CHAPTER - 4

ON LEBESGUE FUNCTIONS AND SUMMABILITY OF

GENERAL OKRTHOGONAL SERIES

Let {sbn(x)} (n = 0,1,2¢04..) be an °
orthonormal system (ONS) of 12 . integrable functions
defined in the closed interval [a, b]. We consider the

orthogonal series

(4.1,1) ;:° C (
LG g, (x)

with real coefficients Cn‘s.

th

Let Sn(x} denote the n partial sum and

T(x) = =k I (x)
T AXx) = =5 p.S. {x),
n Pn V=0 v Vv
1 n n
T (x) = -;; Vﬁo ¢, Sv(x).

where Pn = P, + Pyt ceeeee P p. >0, P

denote the (N, pn) means and Euler means of (4.1.1),

respectively.

Define

n
kn{sts X) = REQ ¢k(t) ¢k(x)'
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b
L (x) = Jole (& x)| dt,

"a

n .
- 1
N — L p k (t’ x) ’

H

b
P U PRCHRO NI TSR
a

1 n
Nn({'.p X) = '"1'3'— z pn__vkv('bo X),

n v=Q

i
.,
o

Zn (X) thA(‘b» X) l g('t) dt,

the n*P kernel of the O ~{p (x)} Lebesgue

th , _ th
(J, pn) kernel, n Lebsgue { ph)

th

function, n

th

function, n (N, pn) kernel and n~ Lebesgue (N, pn)

function respectively.

Convergence of orthogonal series may be

affected by Lebesgue functions. Kolmogoroff - Seliverstoffl)

have given the idea, how Lebesgue functions effect the
convergence of Fourier trigonometric series. This iresult
was, then extended to orthogonal series for the convergence

and Cesaro summability by Kaczmarz2! and Tandori3)¢similarly,

1) Kelmogoroff and Selivelstoff [59],[60]
zg Kaczmarz [51] (te91.1603)
3) Tandori [127]-
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Mederl) and Kantawalaz) have worked in this direction

fﬁr Riesz means, Logwyithmic means and Norlund mea¢§
respectively. Alexits G.3) has discussed the influence of
Lebesgue functions on the Ceshiro summability of orthogo-

nal series. He has proved the following theorem.

Theorem A :-

If the Lebesgue functions

n

b 2
(4.1.2) LG(x) = af | k.E.o g.(6) 6 (x) | dt

of an ONS {?n (x)& are uniformly bounded on the set
E C{a, b], then the condition

(4.1.3) $ C { o

implies the (C, a > o) summability of the orthogonal series

{(4.1,1) almost everywhere on E.

In this chapter we extend the above Tresults

to' (N, pn) summability and Ewler summability as follows &

Theorem 1 :~

1) Meder [77]
2) Kantawala [50]
3) Alexits GJ[5], p.128)
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T (x) = o, (n)

holds almost everywhere on =.

Theorem 2 i~

a +
if {png = M and the Lebesgue functions (4-%.2)

summable almost everywhere under the condition (4,1.3).

oy e

Moreover, in this chapter we have also discu-

ssed the order of Magnitude of various Lebesgue funptions.

Alexitsl) has estimated the order of magnitude

of Lebesgue functions of an ONS ‘{¢n (X)TI' He has proved

the following theorem :

Theerem A i~
1f {)‘n} is a monotonic increasing sequence

of numbers (positive) satisfying the condition

oG
1 { = then,

L

1) Alexits [5]
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the order of magnitude of Lebesgue functions of the ONS
{¢n (x)\] can apart at most from a set of measure zero

be obtained by the relation
Ln(X) = Ox (Q}\n )
1f however, {¢n£x)}satisfie s, in the set E, the condition

n 2
z ¢k (X) =O(n)»

k=0

then at the points xE this order of magnitude can be

pushed down to
L) =0 ()

In this chapter we have estimated the order
of magnitude of NOrlund Lebesgue function and (N.'v pn)

Lebesgue functions. Our theorems are as follows .

:r_heorem 3 -
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1f {)\ny is a monotone increasing seguence

. y
-1

TN e

n=0 n .

i
o
ie)
iy
to

er of magnitude of Lebesgue functions of the

——— g - - -

orthonormal system {an (x)} can apart at most from a
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1f however {.¢n (x) E satisfies in the set E the condition

Pogl 0 = Q)

then at the point xGE this order of magnitude can be

e - - —_——— U —_—— - - W - G -

- — ————

Theorem 4 :-
Under the same candition as of theorem 3, we

s o -

Z (x) = ox (V)\n)

and also

Z (x) =Q0n)

For proving Ehese theoregg we need the following Lemmas :

Eemma 1 :~1)

Under the condition (4.1.3) the relation

Svn(x) - cvn(x) = %x(l) is wvalid almost everywhere

1) Alexits (_[5}, p. 118 )



for every index sequence {v&}with

Lemmg 2 :-l)

If {%nk is a positive, nondecreasing

sequence for which the relation !
Ly (%) =Q(>\Vn ) vy vy < el )

holds in a set E C [a, b] then for the partial sums
{Sv (x)B of the orthogonal series (4.1.1) under the
n

condition (4.1.3) sthe estimate

N
Do

S, (x) =Ox (>‘v

n n

holds almost everywhere on E.

2)

Lemma 3 :=

a 1
If {png (- M, a> 5  then
lim n n ka 1
P 2 kZ‘. ( 1)2 = 207:1 )
n ___? ' n =0 k+
3)

Lemma 4 :=

If {An} denotes a monotone increasing

I) Alexits ([5], p. 118 ) 3)  Alexits G.([sl, p+38)
2) Meder [78]



sequence of numbers for which

o;; An-l < e
n=o0

then the estimate

n 2
¢
k=0 k

(x) = °x‘>‘“ )

is valid for every orthonormal syéten:«{¢n (x)B almost

everywhere,

Lemma 3w

Let g U be a given series with {c’ B
o D n

as its sequence of pth (C, 1) sum. If {mng is a convex

null sequence and .0} = O(1) then

T _(m) = ofn)

holds, where Tﬁ(m) denotes the (E, 1) means of the series

Proof :-

n 2" k=0 v=k
n n n
= LU Sk where 6 = X~ () m
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By Abel's transform

n-1 "
= Eo(sk°6k+l)ak+&nbn

n=1 t
z b s

t
+&S wheres =5-6 .
n n k
k=0

]

k

il

n '
r b s .
k=o k Tk

Again by Abel's transform we have

The

second

n=1

- D (6, -6 ) (k+ D + 0+ 1)E b,
k=0
nel t§ t

= kzo&k (k+1)o*k+(n+1)o;;gn.

{2 |
difference § y  may be represented as follows.

' '

= 8 - 841
= &k 2 &k+l + &k+2 :
¢} 1y} n n
P S _ 2.
T oh v.:k('v by 2f viku( v ) B

Jmy o

3v]
<
1
”~
+
N
<



n
=Ll (om l-E r (O dmgy
2" v=k k 2" yokel VO KHL
n
1
-2 T ( m
2" yaks2 VK2
L. 20 2( 1)
=—nl E () {mk‘zmku““‘k 2} M S 75

“( k )mk+2]

1 n k=1 n n -
b En = Ty ) dem cemy ) w20, dm,y

n+l
- Oy dmyeo e

Therefore, we have,.

-1 ' ' 1
nz (3k —8k+l)(k+l) ok+(n+l) o, b

96

k=0 n
S (2T () e —am ) 4 2
o on oo bV k "Mkl k' M 1
n+l . m
- ( K )m o ](k+l)ok + (n+l)csn'----r-L

2)’1

Since the hypothesis o =G (1) and {mn\] is a convex

null sequence so nAm o(l).

i

n

-1l n n-1 n+1l ' ;
Q" x
= k:z::o (k J(k+1) L kfo ( k/)(k"'l)mk+2

+ (n+1) m 5
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n-l . n-1 § 1
=92.§;>.{ TR (ke By e B0 CR-ED)

(md)mhz+(nd)mn3

O(1)

2n

£ (n+l= k) ( E )
k=0

{o(l)(2n - 1) + =i

(k+l) m o+ (n + 1) m 3

i
1

-1
2£1) o(l) (2n - 1)+ n ZZ ( 2 )mk+2 + (n+l)mn'3
. _ =0

= czél} {-o(l) (2n - 1) + n 2% o(1) + o(n) }
=Q—r%'l-)- {o(n 2n)j

2
L= o(n)

with this the Lemma is proved.

1)
Lemma 6 :-

a
1f { pnB (= and let {nk} be an arbitary

s

sequence of indicies satisfying the following condition

of lacunarity

n ) .
1l < qgs k+1 \<V fork——JOp l, 2’ es e ey

where q and v are constants, then the orthogonal series

“(4,1.1) with (4.1.3) is (N, p,) summable a.e. if the
1) Sharma J. P. [1llo]"




sequence of partial sums & S, (x)} is convergent almost
k

everywhere.

Proof of Theorem 1 :-

Since

\ 2
here there exist a monotone number sequence {_“n S,such

that By = and

It is also easy to construct ( for instance geometrically)

a strictly increasing concave sequence {mnlj with

m, $ Ky y» W~ —> e and
oo
N==0 )
Sinée {xm}} is concave and tending to infinity,

m

{ *L—g is convex null sequence. Let Sn(m, x) and
n

o, (m, x) denote the n®" partial sum and the n*(c, 1)

mean of the orthogonal series.

8

i o

E Cnmn¢n(x) respectively,
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From our assumpgion about the uniform bo un dedness
of the Lebesgue function (4.1.2) it follows by Lemma 2
that the relation.

5 p (m, x) Ox (1)

il

holds almost evarywhere on E.
Haence the relation
(m, x) = O_ (1)

s X

is valid almost everywhere on E  due to Lemma 1.

Also
' 1)
o, (m,'x) - (mr X) ""—} o
n oP
almost everywhere with
pt+l
P cnca .
_Therefore, the relation.
o (m x) = O (1)

is. valid almost everywhere on E .

Since the relation

18

N=0

C.é, (x) arises from the relation.

1) Alexits G.[5], p. 119)
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(4.1.4)

Hes8

“n ¢n (x)

n=o

by mpultiplying the terms of the series (4.1.4) Dby the

terms of the convex null sequence{'~%r;5 y 1t follows by
On ,

Lemma 5 that the estimate

T (x) = o (n)
holds almost everywhere on E .

This proves the theorem completely.

Proof of Theorem 2 :-

From the given condition we can conclude by theorem
A that the orthogonal series (4.1.,1) is ( C, a > o)
summagble almost everywhere on E. Therefore, Lémma 1

implies the convergence of the sequence {‘SQn (x)} of the

partial sums of the series (4.1.1). Hence by Lemma 6 it

follows that the orthogonal series is ( N, p ) summable
n

" almost everywhere on E.

This proves the theorem completely .

Proof of Theorem 3 :-

We know that

b
R o(x) = [ | N (¢, x) | £() at.

a
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n
= J s vio'pvkv(t,x) | e(t) dt

b b n ’ 2 ) %
={ Jo(ar [o= [Doe, ke ] e()dt]

V=
n

Nf

| MK

‘.om{f% [ % op,
pn

V=0 k

2
{

(t g
. g,.(t) 2,(] ¢(t) dty

N

= O(l){ ‘Lfg‘ {3 pvzg {kg ¢k2 (x)}}

= Ox (¥ )

By Lemma 4, .+ we have

= (Dx( YAn )

hence the proof.



