CHAPTER -~ VIL

c
AN EXTENSION OF fn(x)

7.1 INTRODUCT ION

An elegant extension of the generating relation 2.1(3)

may be given in the form

(1) B ¥xs )] = 3 P08,

i

n=0
where
(2) HE) = 3 omt )
2) H(t) = T h , (b =1
k=0 k (10
o n
(3)  ~(2) = I vz, (£ O
n=0 '
@) s@E) = 3 et (s, £0)
4 = b3 ’
oo K %o

and m 1s a positive integer.

The generating relation (1) « (4) includes also the

following generating relation, due to Boas and Buck {1}

(5) A(®) \gfg':x B(t) | = ozo qn(x)tn R

n=0
where
oo k
(6) A(t) = 2 th 9 ao % 0
k=0 i
oo k+1
(7) B(t) = © byt , by #0

k=0
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to which (1)-(4) would reduce when m = 1,

In the generating relation (1)-(4) if Yr, is replaced by

"%T » the corresponding polynomials which we denote by s,(x)

. c
would provide a generalization of the polynomials I; (x)
congidered in Chapbter V. In this Chapter we first derive an

expansion formula for the product of an arbitrary number of

5 ,
polynomials s, (a;%X), i=1,2,...,D (say) in terms of sq(x),
i

each of which possesses a gencrating relation 7.2(4).and then

we obtain the generating relation for the coefficients
(nly---snp) ’

Dy involved in the expansion. This result,besides
genéralizing the generating function given:in Chapter V, also

provides as with an extension of a result due to Carlitz[?j.

This Chapter also contains the results,of our
investigations in the direction of providing a wunification
and generalization of the work of Brownfi}, Brown and
Goldberg[1], and Thakare and Madhckar[1] on characterization
of polynomial sets which possess Boas and Buck type

generating relation,
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7.2 THE EXPANSION FORMULA

In order to derive the desired expansion formula we
first observe that the polynomials sn(x) generated by

7.1(1) to 7.1(4) witn = are representablce in the

n!

form
e
n/mi s n-mk
- [ 7Y S
(1) sp(x) = Eo KT (n-mk) ! * ’

and if we assume that

""1 oo 1 mli ]
(2) [B(t)]) = & nt ,n =1,
- - k=0
then the inverse of (1) may be expressed in the form
i

n n/m] Sy 0t
(3) x = kfo k! Sn-—mk(X> .
Fow, if we 1let
(i — (i) - (1) A
(4) B (t) exp 1w§ s (8)] = Eos, (ox)06 0,
— ni:::O i

1= 1485000sP

where H(l)(t) and S(l){t) posgess cxpansions similar
to 7.1(2) ond 7,1(4) respectively, then in terms of the

notations

n1+n2+cc-+n_p = N

(5) k1+k2+ 0-¢+kp = K )

. A . - _
[ni/nﬂ:: ni9 l:1,29,‘.,p, Ln/m{: T 9]

}

=
™~
5,
i

6
!

,
.
Z.t
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the relations (1) and (3) help us to put the product

W (2) (p)
(6) Y = Snl (alx) sng (agx) +es snp (apx)
in the form* i ($) nj"mkj

which on making use of the identity 5.2(1) can be written as

N* (n19of~9np)

(7) __,_()— = L D SN»mN*'*' mq(x) 3

g=0 ¢
(n19---9np)
where the coefficients Dq are given by
n.-mk, -
‘ * a 1P @ 3
(nlso~-9np) 1y p g k. aj

(8) D, = £ ... 3 kﬂ'(i- Y
e T AT A M L

- i ! ' B

) gN% 1K) Sy o .
(N —Keg)t -1y N -K-q

Now, denoting the expression



o e G o o
(9) Zn.e Z D ul t.aup

- _ q
. nl-O nP~O

by Z , and making use of the relation

(1) (1) =" ) K
i i 3 oo S n4Hm
(10) B (%) [; (t) = = -uﬁi%E;E“ t -
/ k=0 k!
which is an easy consequcnce of (4) and (1), we observe

that

(3 (3 B
K & 3 .
I B Ao (a; 5 " (u;))
Z = Z s es Z ! n_!
nlzo np:::o N J . —_—
: ~]=1
. .N! s" * .
(W= )t ¥ -a

The above expression for Z may be further simplificd to yield

, (1) , ) (P) oc zn 1
(11) Z = H (ui) ves H (up) nimq (n* _ q)! én,n*-qu

wherein, for the sake of brevity, gz stands Tor

‘ (v (p)
(12) 2y 8 () + o0+ &, S i (up) .

Now, in view of 5.2(5), (11) becomes
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(1) (p) Bel Mgt
(13) Z2=H (u)...H (w) E z
1 YWl
5=0
mn
% —g' :
o n! ‘m(n4q)+j,n

On the other hand, we have

. o noo. n
exp [x S('t)j = 20 ‘““f:l{‘;"‘ bseey]

which, in view of the rclation (3) may be put in the form

-~ ‘- (= ] o n+mk i
oxp|x S(t)f = T o TR NE) Spimk,k
= =)

so that the generating relation

. ' oo n
: B($) exp [xs(t)] = = s (0t
- n=0
yields '
n
t n i s’ mk

The relation (14) under the assumption of the existonce of a
power series, I(t) such that

S(I(t)) = I(3(t)) =t ,

gives us
g+ . '
(15) (I(% = tqm+3 ? Egﬁiiiﬁkxk, tmk
HOI(t - : k! '



In view of (15), the equation (13) may be written . in the

form

(1) s =R ST i

Z=H (u) .. B (w) jzo H(I(z)) ’

which leads us to the desired generet ing function

o0

(16) 2 eee r D
l’ll.': n =0 ¢4

(roeeem) 5 g

P
Ug™ e Up

Y
(1) (p) n

H (ui) sves H (U-D) qm I -l .
= Tz I (Z) s I§§§~1

Particular Cases:

On putting ﬁ:l, we obtain the corresponding expansion

formula for Sél)(a1X) e sép)(abx) wherein the coefficients
1 : P
(nlavoosnp)

Dq are generatced by the relation

o0 oo (nli"'9np) ni h‘p
(17) Eeee EOD Upeee

l’lizo np:o N
(1) (p)
H o (w) oo H (w) g )
= TTTECIG)Y L)

In (17) if we put  p=2 we shall get the formula
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- - (nl,ng) n . H(l)(ul) H<2)(u2)

(18) & I D w, ™ u,~ =
n,20 ng=0 4 1 7%

(1) (2)
Iq(ais (u)) + a8 (uw)),

which corresponds to the goncrating relation given by

Carlitz (5] ,

1

On the other hand, if

%
(1 + yt™)

S(t) =

-C
7 5 H(t) = (1 + yt™)

the polynomials s,(x) would correspond to I;C(x) R

discussed in Chapter V. Thus the expension formula (7)~(8)
and the generating reletion (16) would simplify -to .
5.2(2) - 5.2(3) ond 5.2(6) - 5.2(7) respectively. '

7.3 CHARACTERIZAT ION

With reference to the get {qn(x)} Possessing a
gencreting relation of Boas and Buck type as given by
?.1(5) to 7.1(7), it is said thet 0 (x) eI where (¥
denotes the subclass of 2ll such sets whose Bons and Buck

type generating relation involves a fixed V.

(1) (2) *
H(I(als (u1)+a25 (ug)))
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A few years ago, in an atbempt to obtain certain

characterizations of the polynominl sets generated by

n

~a o («)
(1) (1-t)  A() Y[z 3B (t]] = zo 4 (Xt

\

which reduce to Boas and Buck generating relation when
= 0, Brown and Goldberglll (sce also Goldberg{ﬁ} ) replaccd
the parameter o by an erbitrary function o(n) of the

n —
index n and proved that ~{ég( )(x)} e Lﬁ?:] if ond only

if the function g(n) be linear for n > 1 ,

i Following the work of Brown and Goldberg [1], Thakare
and Madhekar{i} considered the polynomials{qn(aig...,ar;x%

gencrated by

r .
(2) A(E)¥[x B (t]] II —W’t) Kk —nfo qn(al,...,ar,x)t )

and proved that i -
Gy (8 (m)5eees8(n)sx) €I¥] if and only if for each

3= Liesasr 6j(n) is a linear function of n for n > 1.

C
The extension of {fn(xi} which is given by
7.1(1) to 7.1(4) and the results for the polynomials

qn(aig...,ar ;s x) -congidered by Thakare and Medhckar Eil,
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Thekare, Madhckar and Karandefi]motivate us to consider the

modificd polynomisl sets %pn(alya..,ar;x)} def incd by

r —C
- d o n
m
(3 ") wlx s ()] 3[{1(1..v3t I P

where .
H(t) , @y(z), S(t) arc given by 7.1(2),7.1(3) end

s Vi (J=1,2,...,7) are

J J
arbitrary constants with By v s s (& =0,1,...)

7.1(4) respectively, and ¢

independent of qj,wﬁ (J=1525400y7) ; and prove the

Characterization Theorem 28 below :

Theorem 8:
pn(él(ﬁ)g...,ér(n);x) e{W1 if ond only if each

éj(n) (J=1,...,r) is linear in n(n > 1.

Proofs
Let 6j(n) be linenr in =n, that is,

63(1'1)=OC~‘*‘11§3' (3 =1, evvy, 1)

J J
By Taylor's Thecorem

1 njw. ; - T ’
pn(alaonnsfxrgx) "':_ET D’t{ H(t)\if&_‘i 5 (t')"i in(l”vjt )

s

H

H
oL

(4]
o

go thot
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Dy + DBys wiay o + DBLX)

o i
1 r ﬁ %3
= 33 -iH(JU)\?LX s (£ N (1-v, t)
J=1
n —R
(1 - vjt ) J { 5
ja1 t=0
hence
oa n
(4) Zopn(al + nﬁls L] ar + nﬁr ; X)t
Ti=
o n n I~
t " 1 {
= I o {ew] ] { ’

te=

where, for convenience,
r

- m "%
H(t) VTx 8 (%) ﬂ (1 - vjt )

51
= 3.
H (1 - v )”E
;}:

£(t)

It

(5) < and
$(t)

i

On applying Lagrange's cxprnsion formuls (P&lys and

Szegd [A, p.146, Problem 207) 5.3(24) to (4), we get

[=5] n oy T

hy 4
E a + n‘\ ces o + n X)-t o _—-(—‘-‘!—_'LT 9
-0 Py (erg Pis ? Fy? 1t ¢(‘g

where
%= b P(F)
6 r -
( ) =t —ﬂ- (1 -V3 ‘Epm)a:j 9
J=1 ?
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which on simplifying yields the following result,

oo n
(7) niopn(“l + nﬁl? ees g0+ NHL 3 x)t
R m -4
BE) yEs ()1 1| G-v,g) !
= 521 3
- s
m T m -1
1-mn3y ‘21 By vy (1 - vy % )
o=

where %3 is given by (6).
This proves that pn(a1+n§1,n,.,ar+n§r;x) e [}

Conversely, let pn(éi(n),,‘u,ér(n);x) 8[3ij

Clearly from the definition (3) it follows that

pn(Og...,O;x) = pn(x) is of degree n in x having

the form,
n YieTll

(8) p,(x) = Cn,n X o+ Cn,n..m X Foeea + Cn,o .

Let

. - n . n-m -

(9) pn(él(n),,..,ér(n);x) = Cn,n X+ Cn,nwm X + 4..+C
As

[~} ( ) n

Z p, OC 9 LEC LY ] a 5 X t
n=0 n 1 r’

. . { m ""Ctj
= H(t)y{x s (8] {{ (1~ vyt )

d

T
ot
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T o (x)
= X p.{x
N=0 n
r
Y 1 T 1
ez LI Y 2 n 1 S 1 Vl . vr t s
nlzo nr:o 1
w [n/m] n/m]
(10) =32 "z ... T opy T (%)
n=0 n,=0 n,=0 '
(al)n n CQI')H n n
. 1 1 T Ty
LTV e TR Y ’
1 r

(10) gives us
pn(él(n>9 & » 0961‘(11> ;X)

= pn(x)+(61(n)v1+ e +6r(n)vr)pn~m(x)+°" 9

which on making use of (8) and (9) yields

n o
»t - =
U X C X
n,n * “n,n-m o

n n—-m

and therefore

(12) 4 = C
2

(13) On,n~m = On,n~m+ o (51(n)v1+...+6r(n)vr ),
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Denoting
'-ak,- C
- , 1 7
n - 5 $
-V nem Cn,n
and
T o= \‘{Il -%Jn"m »
N x
Yn-m ﬁn,n
it follows that
v 8] - -
oy n n‘-mqn‘m , z
T o T om et elleiiell WS ()Y + el erS(n)Vo ]
\
n n e Cﬂ’11 L 1 1 T i

Next, use of the identity,

(QIELH) {(-I—:Zm - I'Zm) - <§m - rm);

(14)r~r:(rm—zgn)+ |

n n

el

and the relation Cpn= \r“n a, b, gives,

! 0

5, (n)v, + .. 4 §p(n)v, = (61 (m)vy+es s (m)v)

+ &f){&l(zm)vl-% ...~x~<“>1,(2m)vr - 61(m)v1 - e

- (Sr(m)vr f

and hence we are led o

éj(n)vj = c’;a.(m)vj + Qr-l?;ﬂ) {éj(zm)vj - sj(m)vj}

fOI‘ Each j = 1,29 ey r 9 tha‘t iS,

n(8,(2m) - §.(m))
e m o

(15) 63-(11) = 26j (m) + - Sj(zm),
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Thus by choosing 6j(n) as given by (15),

6j(n);(j=1,...,r) are linear in n and %he proof of the

theorem is completed,

7«4 APPLICATIONS

c
(1) Consider generalized Laguerre polynomials T; (x)

Possessing the generating relation 5.3(1), Obviously,

!

c ,
Iﬂ (x) € [exp| and thus from above Theorem 8 wo may conclude
n ‘

COROLLARY 1:

&(n)

1 € Jexp] . if and only if 6&(n) is linear in n.
n - ‘ .

-~ C
(1ii) The polynomials I; (x) may be generalized further .

by the defining relation v

- (cl,...,c ) : _ -
(1) z Tﬂ P (mtnz ﬂm+yﬁm)cl.u(uytm)cp
n=0 Ly P
-
eXp w&‘m !c
L(t+yt ) ]

1~ﬂ(01""’cp) o
Clearly | (x) € [exp} and hence
n
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COROLTARY 2:
6y (1) 0y (n)

fmimannnnd
]
IRy

(x) € [exp] if and only if each
n

65(n); (J=1,...,p) is linear in n,
For p=2, m=1, Jy==1, yo=1, ¢y = a+l, Co=By y==1, r=1

and on replacing x by -x wo obtain Corollary (5) of Thakare

and Madhckar [1],

C
(11i) It is evident that f,.(x) given by 2.1(3) ¢ [6¢] which
leads to the result =

COROLLARY 3«
§(n)
1n

€ {6} if and only if &(n) is lincar in N,

c
(iv) As in (ii), f,(x) may be generalized as

oo Clgo-oscp n
() = 1, (x)t
n=0
~C ~ep T i
=y ) L (gt P g 2
L{l-%y‘t ) _f

On application of Thcorem 8, this vields the result

COROLLARY 4:

él(n),...,ép(n)

£, (x) € [G] if and only if each

6j(n);(j =1, uv.,p) 1is lincar in n.
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c
(v)  The polynomials & (X1, 1) corresponding to the

¢ -
case s =1 of g (x,ry8) studied by R, Pands 11,
defined by 2.1(1) ¢ [4] . Therefore,

COROLLARY B:

5(n) .
€& (xry1) € iG] if and only if §(n) is

linear in n,



