

1.2 Throughout the thesis we shall make use of either

Stieltjes - Lebesgue integral or the Lebesgue integral.

The notion of orthogonality is introduced by means of the 

stieltjes Lebesgue integral. Let p(x) be a positive boun

ded and monotone increasing function in the closed interval 
[a, bj. Such a function is called the distribution 
function*^.

A real function f(x) is called L - lntegrable,
r

if* it is p - measurable and 

b
(1.2.1) / | f(x) | du (x) < ~

a

1) Freud £37}
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If p(x) is absolutely continuous arid

$(x) » pf’Cx), then for any - integrable function

f(x), the relation

b b
(1.2.2) / f(x) dp(x) * / f(x) $>(x) dx

a a

is valid. In this case we shall say that f(x) is L “

integrable function and we call Six) a covering function 

or weight function. If, in particular, ?(x) = I then 

we shall say in accordance with the usual terminology that 

f(x) is L - integrable.

A function f(x) is called L2^ or L2^xj - 

integrable, if it is or L$(x) ” integrable respectively 

and if, furthermore,

/ f2(x) dp(x) < *> or / f2(x)i>(x) dx < »
a a

2holds. We shall talk about an L - integrable function, 
if Six) m l .

ORTHQG^iALITY A finite or denumerably inf irate system

of L2^ - integrable functions is said to be

orthogonal with respect to the distribution dp(x) in the 

interval [ a, b], if



(1.2,3)
b

/ Pj>*) Pn(*) <^Cx) =s o, m ^ n.
i

holds and none of the functions j&n(x) vanishes almost 

everywhere.

A system ^pn(x)"Jj is said to be orthonormal, 

if in addition to the condition (1.2.3) the condition

b 2
/ Pn (x) dp(x) « 1, n » o,l,2

is also satisfied. Every orthogonal system .^(\>n(x)^ can be 

converted in to an GNS by means of multiplying every one 

of its members by a suitably chosen constant factor. For, 
since none of the functions $n(x) can vanish almost every

where, the functions

£„(*) = ^ to 2
/ |n(x) dp(x) 

a

172*

v-

exist and is immediately evident that they constitute an 

QNS with respect to dp(x). If, in particular p(x) « x 
i.e. pi (x) = 5(x) =, then «j^0n(x)^ is simply an ONS

in the ordinary sense.
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OHTHQGQNALXZATION A system of functions £fn(x)1j is

called linearly independent in [a, b] , if the validity 

of the relation of the form

£ a,, fv(x) » o,
k=o K K

for p • almost every xe [a,b] necessarily implies the 

relation

ao - al............................. • - a„ “ 0- for all n e N.

Every orthogonal-.' system / X ) \ Is linearly independent.

Conversely, any linearly independent system of functions 

{tjx)} can be converted in to an DNS ^j^Cx)^. suc^ ^ * 

for each n, j&n(x) is a linear combinations of functions

from ^fR(x) ^ • The process of constructing an orthonormal

system from a linearly independent system is known as 
2)

Schmidt's ’ general process of Grthogonalization

ORTHOGONAL SERIES AND ORTHOGCHC EXPANSION *-

Let £#nlx)], 

series of the form

be an orthonormal system# A

(1*2*4) £
n=o

where CQ, C^f Cr>*..........etc* are arbitrary real numbers,

i) Alexits (£5] 3 £>*4) 2)Schmidt [1OS'}
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is called an orthogonal series. However, if the coefficients
C in the series (1.2*4) are representable in the form 

n
Isc . —5—5—*---------- I f(x) Dn(*) du(x),

I 1 Cx) dtllx) a
a n ■ o,l,2,........

for a certain function f,

according to Fourier's manner, then we shall say that the 

series (1.2.4) is the orthogonal expansion of the function 

f(x) and we shall express this relation by

m
fix) rv l Cn $n(x). 

n=o

In this case we shall call the numbers CQ, C^, (L,,..... the 

expansion coefficients of the function f(x).

The orthogonal expansion and orthogonal series 
differ from each other due to the following minimum property 
established by Gram*^.

2 , %Let f(x) € [a, b] and be an art>i“*

tary ONS. Among all expressions of the form

S (x) = E a. p (x). 
n k=o K K

1) Gram [40]
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the integral

KSn) - /b[f(x) - Sn(x) ]1 2 dn(x) 

a

attains the least value for Sn(x) * sn(x), where

n b
s (x) * Z Ck 0k(x), Ck « /f(t) 0kCt) dp(t) .

kao a

An immediate consequence of Gram’s theorem is
1)the Bessel’s inequality '.

2 Cn2 / f2^x) dp(x).

n»o a

Bessel’s inequality implies that the expansion coefficients 

2CR of an L - integrable function converge to zero as 

n-> oo »

The most fundamental theorem in the theory of

orthogonal series is the Riesz - Fischer theorem proved
nearly .Simultaneously and independently by Riesz2 ^ and 

3)
Fischer . The above theorem was later on generalized by 

Fomin4^ as follows.

Let be an QNS on the interval

1) Tricomi [140]
2) Riesz [103]

3) Fischer [33]
4] Fomin [35]

I
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[a, b]» 0kCr L4* [a, # k» o, 1, 2, ♦... , 1< q^00

and let p be given by the relation = 1» if

q < cp, and p « 1 if q = «*» . If there exist an

increasing sequence of natural numbers, such that,

Vk *» and

£ ( 
k=o > / I A*. \K (»> I d* <k+1 a m=o

with at real, then there exists a function f^L [a, b]3

such that

b
a. ® / f(x) P (x) dx for k * b, 1, 2,.,..

a

ORTHOGONAL POLYNOMIALS s

The system of function £xn^ » for integral n, 
is a linearly independent system. An orthogonalization*^ of 

this system by the Schmidt’s process gives a polynomial of 

degree exactly equal to n and it may be observed that 

we- can choose the sign of the highest degree term in x in 

the polynomial to be positive. This polynomial of degree n 

will be denoted by pR(x).

Supposing that the orthogonalization of the

1) Freud [37]



system ^ has been done under the distribution

dp(x) » f(x) dx, we could assign special forms to 

5(x) in order to obtain some well-known systems of 

polynomials. For example,

(i) Jacobi polynomials for :

?(x) m (b - x) (x - a) , a > - 1, p > -

Particular cases of Jacobi polynomials are *

(A) Ultrasphericai polynomials for,

« * p, a > -1 ,

a » <**1, b *» 1 ,

(B) Legendre polynomials for,
!

a = p = o , a * -1, b = 1,

(C) Chebyscheff polynomials for,

oi * p ® - "2" , a ** -1, b = 1.

(il) Laguerre polynomials s

a a® 0, b ** + », &(x) * e”x x°, a > -1

(Except for a constant factor), 

(iii) Hermite polynomials :
2

a *» - oo, b =s -f «», £(x) « e“x

(except for a constant factor).
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X(n) - LACINARY ORTHOGONAL SERIES : *

Let >s,(x) denote a positive function concave 

from below, defined for x ^ 1, such that Mx) 4 *» and 

is increasing monotonely to infinity. We shall call the 

orthogonal series

»
Z C 0 Cx) n v '

n~o

X(n) - lacunary, if the number of its non-vanishing 

cofficients Gk with n < k 2n does not exceed )\{n) *

Furthermore, we shall say that the coefficients have the 
positive number sequence fc,} as a majorant, if the reiation

Cn * Ot%)

holds.

1*3 We would like to define various summability methods 

which would be used in the body work of the thesis. In 

each of the following defination we take

(1.3.1) Z U
n=o n

as the infinite series and Sn to be its n**l partial sum. 

CES/ifiO SUMMABILITY :

For a > -1,
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* , (” * *) denote the nth coefficient of the
let \ ~ * n

binomial series

.a n£ \ x - —-=o ^ Clnso (1 - x) 1+a
(a ^ —1, **2, • ■ • •)

We write

o 0 » S 0 « S„ * Urt + U. ................ + U.
wn n n o 1 n

and
a n a-1 n a

Sn “ £0 Vk sk ’ kf0 Vk Uk •

Then the quotient 

a
o_ ** ' n

is called the 

sequence or

is said to be (C,

a
f«L_
V

Cesaro mean of order 
simply (C, a) mean.

a) - summable to S ;

a of the
The series(1.3.l)

if o ® —V S as

n OO .

The series (1.3.1) is said to be strongly 

( C , a ) - summable with index k to the sum, S, if

n
VssO

a-1
^h-v

k
S o as n..« .

For a » 1, this gives the defination of strong summability
(H, k)* 1 2)._______________ _________ ■

1) Cesaro [25], Chapman [26], Knopp([56 [57])
2) Zygmund([l49] , p.180) } Bary ( [ll], p.2)^ Moricz [54]
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Riesz Summability z

Let^Xft^ be a positive, strictly increasing

sequence of real numbers with X, and \ as

n

The series (1.3.1) is said to be summable by 
Riesz means of order a or summable (ft, X , a) (a > o) to 

the sum S if

n
(X) nSB £ (l

k«o
Xn+1

a) u.

Here o_a (X) is called the nth (R, X_, a) - mean of

S as n

1)

<w.

n n
the given series.

In particular for a = 1 

1
°n «„(>>) n

£ (1 - 
k=o

X

vn+l
)

*n+l

X

n
£

k=o

( k+f^k^k

1L

defines the ntn (R, \ , 1) - mean of the series (1.3*1).
SI

Obviously, the Riesz method of summation is a 
generalization of (C, 1) method, which is obtained by putting
\ a I). In case = log n , the Riesz summability is

known as Riesz logarithmic summability.

1) Das [30], Lorentz [ 71]
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de-la Valle*e - Poussin's summability :

Define S + S , + n n4*l + S,2n-l
n

called the n de-la Valle*e - Poussin's mean of the 
series (1,3.1). If

V —y s as n —V <*» n
then the series (1.3*1) is said to be summable by de-la 
Valle'e Poussin's method to the sum S.

Euler Summability *

A sequence to sequence transformation given by
the equation

n (1 + q) k=o
n n-kn ^ k ^ q Skf

(n * o» 1. 2.«••*•••)
defines the sequence £ Tn q) means (q > o) ,

2)known as Euler means .

If (q)
n as n

then the series (1.3.1) is said to be (E, q) summable to S,

1) Tan dor i [133] 2) Hardy C*23



In particular for

T
n

defines the (E, l) - mean of the series (1.3.1).

Norlund Summability s

Let be a sequence of nonnegative real

numbers. A sequence to sequence transformation given by 

the equation

where n
defines

sequence

n
n

n k=o
pn-k Slt

P. + Pj, + + Pn» pn »

1 ythe sequence {tnJ of Norlund means-' of 

The series (1*3.1) is said to be

o • 

the

summable (N, pR ) to the sum S if

lim
t - S.n

n »

It. is well known that the method (Nf pn) is regular, if 

and only if,

lim p
wwieiWimm
P«s> n

o .

1) Norlund [86], Woroni [145]
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The sequence {pi will be said to belong to 

1; L J
class Hr , for a certain real a >/0, if,

(i) 0 < pn < ?n+l f»r "

01 0 < pn+l < Pn f°r n

.... + p„ . P„ t -

o |2ji« i (•

(ii) pQ + px +

(iii) lira 
n ->

npn = a
n

Obviously, if ^Pn|j £ ^ t then the method (h, p^) is regular

If for some sequence {p , conditions (i) and 

(ii) are satisfied and moreover, if

lim
n —y oo

n *Pn-l
^n

s= 1-a f where a ^ o,

6pn-l * Pn-1 - Pn • t'18" “ 5ha11 5a* that the
2)

^p^ belongs to the class ,

(N, pn) S\unmabillty *-

The series (1.3,1) is to be (N,pn) summable to the value S,

if Pn>P» PD > °» pn “ P0+Pi+..........+Pn and

-in
T = _ X p S. ----- > S as n" % k=0 k

1) Med'er [78]

2) Meder [80].
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The expressions Tn will be called the (N, p ) 
1) n

means of the series (1.3.1).

The series (1.3.1) is said to be strongly (N, pn) 

summable to the sum S if

, n 2
p“ £ (S. - S) ------ > o as n -> <».

n k»o K

Logarithmic Sunuaabllity : — The series (1.3.1) is 

to be summable by first logarithmic means or summable 

by (R, 1), if

1/^1
Ln a *Togn ( f + T+ .........+ -f ) —> S as n-»«

The expression Lr will be called nth - logari

thmic me an 8 of sequence {sn J . It is known that if

a series is summable to S by the method (C, l)^ then 
it is also summable to S by the method (R, l)2^.

An increasing sequence of natural numbers

n2 ^ • • • • • ^ n^

1) Hardy [42]

2) Meder [77]
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is said to satisfy the condition (L) if the series

£ .4..
nk

satisfies the condition (L) ; i.e.

1)

1 .4 Lebesgue functions :

The concept of Lebesgue function was introduced 
by Lebesgue^. He investigated the influence of these 

function on the divergence of Fourier series. Lebesgue 
functions LR(x) are constants for the trigonometric system 

and are therefore called the Lebesgue constants.

Summability Kernels and Lebesgue functions i-j 

The sums
n n a®

k (t,x) m Z 0k(t) 0k(x) and k“(t,x) m Z 0k(t)0k(x)
k=o k=o

* f H fh
(<x > -1) are called the n -Kernel and n (C, o)

* i

Kernel respectively of the GNS |^0n(x)^ » whereas

hwb.' h0 wwi iTiimomw rirrrnwn»' rrmwn w'is''i'»-~tror«^n--ir--TBni—r*“-T-—“t-"—* 1 2—mj——■—bom»———"QKmmmmm

1) Bary [12]

2) Lebesgue [61]
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b a b _L (x) a / | k (t ,x)| dp(t) and L ( x) « / J k®(i,x)|dp(t) 
n a a

X,U XU

are called its n Lebesgue function and n' Lebesgue 

(C, a) function, respectively.

The nth - (N, P ) Kernel NR(t, x) and nth 

Lebesgue (N, P„) - function Z^x) of the ONS {0„(x)} 

are defined by

V1- x) - -p~ P n-v kv(t" x)
, n v=o

and

Z^Cx) a / |Nn(t,x)| dp (t).
a

N (t, x) = -4- £ p k (t, x)

n Vao

and
b -

Qn(x) = / |Nr (t, x) J dp (t)
a

respectively are defined as the nth - (N, Pn) Kernel and 

(N, PR) Lebesgue function for the ONS £ •
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Riesz Kernel and its Lebesgue function as 

well as Euler Kernel and its Lebesgue function were 
defined by Kantawala P.S.*^ in a similar way.

1.5 Singular integrals l- This concept was introduced 
by Lebesgue1^ and it has important convergence proper

ties.

The partial sums Sn(x) of the expansion of an 

L?(x) ” *nte9rahle function in the functions of an QNS

are of the form :

(1.5.1) Xn(ffX) / f(t) $n(t,x)*(t) dt

where lfn(t,x) denotes the sum

l PAt) pAx)
r»A " ^kr*0

The nth sums

ntn(x) * Z ankSk(x) 
k=o

of an expansion summed by a linear summation process are 
also representable by the integral (1.5.1) where ; $ft(t»x)

1) Kantawala P. S. [50]
1} Lebesgue [61]
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denote s the sum

l|n(t,x) n
£

k=o V Pk
(t) PkU)

The integral In(f,x) is said to be singular

(with singular point x) if, for an arbitrary number 
&> o and for an arbitrary subinterval [a, B] of 

[ 3> b},

(1.5.2) / lfn(t, x) Sit) dt = 1 and

/ ^n(t, x) ?(t) dt « o,
J

where I * [a, b] 0 [x - £ , x + S ] , J = [a,B] - [x- 6 ,x+ 6 ] 

and

(1.5.3) ess. Inb. Iln(t,x)|v< |l (S)

t£ [a, b] - [x-6 , x+6]
Should holds.
Where l|J (6) is a number depending on & and x but 

independent of n.

If $n(t, x) satisfies uniformly the conditions 

(1.5.2) and (1.5.3) in an x - set E , then the integral

In(f» x) is said to be uniformly singular on E.
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1«6 Constant preserving and polynomial like ; 

Orthonormal Systems

The idea of the polynomial - like orthogonal 
system was introduced by Alexits1^.

if its 

kn(t,x)

An ONS £0nU)} is called polynomial like, 

th Kernel kR(t, x) has the following structure :

= \ Fk(t,x)
k=l

P
Z

i , j =“ p
v In) 
Yi,j,k 0n+l(t) Wx)

Where p aid r are natural numbers9independent of n 
and the constants |Y^n? h 1 have a common bound

independent of n, while the measurable functions Fk(t,x) 

satisfy the condition

Fk(t, x) = O ( 7-^-7 >* t-x

for every x € [a,b] . Here the function ' with

negative index is considered to be identically equal 

to zero.

The orthonormal system £j&n(x)]f is called

constant preserving if 0Q(x) * constant. In this case

besides C0 all the expansion coefficients of the constant

1) Alexits ( [5] P .11}



n
function f(x) » C vanish and therefore, we have 
for the n*h partial sum Sn(x) of its expansion

Sn(x) * C / 0Q(t) pQix) dp(t) = C.
d

i.e. a representation, preserving constancy.

The system of orthogonal polynomials 

and the trigonometrical systems are polynomial like.

1.7 Degree of approximation of a Class of functions *-

Let & denote a class of functions and 

a given orthonormal system in [a, b] . Let

us form ( for a fixed natural number n ) linear combina

tions of the functions P0(x), 0i(x),........... .. J&n(x)

the form

sn(x) * ank **k(x)
k=o

with real a^. Let d^f) denote the lower bound of

Sup

a x ^ b
1 f(x) - Sn(x) 1

formed with every possible linear combinations Sn(x). The

non-negative number

Sup
f € 5 d^f )
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is said to be the best degree of approximation attainable

then, § (®» P) can be considered as best degree of appro- n
P 1

ximation for the class % in the sense of the - approxi
mation.

1,8 Convergence and Summability of Orthogonal series s- 

( a brief history );-

for the entire class with arbitrary Sn(x)»

(P ) , ,,If (f) denotes the lower bound of all

the numbers
1/p

The question of convergence of orthogonal series
was originally started by Jerosch and Weyl1^ who pointed 

out that the condition

is sufficient for the convergence of the series

(1.8,1)

1) Jerosch and Weyl [49]
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Further, Weyl*^ has improved this condition! by 

showing that the condition,

o* 2 „
£ C fn < «

n-1 n

is sufficient for the convergence of the series (1.8.1).
2)

Later on Hobson modified the above condition to the 

form

and Plancherel3^ has solved the same problem with the 

condition

oo 2 3
Z C log n < oo . 

n=2 n

The Chain of ideas in this direction continued and 

finally a masterpiece work regarding the convergence of 

the orthogonal series (1.8.1) was carried out nearly, 

simultaneously and independently of one another by 
Rademache’r^lnd Utenchoff^o They have shown that the series 

(1*8.1) is convergent almost everywhere in the interval of 

orthogonality if the condition

2 C 2 log2n < oo , 
n=l n

is satisfied. Further generalizations of this theorem were

!l
we.yl [144; 
Hobson [44,
Plancherel [98)

4) ftademacher [100]
5) Menchoff [73j
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given by Gaposkin^ , Salem ^ , Talalyan ^ and Walfisz •

The theorem of Rademachex and Menchoff is the 

best of its kind is obvious from the following fundamental 

theorem of convergence theory given by Menchoff.

If w(n) is an arbitrary positive monotone 
increasing sequence of numbers with w(n) = o (log n), then 

there exist an everywhere divergent orthogonal series

£
n=o n

whose coefficients satisfy the condition

00 2 2
1 C w (n) < «** .

n~l n

Another result which needs to be mentioned in
5 )

this direction is due to Tandori , who proved that if 

is a positive monotone decreasing sequence of

numbers for which

« 2 2 
Z C log n s* w n=l n

holds, then there exist in [a, b] an ONS $n(x)

1) Gaposkin [39]
2) Salem [lo4,
3) Talalyan [126,

4) Walfisz [143]
5) Tandori [136,
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dependent on C such that the orthogonal series 
n

t

E
n=o

is divergent everywhere in [a,l>3 •

For many special orthogonal series the condition for

convergence has still better form. Kolmogoroff - 
1) 2)Seliverstoff ' and Plessner * showed that under the 

condition

(1*8.2) CO /% /\

E (a„1 2 + b 2) log n < ~ , 
n=l ^ n

the Fourier series,

( 1*8*3)
2 + £ (a_ cos nx + b_ sin nx)

n-i n n

is convergent almost everywhere.

Further, it was proved by Plessner that the condition 
(1*8.2) is equivalent to

s2* l *<»+*>- dt dx < .
0 0 t

where f(x) is the function whose Fourier series is (1.8.3).

1) Kolmogoroff - Seliverstoff [59]
2) Plessner [97]
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Besides the question of convergence, Menchoff;

and Kaczmarz have discussed the Cesaro summability of 
(1,8,1). The Fundamental theorem concerning the Ces’kro

summability of orthogonal series was at first proved by
l) 2)

Menchoff' and independently also by Kaczmarz .

They have shown that if £w(n)]j denotes a 

positive monotone increasing sequence of numbers whose 
terms are of order of magnitude w(n) * o (log log n) then 

there exist an orthogonal series

£ a $ (x)
n«l

which is nowhere A - summable although its coefficients 
satisfy the condition

Z a w (n) < oo ,
n=d n

Lebesgue functions on the convergence and summability of series :

The question of convergence of orthogonal 
expansion is also smoothed by means of Lebesgue functions 
introduced by Lebesgue^, who investigated the influence 

of these functions on the divergence of Fourier series. The 
effect of Lebesgue functions on the convergence of Fourier

1) Menchoff ([74l[75] )
2) Kaczmarz [52]
3) Lebesgue [61]



28

series was investigated by Kolmogoroff-SeliverstoffV
2) ' 

and Plessner *

The idea of Lebesgue functions in the convergence 

arid summability theory of orthogonal series was genera
lized by Kaczmarz3^, Tandori4^, Meder^, Zinovev^ 

Alexits^ and Osilenker8^.

Q )

Kaczmarz ' has shown that if

Ln(x) = Q (Xn}

where

and

)s(n) ^ \in+l)

CO

z1
K 2
X (n) < + »,

then the series (1.8.1) converges almost everywhere. The 

analogous result for (C, a > o) sununability was also in

troduced by him.

The order of Lebesgue functions which plays an 

important role in the convergence theory of orthogonal series 
was estimated by Moricz10^, Olev skii Ratajski12^

and Alexits13^.

Kolmogoroff-Seliverstoff [59] 8) Osilenteer [89]
Plessner [97] 9) Kaczmarz [51]
Kaczmarz [51} 10} Moricz [84]
Tandori ([127], [135], [137]) 11) Olevskii ( [87].[88] )
Meder [77] 12) Ratajski( [lOl] ,[102] )
Zinovev [147] 13) Alexits [5]
Alexits [5]
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The <Jhain of ideas was extended in this field of
l) 2)

functional series also by Alexits and Sharma , Tandori 
and Moricz3i Alexits and Sharma have proved that, if

‘ 2

k®o

and the Lebesgue functions

l\x) » / |k* (t,x)| dp(t) where k*(t,x) » Z (1-Jrr)
*1 b W *•

fk(t) fk(x)

of the sequence of p - integrable functions on

p - measurable set E cx» which is measurable with a positive 
measure p, satisfy the condition i^(x) « O^Xn^ uniformly

on the measurable set E of finite measure, then the sums

nZ (1 
k=o

n+1 * ak fk^ 

1/2.
have the order of magnitude 0x( Xn ) on E almost

everywhere. Moreover, they have proved that, if the Lebesgue
functions l\x) are uniformly bounded on the measurable 

n.
set E of finite measure and

2
£ n
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then the series

2 anfn(x) is (C, 1) - summable almost every

where •

Moricz has generalized these theorems of Alexits 

and Sharma by estimating the order of Lebesgue

function corresponding to general summation process.

1)
1,9 Sunouchi has found the order of approximation of 

- | Sn(x) - onlx) I
(1,9.1) £ —--------------------------  , k > 1

n=l n

under the restriction of boundedness of the function 0n(x).

In Chapter II of the thesis we have established 

the convergence of

(1.9.2) £
n»l

(Sn(x) - Tn(x))

n

and

£
n»l

- <y.n
a 2 

(x) ]

n

and also generalize this result as follows,

l) Sunouchi [118]



)
3i

Theo*qo; If - J>0 > o, Pn >/0, nPn = 0^pn) and 

I 0n(x) | \< kt then

q
b » |Sn(x) - TnCx)[

/ *
a n=l n

<» q q-2
dx * OU) £ |C I n ,q^2

n=l

Theorem : If |0n(x)| ^ k , n = o,l,2,...............

then
b « |S (x) - o a(x)| oo q-2 q

f Z —S—_—2-----------  dx v< A Z n C i
• n=l n V n=l n

Moreover, in this chapter we have also dis

cussed the convergence of (1.9.2) with logarithmic 

means. Further we have ' also discussed the convergence

of ,
[Sn(x) - on(k,x)]

and

Z
n=l

oo

z
n=l

P > 1
n

[S„lx) -V„(*>]

n
P > 1

in this Chapter.

The order of approximation of the type (1.9.1) with 

Euler and Riesz means was carried out by
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i)
Patel and

2)
Kantawala .

1i
for Norlund means ait was established by

The approximation of summability means to their 

generating function for the orthogonal series

(1.9,3)
09
£ Cn (x)

n»o
3) 4)

has been studied by Alexits and Kralik , Leindler and
5) 4)

Bolgov and Efimov , Leindler has proved the
following theorem!

Theorem As- If

(1.9.4) oo 2 2p£ C n < oo n»l n (o < p < 1)

then
d^(x) f(x) -0Ox(n )

holds almost everywhere in (a, b).

The same result in this direction for Norlund means and
2)Euler means was proved by Kantawala .

1) Patel [94]
2) Kantawala [50]
3) Alexits and Kralik [7]
4) Leindler [66]
5) Bolgov and Efimov [23]
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In Chapter III we have generalized the above 

result to (N, P ) means as follows s

Theorem t If pj 1 , a > £ , then under the condition

(1.9.4) the relation

Tn(x) - f(x) = ox (n ) (o < p < f )

holds almost everywhere in (a, b).

1)
Sunouchi has discussed the strong

2)
summability of (1.9.1). Maddox has generalized the 

Sunouchi*s result by considering the Vrfeaker hypothesis.
This result was extended by Kantawala^ for strong Norlund 

summability.

In this chapter , we extend the results of Sunouchi and 

Maddox to (N, pR) means and Euler means.

In chapter IV we have estimated the order of
4)certain summability means. Alexits 7 has proved the 

following theorem i

Theorem B *« If the Lebesgue functions
b 2n

(1.9.5) L (x) * / | I *Ut) &(x)| dt
2n a k»o K K

1) Sunouchi [120]
2) Maddox [72]
3) Alexits [5]
4) Kantawala [50]
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of an ONS are uniformly bounded on thej set

E c [a, b] , then the condition

oo 2
(1*9.6) 2 C < ~

n=o

implies the (Cr a > o) summability of the orthogonal 

series (1.9.1) almost everywhere on E .

Kantawala1^ has extended the above result to Riesz 

and Noriund summabilities « Here * we extend the result of 

Kantawala and Alexits for Euler and (N, pn) means. Our

theorem are as follows.

The orem :

If the Lebesgue functions (1.9.5) 

uniformly bounded in the set EC [a, b) 

(1.9.6) implies the estimate

of ONS {PnU)^j are 

then the relation

Tn (x) « 0x(n).

The orem t

(• Ma and the Lebesgue functions; of an

ONS £0r(x)^ are uniformly bounded on the set E c[a, b] ,

then the orthogonal series (1.9.1) is (N, pn) summable 

almost everywhere under the condition (1.9.6).

DKantawala [50]
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Morover In this chapter we have also discussed

the order of ■magnitude of Norlund Lebesgue function and
1)

(N, pn) Lebesgue function in the direction of Alexits .

Chapter & is devoted to estimate the order of 

Lebesgue functions for polynomial - like ONS, corresponding 

to Norlund and (N, pn) means. We have also discussed in

this chapter the Norlund and (N, pR) summability of ortho

gonal series. These results axe extensions of the following 

results proved by Alexits.

Theorem C *

If the ONS |0n(x)j is PO^Y1*0®*3* “ like

and the condition

£ Pk2 <*) - 0,(»)
k=o * x

is fulfilled in the set E» then the relation

Ln\x) * Ox CD

holds almost everywhere in E.

Theorem D i

Let be a complete constant preserving

polynomial like ONS with respect to the weight function

1) Alexits ([4], p*206,207)
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?(x). Suppose that the function Fk(t, x) are continuous

in the square a v< t s< b, a s< x N< b with eventual 

exception of the diagonal t = x and that the two conditions

l 0 2 (x) = OCn)
k=o k

and

(le'9*7) o < §(x) constant

are also satisfied in the subinterval [6, d) 
oIf the ^|(x) * integrable function f(x)

in [C, d] , then its expansion

(1.9.8) f(x) cv E CnjD(x)
n=o

is uniformly (C, l) - summable in every inner subinterval 

of [c, d) , the sum being f(x).

We are stating below two of the theorems 

proved by us.

of [ a, b) . 

is continuous

Theorem *

If the

condition

ONS is polynomial like and the

*„(*> -oxu>
is fulfilled in the set E» then the relation
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3„ (*> - oxu)
holds almost everywhere on E.

Theorem x
Let ^0nCx)^j be a comPlete constant preserving

polynomial — like ONS with respect to the weight function 

$(x). Suppose that the functions Fk(t, x) are continuous 

in the square a { t\< b, a ^ x v< b with eventual

exception of the diagonal t = x and that the two condi

tions.
0n (x) *0 ( 1)

and (1.9.7) are also satisfied in the subinterval [C, d] 

of [a, b]. If the x) ” integrable function f(x) is 

continuous in [C» d] , then its expansion (1.9.8) is uni

formly (B» pn) sumroable in every inner subinterval of [C» d],

the sum being f(x).

1.10 Absolute Summabilities of Orthogonal Series s

Absolute summability of Fourier - trigonometric 
series by Cesltro, Norlund and Riesz means have been 

engaging the attention of a large number of workers in 

this line. A systematic account of the available litera

ture on absolute summability of a Fourier trigonometric 
series has been given by Prasad*^.

1) Prasad [99]
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In case of Fourier orthogonal expansion the 

earliest result on |C, a\ - summability are due to ;

Tsuchikura1^ and Tandori2^. Tandori3^ has proved that

the condition

(IJftl)

m+1
« 2
1(2 C.

m“° ks=2ffi +1
<

is necessary and sufficient for |C, 1 | - summability of 

(1*9.3).

The necessity was later on extended by Billiard^

Leindler^, Grepacevskaja8^ and Patel^ h«*-ye 

extended Tan dor is theorem to |C, a| - summability. 
Szalay8^ has generalized these theorems for generalized 

absolute Cesiro summability.

Absolute Euler summability of orthogonal series

has been studied by Patel^^Bhatnagar*®^ , Absolute Riesz

summability of orthogonal series was discussed by Alexits and
Krallk1^, Moricz12^ and P.Srivastava*3^, while considering

14)the- absolute Norland summability, Meder '^has proved the 

following theorem.

Tsuchikura 
Tan dori ( 
Tan dor i 
Billiard 
Leindler

141]
13lf,[ 133]

20j 
62j

Grepacevskaja [41] 
Patel [94]

Szalay [124]
Patel ,94]
Bhatnagar [117] 
Alexits and Kralik [6] 
Moricz [84]
P .Sri vas 113]
Meder [81]
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Theorem £ i
_ a ,Let £pn^ C- M , a > then (1JD.1) is

the necessary and sufficient condition for the series 
(1o9.-3) to |N, pnJ summable in the interval [o, l] .

In chapter VI we prove the same result of 

Meder under the weaker condition for Norlund means,

Pn) means and (V, X 1 means. Moreover in this 
chapter we have also discussed absolute harmonic summabi

lity. We jj*rov$,

Theorenj :
If npn » 0 (Pft), then

U.XL2) £
lft=0

m
z cv=o '

implies the jN, pnJ summability of (1.9 ,3).

Theorem

If npn m 0 (Pn) then (101Q *2)iraplies the 

|H, pnJ summability of

Theorem

ut x -be a monotonic non decreasing

sequence of natural numbers with Xn+1 *n \£ 1 and

* 1 , then

» fn^-l 
£

n»l

12
fe«n*» >n+2,^
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implies the |V,X | summability of (1.9.3).

1.21 Convergence and summability of orthogonal polynomial 

Series smmmammmmmm

The, series of orthogonal polynomials i.e. the

series

(l.ll.l) E PjjCx)
n=o

carry their own importance. The convergence and Cesaro

summability was first discussed in great details by
1) 2)

Jackson • Subsequent papers in this line axe due to Chen and
3)

Freud . Regarding the (C, 1) summability of the series
(**l?i'.i.Ha©ke0n^ showed that if the weight function <?(x)

2,is bounded and J(t) 0 it) is summable in the interval 

J-l, 1] then the series (l.il.i)is summable [c, l) to the 
generating function f(x), 0(t) being given by

f(t) - f(x) 
t-x

In chapter VII of our thesis we have generalised 
this result to the case of Norlund and (N, pn) means. Patel4^ 

has proved the same result of Jackson for Riesz and Euler 

means.

1) Jackson [47]
2) Chen [27]

3) Freud [36]

■4) Patel [94]
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Jackson1^ and Alexits2^ have estimated ihe

degree of approximation with the help of trigonometrical

system. Moreover in this chapter we have also discussed

the degree &f approximation for orthogonal polynomial
3)system in the direction of Alexits ', he has proved the 

theorem for orthogonal system.

Some of the theorems were proved by different

authors for convergence and summability of general ortho-
4) 5)gonal series, e.g. Alexits and Kralik { Tandori and 

Leindler8^ e Further in this chapter we extend the 

above results of Tandori, Alexits and Kralik for orthogo

nal polyonomial system under weaker condition.

1.12 Absolute convergence of orthogonal series 1 :j
i

Absolute convergence of Fourier series has been 
studied in great details by Bernstein , Bary8^, ^ygmund9^ 

Stetchkin S.B.iC^. Absolute convergence of orthogonal series 

has been discussed by , Alexits*2^,

Bochkarev*3^, Zinovev*4^, Tandori18^,

1) Jackson [46] 9) Zygmund £ ISO]
2) Alexits [5 ] 10) Stetchkin S«,B. [ir
3) Alexits [5 'j 11) Stetchkin [114]
4) Alexits and Kralik[7] 12) Alexits [5]
5) Tandori ([1281 [129], [130] ) 13) Bochkarev [22]
6) Leindler ([66 j[67][68] ) 14) Zinovev [146]
7) Bernstein [13] 15) Tandori [134]
8) Bary [12] ■



In chapter VIII we have discussed the absolute 

convergence of orthogoanl series# We extend the TS.*sults of 

Szasz’s^ for Fourier series to orthogonal expansion by 

proving the following theorems;

Theorem t
Let f L2 [a, b] and fix) £Cn0n(x)

be its orthonormal expansion. Then

implies

(2) i

w ("■—— » f) < **

the absolute convergence of (1.9.8).

Theorem

If f(x) is of bounded variation, then 
Y"" i

«* w (-*--« , f)
£ —JL---------------- < «

k*l k

implies the absolute convergence of (1.9.8.)

Moreover in this chapter we have also discussed

some- results on the absolute convergence of orthogonal

expansions of the function of certain class and orthogonal
2)

polyonomial expansion in the direction of Alexits »

1*13 In chapter IX of our thesis, we have discussed 
the surao ability and convergence of X(n) - lacun ary

' \ ■ J

1) Szasz {123} 2) Alexits [5]



orthogonal series* Alexits^ has proved the following 

theorem for Cesaro summability of “ lacunary

orthogonal series :

Theorem i

If the coefficients of >^n) ~ lacunary ortho

gonal series (1.9.3) have as a majorant a positive 

monotone decreasing number sequence £qnTj * satisfyin9 

the condition.

(l.JW) z

n*l

OTn) qn
n

^ CO

then the condition

l
n-o

<

implies the (VC, a) summability almost everywhere of the 

orthogonal series (l.§.$). The same result was extended by 

Bhatnagar ' and Kantawala ' for Euler means and Norlund 

means. In this chapter we proved the analogous result 
for Riesz summability and (N, pft) summability of X(n) 

lacunary orthogonal series.

We have also discussed convergence of ^(n)

lacunary orthogonal series in the direction ,o£. .Alexi'ta'*«4)

1} Alexits
2) Bhatnagar
3) Kantawala
4) Alexits

5]
17]
50]
5]


