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CHAPTER - 3

STRONG APPROXIMATION OF Ok THOGONAL SFKIES

Let {’¢n (x)} (n =0, 1, 2, «v..e) be an

orthonormal system (ONS) of L2 - integrable functions
defined in the ¢€losed interval [a, b). we consider the

oxrthogonal series.

(3.1.1) T C@ (%)
. D=0 n¢n g

with real coefficlents Cn's.

Let us denote the partial sums, (N, pn) means,

and Eul@r means of the series (3.l1.1) by

n

§(x) = £ Cp (x)

n V=0 \X)V
T(x) =2 I p 5(x)

X) = -5 p X

n Pn V=0 vy

v 1 n ny S
T {x) = 5 vzo () Zyix)s

Tespectively, wherxe Pn =Pyt Pyt Pyt esee tp,

p0>°’ pn?fOo

The series (3.1.1) is said to be (N, pn)

summable to 5 if



lim — :
T (x) = S. i
n =—>»> » n -

The series (3.l.1) is said to be (E, 1)

summable to § if

to the

series

Me derg

lim
n ~—>r wo

The sequence {png will be said to belong
class M* for a certain real «a % 05 if
(1) [ 4 pn < pn+l for n = 0, l, 2’-0}'
or o < pn+l< pn fQI’ n:o, l, 2,-109

[

(ii) po+pl+ -cca"‘pn = pn T - -]

(111) 1im np_

n —> P’n

i
&

The nth (C, 1) - means of the orthogonal
1)

(3.1.1) have been approximated by Tandori™’,

) alexits and kralik®’ and Leindler?’. Leindler’

'approximated the de-=la ' Valle'e Poussion mean of the

orthog

onal series (3.1.1). The Riesz means werTe

1) Tandori [133] 4) Leindler ([65], [66])

2) Meder J. [82]

3) Ale

xits and Kralik [6)]
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5) Leindler ([64], [65],[66])
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approximated by Leindlerl). Later on the above résulis
were generalized to strong approximation of (C, a'> o )f
me ans by Sunouchiz) and Leindler3). Bolgov and ﬁfimov4)
have generalized the above Tesults to the means generated

by triangular matriocs.
Leindlers) has proved the following theorem.

Theorem A 3~ 1If

(301.2) t C2nP<a, (o<B<1l),
n=l n
then .
- _ -8
ch(x) - f(x) = o, (n™%)

holds almost everywhere in (a, bj.

Similarly Kantawala P°S.6) has generalized
the above theorem to Norlund summability. In this chapter

we extend the above result of Leindler to (N, pn) means.'

L oL T T T P P

the ceondition (3:152), the relaticn.

T(x) - £fx) = o, (0 P) (o <g<5)

holds almost everywhere in (a, b).

1) Lindler [64] 4) Bolgov andE fimov  [23]
2) Sunouchi G.[119] 5} Leindler [66]

3) Lindler [57] 6) Kantawala p,g, (1]
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f

The nth (C, 1) - means of Fourier series

and the Walsh expansion of the function f{x) satiéfying
the fiptchiz condition were approximated by Bernéteinl)
and Fineg) respectively. The strong (C, 1) summability

of Fourier series, conjugate Fourier series and orthogonal

4)

series was investigated by Alexits3), Alexits and Kralik 7,

Sun young shengs), Alexits and Leindhré) and Turan7).

~ Strong Cesgro summability of orthogonal
series (3.1.1) was discussed by Sunouchia), He has

proved the following theorem :

Theorem A :- If the orthogonal series (3.l.1) with

® 2
(36163) £ C° < =
N==0
is (C, 1) - summable to f(x) almost everywhere in {a, b],

then

L o3 A 5(>-£<)lk
n > o Anﬁ V=0 Ah‘v | v T g = °

lim

. almost everywhere in [a, b] for any B > o and k > o

Maddoxg) has generalized Sunouchi's Tresult: which

1) Bernstein [14] 6) Alexits and Leindler [9]
2) Fine [32] 7) Turan [142]
3) Alexits {[4], [5]% 8) Sunouchi - [120]
4) Alexits and Kzralik (8] 9) Maddox [72]

5) Sun young sheng [121]



concerns with the weakening of the hypothesis rather than
strengthening of the conclusion by proving the following

theorem :

Theorem B :~= Let

5 0 cn2<m
n+1l

and suppose that for k > o, the sequence {Ck (/\n+l‘)j

corresponding to the orthogonal series (3.1.1) is summable
(R, M, 1, 2] to f(x) almost everywhere on [a, b].

Then for any sequence {‘ﬂn} with o < inf um’S:“ < 2,

m
the series (3.1.1) is [R,», 1, p ] summable to f(x)

almost everywhere on [a, b].

Similar result for Norlund summability was

proved by Kantawala P.Sol)

In this chapter we extend the
results of Maddox for strong Euler and Strong (N, p_)

summability. Qur theorem are as follows :-

14

Iheorem 2 :- If (3.1.1) is (N, p,) summable to_f(x) almost

everywhere and the condition np, = ((P) is true then the

- -

condition (3.1.3) iE&Eies

- v o

1) Kantuwela. £507]

A - — v G GBS WD R W AW B A T



lim W ' ' .
-4 3 Py | s (x) - fix) | = 0.

holds almost everywhere for any seguence { Wl with
o < inf vasipmvs 2 .

Theorem 3 3~ If the series_(3ol°l) is (E, 1) summable

to £(x) almost everywhere then the condition

- - —— "

(341.4) I c? i < w
n=1 n
implies
lim - Hm
4 I (D) S - )] =0
N —> oo 2 m=0

ihoids a.imost gverywhere for.any sequence {'Jxm\Lwibh'

e 20 s e b s 4 e 200 6 e s S Bty Ot ok e e o s ben bt o Y Bk s b (B e e B e 0 s St e

< 2.

o < inf p_< RN

For proving this theorems we need the

following Lemmas :

1) 1

. a ‘
Lemma 1 :- If {pn} (~ M , a>-5= . then
n P 2

lim n r X R ¢ :
n—>w ’n k=0 (k+1) 20 = 1 :

1) Meder J. [78].



2) B L then
Lemma 2 3~ 1if. {pn S -8 , a> 5 en

under the condition
{ = (o <B<1l)

the relation,

t (x) - f{x) = o nf )

holds almost everywhere in (a, b).

1)
Lemma 3 :- Let {pn B be a nonnegative monotonic

increasing or decreasing sequence of real numbers with

np, =O(Pn ) and P -~ % as n —> o if the ortho-
gonal series (3.1.1) is (N, p ) summable almost every-

where to a function f(x) then

lim 1 n 2
- I p, [ 8(x)-1fx)] = o
n k=0 k K
n =% o
almost everywhere on [a, b].
_ 3) . :
Lémma 4 :- If the series (3.1.1) with coefficients

satisfying the condition (3.1.4), 4is summable by the

i

1) Shoizma Ma9]
2) Kantawala [s0]
3) Patel R.K. [95]
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method (E, 1) to a function f(x). Then

1im n 2
e 2 (L)) -] = o
n =P o 2 k=0

holds almost everywhere on [a, b).

Proof of Theorem 1 :-~

| T(x) = £x) | =] T(x) - ‘r‘z'n(x) +# T alx) =t o(x)
+ th(x) - £(x) |

L Tn(x) - ?én(x) | + | Tén(X) -

E ) 1o |t (0 - £ |

Now, i
- n n
T.(x) = t(x) = === I ps (x)-=— =
A : p x). S (x
N Pn V=0 v v n v=°pn-v v )
1 n
= I (p,-p ) S _(x)
Pn v=0 v n=v v

Now, by Schwarz imequality, we have

fb[? (.) t» (x) JE . ) 1 fb 2 . 2
ax) =t () 5 g Ly Do -
a 2 2 P2n£ a v=o 2Py Py
oy 2
E { fock¢k(X)} dx



2" 220 v,
= _i-—  (p -p,) T T G
9;’ V=0 2"~V v=0 k=0
2!
20 2
- _O.l% 5 ( p n - pv )
P n V=0 2 -V
2
o
. 0112) : pv2 .
i Pzn V=0
Therefare;
be 20  _ 2
afnfl 2 (T2n (x) =t (x)) dx
T
1
2n ‘
i ® 2 P P 2
' = O(l) L 5 z pv
| n=l P V=0
: 2
i = 0(1) = T2 2 z
i n=1 oh v=o0 {(v+l)
|
| | . 22n;’ﬂ‘
=0 L -
fO n=1 2h
i { by Lemma 1,
bolds almést everywhere in (a, b).
Therefore;
I - -np '.
(3.1.5) Tzn\x)- tzﬁ(x) = o (2 ),
i

|
holds almﬁst everywhere in (a. Q).

|
B

18



By Lemma 2 we have,

tn(x) - f(x) = o (n

holds almost everywhere in (a, b). -

1.8,

-nﬁ

(3.1.6) tzn(x) - f(x) = o (2

~

holds almost everywhere in (a, b).

We have,

= - - 33 S (x) - =
T(x) =T (x) =5~ b Pft =

n k=0

4

Nl

~i
P

n k=0

P
Py S {x) + 5& S, (x)

)

L P TG
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Nl $. (x)
I p,Re, (x).
n—l k:o k'k

...(-—l—-__...J;... )n-}:—l 5{) Eﬂg()
R N EopBix) + 5= 3(x
_pn n-1 k ' pn ’
= I p L C @ (x) +—=— 8 (x)
?npn-l k=0 k V=0 vy P n
~Py n-1 g )n—l )
= P c LX) L p,_ +, S (x
Prfnal v=0 Y VY 'yoy Kk iP D
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n-l

-p Nl n-1 p - f
n n
= 2 C @ (x) p, + zh=—— L C @ (x)
Pnpn--l veo YV k=0 k pnPn-l V=0 v¢v
£ Poos (x)
L p + X
keo K Pn n
pn ) p n-=1 ‘
= 5 <i( S (x) =5 _{x)/+ . VEO cB,x) P,y
T nn-1 77
“n z Co.(x)P
=7 - X .
Pnpn—l veo YV VY v=-1
Thus we have,
2
b 2 p n
(T . T R ¢ 2 2
af .Tn(x) Tn_l(x)) dx = ;—3;-2 z Cv Pv-—l
V=0
- n  n=l1
2
= pn n V-1, 2
: P22 o v G2 P )
n ‘nel V9 1=0
But by Schwarz inequality,
V-1 2 v-1 5
( Z p;) & v I py
iA=0 1=0
So we have,
b _ 2 pn2 N,y
af ( Tn"X) = Tn-l(x) ) ax ‘sm E l:’v T2
P V=0
n'na.l A4
v 2 2
I p c
(i=° 1) v



n
2
n V=0
Hence,
== 2ﬁ+l b — - 2 .
L n J A Tn(x) - T3 (x) ) dx
n=1 a
- 2p+1 n
Q) £ ek ¢’
n=1 n V=0
o oo 23-01
= O(l) z Cvz I n
V=0 N=v
L -4 2 \‘(;
= (l) z c N
O V=0 M
R 1
¢ o, if B < -5
S0 by Bolevy's theorem, \
= 2p+1 - - 2
I n ( T(x) = T (x)) ¢ =
n=l " n=l

almost everywhere in (a, b).

Consequently for 2™ ¢ n ¢ 2™1 , we have

| T.(x) - 'fzm(x)x - |

3 m O T () =T, (x) |

k=2" +1



m+ 1
2 2p+1 - s ))2:
\'\ }: " k ( Tk(X) - Tk-l X s
k=2 +1
m+l %
2 1
L om . Lop+l
k=21 k2P
-ﬁm
=% Ox (2 )
-
= Ox (n )
holds almost everywhere in (a, b},
i.e., the relation
T T (x) (n "
(3.1.7) | T (x) - sz x) | = o (n )
m m+l ]
holds for 2 < n ¢ 2 almost everywhere in {a, b).

Therefore by (3¢1.5), (3.1.6) and (3.1.7) we have the
relation

| ?n (x) -« f(x) | = o, (n )

holds almost everywhere in (a, b). This proves the

theorem.

" Proof of Theorem 2 :

By Lemma 3 we have,

n 2
~%~ I op, [ Sm(x) - f(x) ] —> 0 asn—>w.
n m=o

almost everywhere on [a, b].
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Denote,

t :.-».iSm-f{

Hren
Then we have from hypothesis o < C < 52—- <1 for

some C,.
Hence,
Hon 2 .
tm N tm if tm 51
and
TR 2C '
tm N tm if tm <1.
If L < 1, then by Holders inequality,
we have,
1 2 2C
Pn m=o M m

- )
M=0 n m pn
C 1-C
p 2 n P
[Z{s®) t ] [ 2 2]
¥ "meo Pn m m=o Fn
i o C
::[8"“""'“2"’ t*j
m=0 Pn m
1 n 2 C
$[{= £ p ¢ ]
Q
Pn meo ® M
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Hence, ' E
1 n Hr :
Plmo ® W

as n = = due to Lemma 3.

Also, if tm > 1, this limit is obviously true.

Hence, .
1 n Frn
+ mi P | § (x) - f(x) | >0 as n —P =,

n %)

almost everywhere in [a, b].

With this the theorem is proved.

Proof of Theorem 3 =

By Lemma 4 we have,

2 :
o I (0 (500 - ) >0 ssn e

almost everywhere on [a, b].

Now write,

t s - f|.

m=lm

Then, we have from hypothesis 0 <C 75 L1 for some C.

g

Hence,
p’m 2
tm S tm if tm ; 1
Ho 2C
and tm S tm if tm <1,
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i.ee
Hem 2 Cc
(3.1.9) t, Sty
where
vm = [s] J.f m /l
and
v o= t2 if t <1
m m *

By H6lders inequality, we have,

n al
P - " ) v ¢
2" m=o m m
1 D 2
— (D) ¢
\2[1,&:0 m m

1-C
no (B) L% o (R
${r B e D I
m=0 2 m=0 2
C
n
= "AE' r 3 ) tm2
2 m=0
SO, C
C n ‘
1 ly n A n 2
‘2n mio ( m ) vm ‘S 2n mﬁo ( m ) tm e

as n =% w due to Lemma 4.

Hence from (3.1.9)
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b
) tm‘W§-*§ o as n =) =»

n
m
almost everywhere on [a, b).

i.e,

Hea

: ) 1S (x) - £(x) | => o

- (

n
- 1o
2 m=0

as n > » almost everywhere on [a, b].

This complets the proof of our theorem.



