CHAPTER - 4

ON LEBESGUE FUNCTIONS AND SUMMABILITY OF

GENERAL ORTHOGONAL SERIES

Let $\{ \emptyset_n(x) \}$ (n = 0, 1, 2, ...) be an orthonormal system (ONS) of L^2 — integrable functions defined in the closed interval [a, b]. We consider the orthogonal series

(4.1.1)
$$\sum_{n=0}^{\infty} C_n \phi_n(x)$$

with real coefficients C_n's.

Let $S_n(x)$ denote the nth partial sum and

$$\overline{T}_{n}(x) = \frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} S_{v}(x),$$

$$T_{n}(x) = \frac{1}{2^{n}} \sum_{v=0}^{n} (v_{v}) S_{v}(x),$$

where $P_n = P_0 + P_1 + \dots + P_n$, $P_0 > 0$, $P_n > 0$ denote the (\overline{N}, P_n) means and Euler means of (4.1.1), respectively.

Define

$$k_n(t, x) = \sum_{k=0}^n \mathscr{O}_k(t) \mathscr{O}_k(x),$$

$$L_{n}(x) = \int_{a}^{b} |k_{n}(t, x)| dt,$$

$$\widetilde{N}_{n}(t, x) = \frac{1}{P_{n}} \sum_{v=0}^{n} p_{v}k_{v}(t, x),$$

$$\widetilde{Q}_{n}(t, x) = \int_{a}^{b} |\widetilde{N}_{n}(t, x)| g(t) dt,$$

$$N_{n}(t, x) = \frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v}k_{v}(t, x),$$

$$\overline{Z}_{n}(x) = \int_{a}^{b} |N_{n}(t, x)| \quad g(t) dt,$$

the nth kernel of the ONS $\{ p_n(x) \}$, nth Lebesgue function, nth (\overline{N} , p_n) kernel, nth Lebsgue (\overline{N} , p_n) function, nth (N, p_n) kernel and nth Lebesgue (N, p_n) function respectively.

Convergence of orthogonal series may be affected by Lebesgue functions. Kolmogoroff - Seliverstoff¹⁾ have given the idea, how Lebesgue functions effect the convergence of Fourier trigonometric series. This result was, then extended to orthogonal series for the convergence and Cesaro summability by Kaczmarz²⁾ and Tandori³⁾ similarly,

```
1) Kolmogoroff and Seliverstoff ([59],[60])
2) Kaczmarz [51]
3) Tandori [127]
```

Meder¹⁾ and Kantawala²⁾ have worked in this direction for Riesz means, Logusithmic means and Norlund means respectively. Alexits G.³⁾ has discussed the influence of Lebesgue functions on the Cesaro summability of orthogonal series. He has proved the following theorem.

Theorem A :-

If the Lebesque functions

(4.1.2)
$$L_{2^n}(x) = \int_{a}^{b} | \sum_{k=0}^{2} \phi_k(t) \phi_k(x) | dt$$

of an ONS $\{ \emptyset_n(x) \}$ are uniformly bounded on the set E C[a, b], then the condition

$$(4.1.3) \qquad \sum_{n=0}^{\infty} C_n^2 < \infty$$

implies the (C, α > o) summability of the orthogonal series (4.1.1) almost everywhere on E.

In this chapter we extend the above results to (\vec{N}, p_n) summability and Euler summability as follows :

Theorem 1 :-

If the Lebesgue functions (4.1.2) of ONS

١,

- 1) Meder [77] 2) Kantawala [50] 3) Alexits G.([5], p.128)

 $\{ \emptyset_n (x) \}$ are uniformly bounded in the set $E \subset [a, b]$ then the relation (4.1.3) implies the estimate

$$T_{n}(x) = o_{x}(n)$$

holds almost everywhere on E.

Theorem 2 :-

If $\{p_n\}$ (- M^{α} and the Lebesgue functions (4.1.2) of an ONS $\{\emptyset_n(x)\}$ are uniformly bounded on the set EC [a, b], then the orthogonal series (4.1.1) is (\overline{N}, p_n) summable almost everywhere under the condition (4.1.3).

Moreover, in this chapter we have also discussed the order of Magnitude of various Lebesgue functions.

Alexits¹⁾ has estimated the order of magnitude of Lebesgue functions of an ONS $\{\emptyset_n(x)\}$. He has proved the following theorem :

Theorem A :~

If $\{\lambda_n\}$ is a monotonic increasing sequence of numbers (positive) satisfying the condition

$$\sum_{n=0}^{\infty} \frac{1}{\lambda_n} < \infty \text{ then,}$$

.

1) Alexits [5]

the order of magnitude of Lebesgue functions of the ONS $\{ \phi_n (x) \}$ can apart at most from a set of measure zero be obtained by the relation

$$L_n(x) = o_X(\sqrt{\lambda_n})$$

If however, $\{ \phi_n(x) \}$ satisfies, in the set E, the condition

$$\sum_{k=0}^{n} \varphi_{k}^{2}(x) = O(n),$$

then at the points $x \leftarrow E$ this order of magnitude can be pushed down to

$$L_n(x) = O(\sqrt{n})$$

In this chapter we have estimated the order of magnitude of Nörlund Lebesgue function and (\overline{N}, p_n) Lebesgue functions. Our theorems are as follows .

Theorem 3 :-

If $\{\lambda_n\}$ is a monotone increasing sequence of numbers, satisfying the condition

$$\sum_{n=0}^{\infty} \lambda_n^{-1} < \infty$$

then the order of magnitude of Lebesgue functions of the orthonormal system $\{ \varphi_n (x) \}$ can apart at most from a

set of measure zero be estimated by the relation

$$\hat{Q}_n(x) = o_X(\sqrt{\lambda_n}).$$

If however $\left\{ \varphi_{n}^{}(x) \right\}$ satisfies in the set E the condition $\sum_{k=0}^{n} \varphi_{k}^{2}(x) = O(n)$

then at the point x(-E this order of magnitude can be pushed down to

$$\vec{Q}_{n}(x) = O(1)$$

Theorem 4 :-

Under the same condition as of theorem 3, we estimat,

$$\overline{Z}_{n}(x) = o_{\mathbf{x}}(\sqrt[n]{\lambda_{n}})$$

and also

$$\overline{z}_n(x) = O(\sqrt{n})$$

For proving these theorems we need the following Lemmas : Lemma 1 :-1)

Under the condition (4.1.3) the relation $S_{v_n}(x) - \sigma_{v_n}(x) = o_x(1) \text{ is valid almost everywhere}$ $\overline{1) \text{ Alexits ([5], p. 118)}}$ for every index sequence $\{v_n\}^{with}$

$$\frac{v_{n+1}}{v_n} \geqslant q > 1.$$

Lemma 2 :- 1)

If $\left\{ \lambda_{n} \right\}$ is a positive, nondecreasing

sequence for which the relation

$$L_{v_n}(x) = O(\lambda_{v_n}) \quad (v_1 < v_2 < \dots)$$

1 **/**

holds in a set $E \subset [a, b]$ then for the partial sums $\left\{S_{v_n}(x)\right\}$ of the orthogonal series (4.1.1) under the

condition (4.1.3) , the estimate

$$s_{v_n}(x) = O_x \left(\lambda_{v_n} \frac{1}{2} \right)$$

holds almost everywhere on E.

Lemma 3 $:-^{2}$

If
$$\left\{ p_n \right\}$$
 (- M^{α} , $\alpha > \frac{1}{2}$ then

$$\lim_{n \to \infty} \frac{n}{p} \frac{p}{2} \sum_{k=0}^{p} \frac{p^2}{(k+1)^2} = \frac{1}{2\alpha - 1}$$

Lemma 4 :-³⁾ If $\{\lambda_n\}$ denotes a monotone increasing 1) Alexits ([5], p. 118) 3) Alexits G.([5], p. 38) 2) Meder [78]

sequence of numbers for which

$$\sum_{n=0}^{\infty} \lambda_n^{-1} < \infty$$
 ,

then the estimate

$$\sum_{k=0}^{n} \phi_{k}^{2}(x) = o_{\chi}(\lambda_{n})$$

is valid for every orthonormal system $\left\{ \phi_{n}^{}(x) \right\}$ almost everywhere.

Lemma 5 :-

Let $\sum_{n=0}^{\infty} U_n$ be a given series with $\{\sigma_n^-\}$ as its sequence of $n^{\text{th}}(C, 1)$ sum. If $\{m_n^-\}$ is a convex null sequence and $\sigma_n^- = O(1)$ then

 $T_n(m) = o(n)$

holds, where $T'_n(m)$ denotes the (E, 1) means of the series

Proof :-

Here,

$$T_{n}(m) = \frac{1}{2^{n}} \sum_{k=0}^{n} \bigcup_{k=0}^{n} \sum_{k=0}^{n} \binom{n}{k} \sum_{v=k}^{n} \binom{n}{v}$$
$$= \sum_{k=0}^{n} \bigcup_{k=0}^{n} \delta_{k} \text{ where } \delta_{k} = \frac{1}{2^{n}} \sum_{v=k}^{n} \binom{n}{v} m_{k}$$

;

By Abel's transform

.

1

$$= \sum_{\substack{k=0 \\ k=0}}^{n-1} (\delta_k - \delta_{k+1}) s_k + \delta_n s_n$$

$$= \sum_{\substack{k=0 \\ k=0}}^{n-1} \delta_k s_k + \delta_n s_n \quad \text{where} \quad \delta'_k = \delta_k - \delta_{k+1} \cdot \frac{1}{2}$$

$$= \sum_{\substack{k=0 \\ k=0}}^n \delta'_k s_k \cdot \frac{1}{2} \delta_k s_k \cdot \frac{1}{2} \delta_k$$

Again by Abel's transform we have

$$= \sum_{k=0}^{n-1} (\delta_{k}^{i} - \delta_{k+1}^{i}) (k+1)\sigma_{k} + (n+1)\sigma_{n}\delta_{n}^{i}$$
$$= \sum_{k=0}^{n-1} \delta_{k}^{i} (k+1)\sigma_{k} + (n+1)\sigma_{n}\delta_{n}^{i}.$$

The second difference $\delta_k^{(1)}$ may be represented as follows.

$$\delta_{k}^{\prime \prime} = \delta_{k}^{\prime} - \delta_{k+1}^{\prime}$$

$$= \delta_{k} - 2 \delta_{k+1} + \delta_{k+2} \cdot$$

$$= \frac{1}{2^{n}} \sum_{v=k}^{n} \binom{n}{v} m_{k} - \frac{2}{2^{n}} \sum_{v=k+1}^{n} \binom{n}{v} m_{k+1}$$

$$+ \frac{1}{2^{n}} \sum_{v=k+2}^{n} \binom{n}{v} m_{k+2} \cdot$$

.

$$= \frac{1}{2^{n}} \begin{bmatrix} \frac{n}{\Sigma} & (\frac{n}{v}) & m_{k} \end{bmatrix} - \frac{2}{2^{n}} & \frac{n}{\Sigma} & (\frac{n}{v}) & m_{k+1} + \frac{1}{2^{n}} & \frac{1}{2^{n}} & \frac{n}{\Sigma} & (\frac{n}{v}) & m_{k+2} \end{bmatrix}$$

$$= \frac{1}{2^{n}} \begin{bmatrix} \frac{n}{\Sigma} & (\frac{n}{v}) & \left\{ m_{k} - 2m_{k+1} + m_{k+2} \right\} + 2(\frac{n}{k}) & m_{k+1} \\ - & (\frac{n+1}{k}) & m_{k+2} \end{bmatrix}$$

$$= \frac{1}{2^{n}} \begin{bmatrix} (2^{n} - \frac{k-1}{\Sigma} & (\frac{n}{v})) & (em_{k} - \Delta m_{k+1}) + 2(\frac{n}{k}) & m_{k+1} \\ - & (\frac{n+1}{k}) & m_{k+2} \end{bmatrix}$$

Therefore, we have,

.

.

$$\sum_{k=0}^{n-1} (\mathbf{s}_{k}^{*} - \mathbf{s}_{k+1}^{*}) (k+1) \sigma_{k} + (n+1) \sigma_{n} \mathbf{s}_{n}^{*}$$

$$= \sum_{k=0}^{n-1} \frac{1}{2^{n}} [(2^{n} - \sum_{v=0}^{k-1} (n_{v}^{n})) (m_{k}^{*} - \Delta m_{k+1}^{*}) + 2(m_{k}^{*}) m_{k+1}^{*}$$

$$- (m_{k}^{n+1}) m_{k+2}^{*}] (k+1) \sigma_{k} + (n+1) \sigma_{n} \frac{m_{n}}{2^{n}}$$

Since the hypothesis $\sigma_n = O(1)$ and $\{m_n\}$ is a convex null sequence so $n \bigtriangleup m_n = o(1)$.

$$= \frac{O(1)}{2^{n}} \left\{ \sum_{k=0}^{n-1} {n \choose k} (k+1) m_{k+1} - \sum_{k=0}^{n-1} {n+1 \choose k} (k+1) m_{k+2} + (n+1) m_{n} \right\}$$

.

$$= \frac{O(1)}{2^{n}} \left\{ \begin{array}{c} \frac{n-1}{\Sigma} \left(\begin{array}{c} n \\ k \end{array} \right) \left(k + 1 \right) \Delta m_{k+2} + \frac{n-1}{\Sigma} \left(\left(\begin{array}{c} n \\ k \end{array} \right) - \left(\frac{n+1}{k} \right) \right) \right. \\ \left. \left(k+1 \right) m_{k+2} + \left(n+1 \right) m_{n} \right\} \\ = \frac{O(1)}{2^{n}} \left\{ o(1)(2^{n} - 1) + \frac{1}{n+1} - \frac{n-1}{\Sigma} \left(n+1-k \right) \left(\begin{array}{c} n \\ k \end{array} \right) \\ \left(k+1 \right) m_{k+2} + \left(n+1 \right) m_{n} \right\} \\ = \frac{O(1)}{2^{n}} \left\{ o(1)(2^{n} - 1) + n \frac{n-1}{\Sigma} \left(\begin{array}{c} n \\ k \end{array} \right) m_{k+2} + \left(n+1 \right) m_{n} \right\} \\ = \frac{O(1)}{2^{n}} \left\{ o(1)(2^{n} - 1) + n \frac{2^{n}}{\Sigma} \left(\begin{array}{c} n \\ k \end{array} \right) m_{k+2} + \left(n+1 \right) m_{n} \right\} \\ = \frac{O(1)}{2^{n}} \left\{ o(1)(2^{n} - 1) + n 2^{n} o(1) + o(n) \right\} \\ = \frac{O(1)}{2^{n}} \left\{ o(n 2^{n} \right) \right\} \\ = o(n)$$

with this the Lemma is proved.

Lemma 6:- $If \left\{ p_n \right\} \left(- M \right)$ and let $\left\{ n_k \right\}$ be an arbitary sequence of indicies satisfying the following condition of lacunarity

$$1 < q \leq \frac{n_{k+1}}{n_k} \leq v$$
 for $k = 0, 1, 2, \ldots,$

where q and v are constants, then the orthogonal series (4.1.1) with (4.1.3) is (\overline{N}, p_n) summable a.e. if the 1) Sharma J. P. [110] sequence of partial sums $\left\{ \begin{array}{c} S_{n_k}(x) \end{array} \right\}$ is convergent almost everywhere.

Proof of Theorem 1 :-

Since

$$\sum_{\substack{n=0}}^{\infty} \sum_{n=0}^{2} \langle \infty, \rangle$$

here there exist a monotone number sequence $\{\mu_n^2\}$, such that $\mu_n \longrightarrow \infty$ and

$$\sum_{n=0}^{\infty} C_n^2 \mu_n^2 \leq \infty$$

It is also easy to construct (for instance geometrically) a strictly increasing concave sequence $\{m_n\}$ with $m_n^2 \leqslant \mu_n^2$, $m_n^2 \longrightarrow \infty$ and

 $\sum_{\substack{n=0}^{\infty}}^{\infty} C_n^2 m_n^2 < \infty$

Since $\{m_n\}$ is concave and tending to infinity, $\{\frac{1}{m_n}\}$ is convex null sequence. Let $S_n(m, x)$ and $\sigma_n(m, x)$ denote the nth partial sum and the nth(C, 1) mean of the orthogonal series.

$$\sum_{n=0}^{\infty} C_n m_n \phi_n(x) \quad \text{respectively.}$$

From our assumption about the uniform boundedness of the Lebesgue function (4.1.2) it follows by Lemma 2 that the relation.

$$S_{2^{p}}(m, x) = O_{x}(1)$$

holds almost everywhere on E.

Hence the relation

$$\sigma_{2^{p}}(m, x) = O_{x}(1)$$

is valid almost everywhere on E due to Lemma 1.

Also

$$\sigma_{n}(m, x) - \sigma_{2p}(m, x) \longrightarrow 0^{1}$$

almost everywhere with

$$2^{p} < n < 2^{p+1}$$

Therefore, the relation.

$$\sigma_{n}(m, x) = O_{x}(1)$$

is valid almost everywhere on E.

Since the relation $\sum_{n=0}^{\infty} C_n \phi_n(x)$ arises from the relation.

1) Alexits G.([5], p. 119)

÷

(4.1.4)
$$\sum_{n=0}^{\infty} C_n m_n \beta_n (x)$$

by multiplying the terms of the series (4.1.4) by the terms of the convex null sequence $\left\{-\frac{1}{m_n}\right\}$, it follows by Lemma 5 that the estimate

$$\mathbf{T}_{n}(\mathbf{x}) = \mathbf{o}_{\mathbf{x}}(\mathbf{n})$$

holds almost everywhere on E.

This proves the theorem completely.

Proof of Theorem 2 :-

From the given condition we can conclude by theorem A that the orthogonal series (4.1.1) is (C, $\alpha > 0$) summable almost everywhere on E. Therefore, Lemma 1 implies the convergence of the sequence $\left\{ \begin{array}{c} S_2n \\ 2^n \end{array} \right\}$ of the partial sums of the series (4.1.1). Hence by Lemma 6 it follows that the orthogonal series is (\overline{N} , p_n) summable almost everywhere on E.

This proves the theorem completely . Proof of Theorem 3 :-

> We know that $\overline{Q}_{n}(x) = \int_{a}^{b} |\overline{N}_{n}(t, x)| S(t) dt.$

$$= \int_{a}^{b} \left| \frac{1}{p_{n}} - \sum_{v=0}^{n} p_{v}k_{v}(t,x) \right| g(t) dt$$

$$= \left\{ \int_{a}^{b} (t) dt - \int_{a}^{b} \frac{1}{p_{n}^{2}} \left[\sum_{v=0}^{n} p_{v} k_{v}(t,x) \right]^{2} g(t) dt \right\}^{\frac{1}{2}}$$

$$\Rightarrow O(1) \left\{ \int_{a}^{b} \frac{1}{p_{n}^{2}} \left[\sum_{v=0}^{n} p_{v} \sum_{k=0}^{v} \phi_{k}(t) \phi_{k}(x) \right]^{2} g(t) dt \right\}^{\frac{1}{2}}$$

$$= O(1) \left\{ \frac{1}{p_{n}^{2}} \left\{ \sum_{v=0}^{n} p_{v}^{2} \right\} \left\{ \sum_{k=0}^{n} \phi_{k}^{2}(x) \right\} \right\}$$

By Lemma 4, , , we have

$$= O_{\chi}(\sqrt{\lambda_n})$$

hence the proof.

-