
CHAPTER - II

ON A UNIEICAIIOn'oE GENERALIZED HUMBERT AND
/

LAGUEHRE POLYNOMIALS

2,1 INTRODUCTION

Recently, having been motivated by the earlier works 
of Rainville pH , p.13? , Theorem 48^? Chandel (£l"l, [2]) 
and Jainpj, Rekha Panda £1] introduced an elegant 

generalization of several known polynomial systems belonging 
to (or providing extensions of) the families of the classical 
Jacobi, Hermite and Daguerre polynomials by means of the 
generating relation

(1) (1-t) U G xt
(1-t)

where
OO 31(2) Gfz] = X \ 2'

r
00 c nZ g(x,r,s)t . 
n=o

o i0 an arbitrary complex number, r is any integer, 
positive or negative, and s is a positive integer.

A comparision of (l) with the generating function 
1.2(4) for the generalized Humbert polynomials of Gould {pi 
suggests that it would be interesting and worthwhile to 
study, a new class of polynomials -ff°(x,y,r,m) |n=0,l,2,.. .1
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defined by tile generating relation

, o n.
:= S f (x,y,’r»Tn)t , 

n=o

v/here

(4) c- Cz3:= e » "v-0 ,
n=o

m >_ 1 is an integer and other parameters are unrestricted 

in general.-

(3> (l+ytm)~° G xt,
Jiur(i+yt )

Erom (3) and (4) it is easy'to deduce that

C 'f^Xyyjrjtn) is a polynomial of degree n in' x with

its explicit representation as

c In/ml /-c-nr + mrkN, k n_1Blc
<Bi>' fntoy,r,m) = ^ ^ U \^x

On choosing

>n

fftaO,j=l 3 aD'n

_q_:.
TT (b.) - nf l1 „ h-n3=1 J p3 -

9

the explicit representation (5) may also be put in the form
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(.6)
-n,p,q

((ap,ap)) ; x

n x J
0=1 J

1
FF ("b^p.n • n!3=1 D

q4-2^p+-l

(~n,m), (-c-rn+l,rm.), (,(l-h -n|3 smj3n)) ;
H SL 4.

(-o-ra+l, m-l), ((l~ap-nap ,map));

(~D

. q.m(l + E p. 
1 0

p2 ocj) 

1 3
HIX

where
XtrP^-q is Wright's generalized hypergeometric

function and((ap * ap)) stands for the set of p parameter 

pairs

(a. , a^) (agSttg)> (ap, ap)

with similar interpretations for.((t> , Pp)) j

ttj(o = 1, ... » p)i P^(3 = 1» ... j a) "being positive 

and r restricted to he positive integer.

On putting a- = l(o = 1, ...,p) and pi=l(o=l,...,q)5 
J d

(6) simplifies to
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(7) f=HP,<l [(ap} ;; %>;*]= *n
f 5 1 / /- *q -/;fit 0>j)n •**

3=1 J
L- sj

•p ,m(r+q+l) m(p+r)-l

’A(m,-]a.):5 c^-xn) A( (m^l-b^-n)) ■;

A.( im-1, 1-c-m), &( (m, l-a^.-n))

rm 
(m) -- hn(q-p+l)

- - «, “* ( —HI} -(im-i)™-1 '

where

A((ui? ^p)) stands for the 'set ■ AC-m^),..., A(m,J^p) 

and A(m, X ) as before>stands for the in parameters

^ A'+l - 1

m * m * * * •5 ~ Similarly (ap) denot es the

set of p parameters a. * * »ap'

It is obvious that when y = - l, and m = 1, (3) would 

correspond to the special case s = 1 of (1), whereas on 

talcing
>n = (-m)

n
, o = - p and r = 1,( (3) would

transform into 1.2(4) with-0 = 1. Thus the- class of polynomial:

^»m) |n = 0, 1, *.«•>.J defined by (3) and ,('4) provides

an interesting unification as well as generalization of the 

various polynomials included in g°(x,r,l) and the 

generalized*’Humbert polynomial Pn(m,x,y,p, 1) which itself 

is a generalization of several known polynomials including
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those of Legendre, Gegenbauer, Humbert, Tchebycheff, 
Princherle* and many others, For the different conditions 
on the parameters of 'f^(x,y,r,m) under which it reduces 
to the polynomials mentioned above and many others, e.g., 
the polynomials of sister Celine, Jacobi, Rice, reference 
may be made to Gould Jain Cl] and Panda Cl] •

Being motivated by the observations mentioned in the
above paragraphs-, ' we undertake here a systematic study of
the polynomials f°(x,y,r,m). The section 2,2, of this
chapter incorporates a number of recurrence relations for 
c£n(x,y,r,m), In section 2.3 we derive generating function 

c+<rnfor fn (x ,y,r,m) and discuss its various particular cases

and their applications in the derivation of some expansion 
formulae. In section 2.4 we give generating function for 

C_1 c+«nc-l+pn "Cn (ys l/ni,m), p — + l/m .

In what follows, for the sake of brevity, we shall 
c cabbreviate fn(x,y,r,m) by fn(x) unless there is any 

ambiguity regarding other parameters,

2.2 RECURRENCE REEATIONS

If we denote the left member of 2.1(3) by U(x,t), 
then it is readily seen that U(x,t) satisfies the differential 
equation
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(1) x|l+(l_rm)yfcmJ |2 . t(l+yfcm) |2 ^ cymtmU .

Combining (1) with 2.1(3) we get the following differential 

recurrence relations for f°(x) ;

^ C Q n
(2) = {n+mc~mJyfn_i_ia(x)-(l-rm)yodJ:xfil_m(x) f

c c(3) xDxfn(x) - nfn(x)

and

[n/m] -1
k c '&/mJ -1

mcy E (-y) fn_mk_m(x)+nnz.y 2 (_y) D f°
k=0 1- - xk=0

P o(4) xDxfn(x) - nfn(x)

£n/m] -1 

2
k=0

my 2 (mry-y) ( c+nr-mrk-mr)f , (x)
■*- ~ ' n-mk-m' ' ’

where
adx n > m .

In view of the general nature of the polynomials 
c

fn(x), the recurrence relations given above can be

particxflarized to corresponding recurrence relations for the

various classes of polynomials that are included in the
cdefinition of f (x).
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G+rn
2,3 GMERATING FUNCTION FOR f (x)

The generating function that we propose to derive 

in this s.ection is

(x) t = Ji-+-ZSLl_ &(1)
oo

s
c+<m

n=o n [l+y(l+«~ a)w^l
xw

mN r(1+yw )

where

(2) w = t(l + ywE1)“'r' , w(0) = 0 ,

tr is an arbitrary complex number and > , the coefficient

of zn in the power series for GjfgQis independent of c .

To prove (l) we start with the function

jn/nf} f-c-nr+mrk\ .(5) ¥U^,7,r9n9c) = ( • J y*
k=0 •mk

where Jh is an arbitrary sequence such that E JiL, | < oo ,

n=o
m >_ 1 is an integer and other parameters are unrestricted in 

general..

For arbitrary- complex values of a~

that
CO - oo n oo(4) £ F(An,y,r,n,c+-<m)t = 2' Jl t £

n~0 n=0 k=0

it is easy to see

X-c-o-n-rn- nafe ^n^k

k

On summing the inner series on the right hand side

of (4) with the help of the following consequence of
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Lagrange ’s expansion formula (Polya and SaegofG^j, pil46. 
Problem 216) ;

,,, ~ la + bn\ n a+1 :• -l2 (■ Jt’ = (l+v) , fl-(b-l)4] ■ ,
n=0 V n

'T=t(l+T)b ,
we get after a little simplification the' general formuls

(6) 2 P(iL,y,r,iP,c+crn)t
n=0 ' .

n

/-i ms(1 + vw )ms l-c ' oo 
2XU —1 + y(l +<5~m)w n=0 

where w is given by (2).

w
iur(i + yw )

n
n ’ -

In (6) if we take ='Vn x11 and then make use of

2.1(5) and 2.1(4) , we are immediately led to!the generating 

f met ion (l)*

Alternatively, we may start with the following 

consequence of the defining relation 2,1(3)

>k
(?) c- ’fn(x) = 2

k=0

feAU (c-b),k (-y)k b
k! n-mk (x) ,

and then arrive at (1) by using the method illustrated by 
Singhal PJ. Yet another method of providing (-1) would run 

parallel to that of Rekha Sri vast a va jjfJ which she employed

for deriving a corresponding generating function for

-C+s-n,m (,x,r,s) wherein by putting s = 1 we shall get the
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case m « 1 , y = - l of our result (i),

For er = 0 , (l) evidently reduces to 2.1(3), 
whereas the substitution e- = - i/m transforms it to

oo c-n/ci n _ c-1 r r-i/m
8 n=0 fn = (l_5rt } G ]

On the other hand by putting cr= - 2/m we shall get

do e-2n/m n 
(9) Z (x)t

n=0
=(i-4yt )an 1//g/ - 4^^-

^ 2
and by putting <5-= l/m we shall get

G --{./1+ '/l-4vt 
\ 2

m

oo c+n/m
(10) E f (x) tn 

n=Q

(l+4ytm) m

G xt (itli±4ztm

1-c

-r~l /m

Various other particular. cases of (l) can be 
>y partii 

values to <r~ .
given by particularizing fn(x) and assigning different

It is worth mentioning here that the particulai 
case (8) of (1), when expressed in the form

,-2/m
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oo b-n/m 
f
n

c-b.U(11) E f„ ' ' (x) (l-jrtm)' " t
n=0

= (l-jrt21) a 

yields the expansion formula

c-1 ™ r-l/nf 
xt (l-ytn) •

,1<A % &/“] (w-°)k k .b+k-n/n
(12) f (x) = X --—JL. y^ f (x)

Xi k! n-mk K J

which, is analogous to the similar consequence of ’2,1(3) 

given by equation (7) above*

2.4 ANOTHER GENERATING
c+<r n

f
n

(x)

EUNCTIOITEOR

In this section we prove the following generating 

relation :

(!) Z —■ 1    fC+r~n/'x v 1/_ r,^11
n=0 c-l+( cr- +l/m)n In (x,y«,l/n,Ei)t=0

where

(2) u = 1 - ytm

C-1
u \p

xt u <r~+l/:C1 1

» u(0) = 1.

and

(3) ^r(z) = 2 c-l
k=0 . r+..(<r + 1/miJF" \

k
k^

The above generating relation may also be expressed in the 

alternative form :
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(4) £ -a—.-------------  f_0 c - 1 + (tr+l7S7n^ nn=
o+o^n (x,y,l/m,m)tn

where

e~l/ m w J./ m(1 + yrp \pr (_i) ^1/m

/(_v ^ . lA Tn<r'+l/m
(5) 71 = (-1) t (1+y>^m)

and (z) is given by (3).

To prove the relation (l) we first note that the 
explicit representation of f°+^ n(x) is given by

(6) c+<v nfn (x,y,l/m,m)
k=0 V

"0 -*11/m~ <r-n+/\ n-mk v
hr . x yk

]j- j n-mk ^
and therefore,

(?) OOv ...0 7 1 c+cr n fn (* / n ,y,l/m,m)tn=0 o-l+(<r+l/m)ri
oo «, / c+<rn+r mk+n /m+k-1
n=0 kfo ^l+A+l/mJTm^k) ^ k

n kYn(xt) (- ytm) ,

ffhieh by the following consequence of Lagrange's expansion 
formula (Polya and Szego[&], p.146, Problem gig)

(8)
oo
2

n=0
aa + bn

a + bn\ n
/ ^ n J

a
z 2 = 1 +

yields (l)..
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The substitution <n= - 2/m transforms (l) t o
(9) E —0 - * fC"2n^“

n”0 c-l-h7m" *n (x,y,l/m,m)t

c-1

n

1+V l-4vt
2

m

where

xt 1 + lfl-4'i
-l/m

to
(10) § (Z) = E -JB.■ - 1    >, ^

k=0 c-l-k/m *

whereas for <r~ == - l/m it evidently reduces to 2,3(8) 

with r = l/m , that is

(11) E f.
n=0

c-n/m n . _ c-1
(x)t = (l~ytm) q fxfcT .

n

On the other hand on putting <r = o , we shall get

(1'2) A cIliSTm fn(x*ysl/m5m)tn= (ifytm)1“C
n=0 c-l+n/m n' 

where
e‘ 1^9

(13) e(z) = -z v zk
jr_Q c-1 # k/m v k z •

And on putting ff- = l/m , ■ (1) would reduce to

r-,A\ “ o-i „0+n/m. . . „
' ; -A c-l+2n/m fn (x>y,l/m,m)t

where

xt f L+
-2/m
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(15) *(B) - 20 -g-s4;m V •

The relation (l) may also he stated in the form of 

following theorem :

Theorem 1:

Le'fc (pn(x)j he the polynomials possessing the

generating relation,

(16) i pn(x)tn = -iiUEh
1-c

n=0 l+y(‘l+<r m)wm
xw. -, mTl/m''(i+yw )

where w is given hy 2.3(2) and G£z] is given hy 2.1(2), 

then

iin\ ^ c *- 1 /\,n c—1 s~ +l/m

(17) J-, 5^>+l7mR Pn(x)t = u u 3 ’

where u and Y are given hy (2) and .(3) respectively.

When <r- = -2, c = 1-a , y = 1 and m = 1, Theorem 1 

would particularize to the known Theorem 1 given in 

(Me Bride £B3> p.85), whereas if we put <r =s 1,. y - i? 

m = l and replace c hy l+a , our Theorem 1 would correspond 

to its particular case given in (Me Bride EXL Theorem 2,p.85).

Another worth mentioning particular case of our 

Theorem l is the known 3aaatLLt
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ds) z n=0
a ^(a+pn> ^ ^ n

a+lp+ljn

a= (1+^) F 
1 1

a/(|3+l) j

Ol+aV(p+l): -x-tj

where

. . (3+1(19) = t(l +, ^(0) = 0 ;

derived earlier by Srivastava ( [ifj , Bq. 2.4).


