
CHAPTER - 4

ON LEBESGUE FUNCTIONS AND SUMMABILITY OF 

GENERAL ORTHOGONAL SERIES

Let ^^ = o»^>^®****^ Le sn 

orthonormal system (QNS) of L2 - integrable functions 

defined in the closed interval [a, b]. We consider the 

orthogonal series

14.1.1) Z Cn 0n (x)
n=o

with real coefficients Cn's.

4* In

Let S^Cx) denote the n partial sum and

7n(X) “ vEn PVSV(x)'

n v=o

- -Jut ' O V *>•
2 v=o

where P„ = p + p, + .............+p , p > o, p X o
n o 1 rn ro rn '

denote the (N, pR) means and Euler means of (4.1.1),

respectively.

Define
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L„ (x) = / JknU> *>1 dt*
n

N Ct x) = £ Pvkv X^’
n ! n v=o

t x) - / 1 B.n U, x) l $U) dtf

nN_(t» x) — ""p 2 Pn-v^V^' *
* n v=o

hi U) / |Nn (%, x) | l(-b) dt,

the nth kernel of the OMS ^0n (x)^J » Lebesgue

function, nth C m « ) kernel, nth Lebsgue ( *7 n )
w» Pn * pn

function, nth (N, p ) kernel and n*n Lebesgue (N, pn)th

function respectively,

Convergence of orthogonal series may be 

affected by Lebesgue functions. Kolmogoroff - Seliverstoff
1)

have given the idea, how Lebesgue functions effect the

convergence of Fourier trigonometric series. Thisjresult

was, then extended to orthogonal series for the convergence
2) a)and Cesaro summability by Kaczmarz ' and Tandori ^similarly,

Kolmogoroff and Seliverstoff 
Kaczmarz [51]
Tandori [127]-n

(CS9],[60]_)
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Meder*^ and Kantawala^ have worked in this direction 

for Riesz means, Logarithmic means and Norland means 
respectively. Alexits G.1 2 3* has discussed the influence of 

Lebesgue functions on the Ceslrc summability of orthogo

nal series. He has proved the following theorem.

Theorem A

If the Lebesgue functions

n
(4.1.2) L (x) * / | £ 0kU) (x) | dt

2n a k=o

of an ONS (x) t| are uniformly bounded on the set

E C[a, b] , then the condition

OO

(4.1.3) £ C < -
n=o n

implies the (C_,a > o) summability of the orthogonal series 

(4.1.1) almost everywhere on E.

In this chapter we extend the above results 

to* (N, pn) summability and Euler summability as follows :

Theorem 1

If the Lebesgue functions (4_* 1_=2) of ONS

1) Meder [77]
2) Kantawala [50]
3) Alexits G45] , p.l28j
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{'*
then

(x)|j are uniformly bounded in the set 

the relation (4.1.3) implies the estimate

Tn = °x (n)

holds almost everywhere on E_.

Theorem 2 >■

of an

La2_b]

"If t |pn^ (- M and the Lebesgue functions (_L«i- 2-)

QNS ^0n (x) ^ are uniformly bounded on the set E_C_

, then the orthogonal series (4.1.1) is (N, p )

summable almost everywhere under the condition (4,1,3).

Moreover, in' this chapter we have also discu

ssed the order of Magnitude of various Lebesgue functions.

Alexits^ has estimated the order of magnitude 

of Lebesgue functions of an ONS |^0n (x) ^ . He has proved

the following theorem s

Theorem A

If (M
of numbers (positive)

is a mono tonic increasing 

satisfying the condition

sequence

£ < qo then,
n=o n

l) Alexits [5]



91

the order of magnitude of Lebesgue functions of the ONS 

^0n (x) can apart at most from a set of measure zero

be obtained by the relation

1f however

Lnu) = o*iYjr>
" n

{0„U)1, satisfies, in the set E, the condition 

n 2
I 0k (x) = Qln),

k=o K

then at the points x(-E this order of magnitude can be 

pushed down to

LnU) = 0 C irT)

In this chapter we have estimated the order 

of magnitude of Norlund Lebesgue function and (N., pn) 

Lebesgue functions,. Our theorems are as follows

Theorem 3

If | Xn^ is a monotone increasing sequence 

of numbers, satisfying the condition

n

then the order of magnitude of Lebesgue functions of the

£22 agart 3} most from a
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set of measure zero be estimated the relation

If however satisfies in the set E the condition

T. 0„2 lx) = Qln) 
k=o k

then at the goint x(-E_ this order of magnitude can be 

gushed down to

% Cx) =QLW)

Theorem 4

Under the same condition as of theorem 3, we

estimat,

z„ U) - °* )

and also

% Cx) « OOK )

For proving these theorems we need the following Lemmas : 

Lemma 1

Under the condition (4*1.35 the relation

S Cx) - a Cx) =s o (1) is valid almost everywhere 
n n x

1) Alexits ^[5], p» 118 ^
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for every Index sequence ^vAwith

n+1 X q > 1 .

Lemma 2

If j is a positive, nondecreasing

sequence for which the relation

L (x) »0^v } U1 < v2 < )

n n
holds in a set EC [a, b] then for the partial ?ums 

j^Sv (x)^ of the orthogonal series (4.1.1) under the

condition (4.1.3) »the estimate

n n

holds almost everywhere on E.

Lemma 3

If
a(- M ,

lim n n
Z

k=o

pk2

n
P 1 2 

oo n
Ck+1)2

Lemma 4 .3)
r * ^

If ? deno te

1) AlexitsCCs], p. US )
2) Meder [78j

a > 2 then 

1
2a-1

a monotone increasing

3) Alexits G.([5] , p.38)
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sequence of numbers for which

00 \ _ iz An < co ,

n=o
then the estimate

n o v£ 0,, ix) ov C )
kso K *

is valid for every orthonormal system ^0n (x)|j 

everywhere,

Lemma 5 :~

Let r u be a given series with 
nn-o

as its sequence of n^ (C, l) sum. If ^mn|j 

null sequence and = Q(l) then

Tn (m)
n

o(n)

holds, where Tn(m) denotes the (E, l) means of

£ un
_ „ n n n=o

Proof

Here,

t (m) « ? U m £ O
n 2n k=o k k v=k v

nns I U, £. where 6. = —
k=o k k k 2n

almost

a convex

the series

n n2'IJ ®k

=k v K



95

8y Abel's transform

n-1E <■ &k - Sc+1 ) \ * k Sn
k«o

n-1 - t r f *
£ b, S, + o S where b . k k n n k

K=0

£ •
* ^ \ *

k=o

&
k+1 *

Again by Abel's transform we have

- E ltk - £k+l > U + 1)ak + tn + 1)rn
k=o

n-1 ii i
= £ i k (k + l)o^ + (n + l)djj Sn

k=o

The second difference j, may be represented as follows.

- » ' £ ' *
b k = bk - &k+i

= " 2 &k+l + ^k+2 *

n n o n n1
" 2n II ) m. -

v=k v k
£
2n

2 C
v=k+l V

) Vi

n . n
+ ""

1
2n

2 ( 
v=k+2 V

K+2 '
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, n nX. [ 2 ( ) m. ]
2n v=k v k

o n n :...... £ ( ) m, < . ■f„n . .v v ' k+1 i 
2 v=k+l

, n n r- -Sr t * iv) {
2n v=k v W

2n v=k+2

2mk+l + mk+2^f + k ^mk+l

2 ^ v Jmk+2

ra.
n

n+1
1 k J mk+2 1

[ U" - E ( v > )K -*\+1 ) + 2C „ )»
z v=o

k-1 n n
k /mk+l

n+1
1 k )mk+2 I'

Therefore, we have,

n-1 ^£ (S
k=o

k+l ) U + 1) ck + In + 1)

n-1 n k-1 n
l

k-o
X2n ^ (2n. £ 

v=o
iK V

n+1
- ( k ^ mk+2

n) + 2Cir,)«n.“k k+1 If' k+1

m_r
2*

Since the hypothesis on = 0(1) and is a convex

null, sequence so n & ran = o(l)

- V ill )lk+l) n-1 n+1
2n \_kl0 "k+1 ' kfo ‘ k^Ck+1)”k+2

+ (n+1) m
n
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_Qlil
“ 2n

Oil)

0(1)

2n

_ Oil)
Sp IMII lll»W■1111161 

2n

. Qiu
" 2n

= o(n)

n-1 n-1i* 11) u + i)fitnic+2 + 2 ( 1 k
k=o k=o

(k+1) mk+2 + (n+1) mn 1j

n-1>(1)(2n - 1) + —Jr- E (n+1- k) ( P)
n+i k=o K

Ck^l) mk+2 + (n + 1) mn !j

< oil) (2 - 1) + n Z ( J )mk+2 + (n+1)m,
k=o n

noil) (2 - 1) + n 2n o(l) + o(n)

no(n 2 )

with this the Lemma is proved.

1)
Lemma 6 :-

sequence of indicies 

of lacunarity

aM and let n^ be an arbitary 

satisfying the following condition

1 <
n k+1

n, fox k = o, 1, 2,

where q and v are constants, then the orthogonal series

(4o1 & 1) with (4«lc3) is (N, pn) summable a.e. if the 
______
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sequence of partial sums 1 S^ (x) 1 is convergent almost

u k J )
everywhere.

Proof of Theorem 1 i-

Since

I C < CO

„ „ n n=o

here tnere exist a monotone number sequence {V isuch

that pn <» and

“ „ 2 2 2 C u < *
n=o n rn

It is also easy to construct ( for instance geometrically) 

a strictly increasing concave .sequence mn with

2 2 2 m_ ^ , m_ ---> oo and
n n n

“ „ 2 2 2 C <
n=o n n

Since *n ^ Is concave and tending to infinity,

| 1 is convex null sequence. Let Sn(m, x) and
n ^

XL<?n (m* x) denote the n*' partial sum and the nw(C, 1) 

mean of the orthogonal series.

,th/

£ cnmn0n(x) respectively. 
n=o
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From our assumt>ip.on about the uniform boundMi^esi 

of the Lebesgue function (4,1.2) it follows by Lemma 2 

that the relation.

S (m, x) = O (l)
2P

holds almost everywhere on H.

Hene.© the relation
<rn (m, x) =0 (1)
2P x

is valid almost everywhere on £• due to Lemma 1.

Also ,
1)

xT (m, x) - cr (m, x)-----> o
n oP

almost everywhere with

2P p+1
< n < 2

Therefore, the relation.

a (m, x) = O (i)
n x

i's . valid almost everywhere on E .

ooSince the relation £ Cn0n ^x) arises from the relation.
n=o

1) Alexits G.( [5] , p. 119)



14.1.4)

IflO

00

2 C m 0 (x)
n n nn=o

by niriultiplying the terms of the series (4.1.4) by the 

terms of the convex null sequence 1-fcV it follows by

Lemma 5 that the estimate

T tx) = ox (n) 

holds almost everywhere on E . 

This proves the theorem completely.

Proof of Theorem 2

From the given condition we can conclude by theorem 

A that the orthogonal series (4.1.1) is ( C, a > o) 

summeble almost everywhere on E. Therefore, Lemma 1 
implies the convergence of the sequence [V U)} of the

partial sums of the series (4.1.1). Hence by Lemma 6 it

follows that the orthogonal series is ( N, p ) summable
n

almost everywhere on £.

This proves the theorem completely 

Proof of Theorem 3 s-

We know that

(x) » / | Nn (^, x) | f((J dt.
a
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hence

n
2 PVM t,x) 

VssQ
§(t) dt

D b

/ (t) dt /
a a Pn

1

n 2 r?
I py kv(t,x) ] $(t)dtj

* OU)

1

n v 2 i 2
£ pv E 0k(t) 0k(x)J §(t) dt j

VsD k»o

“ 0(i) n
£

v=o

n
£

k**o
(x

1

2

. O X ( }

By Lemma 4, - > we have

■ 0,( V *n )

the proof.


