CHAPTER - II . Co

ON A UNIFICATION OF GENERALIZED EUMBERT AND

TAGUERRE POLYNOMTATS

2.1 INTRODUCT ION

Recently, having been motivabted by the earlier works
of Rainville | H , p.137 s Theorem 48:}, Chandel (1’_11,@])
and Jain[izh Rekha Penda [17] introduced an elegant
generalization of several known polynomial systems belonging

to (or providing extensions of) the families of the classical

—

Jacobi, Hermite and laguerre polynomials by means of the

generating relation
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¢ 18 gn arbitrary comblex number, r is any integer,

positive or negative, and s is a positive integer,

A comparision of (1) with the generating function
1.2(4) for the generalized Humbert polynomials of Gould Eﬂ
suggests that it would be interesting and worthwhile to

. c
study, a new class of polynomials {fn(x,y,r,m)[n:O,l,E,..{}



defined by the generating relation

where
(4) elzl= 3 VW o2 , v £0,
=0

m > 1 is an integer and other parameters are unrestricted

in general,.

From (3) and (4) it is easy to deduce that
¢ o . :
*n(x,y,r,m) is a polynomial of degree n iInm x with

its explicit representation as
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" the explicit represeﬂtﬁtlon (5) mey also be put in the form
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where

ﬁ%ﬁ is Wright}s generaliged hypergeometric
function and((aD ’ ap)) stands for the set of p parameter
pairs
(al’al) s (azsag), see 9 (apvap)

with similar interpretations for,((bq , Bq)) ;
Oﬂj(j = 1; .o ] p), Bj(j = 19 s e 9 Q_) beil’lg pOSitiVe
and r restricted to be positive integer,

Ol’l putting Q:j = 1(3 = 1, ..syp) al'ld szi(jzlyagagq)g

(6) simplifies to
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where

A((m,'z\P)) ‘gtands for the set 'A(-m;?xl},..., A(m,?\p)

and A(m, \) as beforesstands for the m parameters

; ) ;Ngl ,...,4&%%2~:~l . Similarly (ap) denotes the

set of p parameters aqs .1. ,ap.

It is obvious that when y = - 1, and m = 1, (3) would

It

. {
correspond to the special case s

taking

1 of (1), whereas on

n P P ’
an = (-m) ( '>-, ¢=-p and r = 1, (3) would
n 3

{

trahsform into 1.2(4) Wﬁ%h»O = 1., Thus the class of polynomial.
. - -

%?Q(x,y,r,m)ln.= 0, 1, {uh} defined by (3) and (4) provides

an interesting wnification as well as generalization of the

various polynomials inceluded in gﬁ(x,r,l) and the

generalized Humbert polynomisl P,(m,%,y,p,1) which itself

is a generslization of sevéral known polynémials including



mglﬂ 3
those of Legendre, Gegenbauer, Humbert, Tchebycheff,
_ Princherle, and many others, For the different conditions
on the parameters of «fg(x,y,r,m) under which it reduces
to the polynomials mentioned above and many others, CeLs s

the polynomials of sister Celine, Jacobi, Rice, reference

may be made to Gould [9 ], Jain [1] and Panda [17 .

Being motivated by the observations mentioned in the
above paragraphs, - we undertake here a systematic study of
the polynomials fﬁ(x,y,r,m). The section 2.2. of this
chapter incorporates a number of recurrence relations for

c
f (x,y,r,m), In gection 2.3 we derive generating function

CtenL
for ﬁn (xyy7,7,m) and discuss its various particular cases

end their applications in the derivation of some expansion
formulae. In section 2.4 we give generating function for
o1 c+on
ooi4pm In  (B¥,1/mm), B=e 4 1/m
In what follows, for the sake of brevity, we shall

c c
abbreviate f (x,y,r,m) by f,(x) wunless there is any

ambiguity regarding other parameters,

2.2 RECURRENCE RELATIONS

If we denote the left member of 2.1(3) by U(x,t),
then it is readily seen that U(x,t) satisfies the differential

equation
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Combining (1) with 2.1(3) we get the following differential

. c
recurrence relations for fn(x) :

c e c c
(2) XDxin(x) - nf (x) = {n+mc—m}yfn~m(x)~(1»rm)yxﬁxfn_m(x) ’
c c
(3) xDf (%) - nfn(x)
[n/m] -1 K o (n/m] -1 o
=mey % (-y) T g (%) +rmzy 2 (=y) S
k=0 k=0
and
p C
(4) xD T (x) - nf, (x)
Eﬁ/d]"l k c
=mny I (mry-y) (c+nr~mrk-mr)fn_mk_m(x) ,

In view of the general nature of the polynomials
c
fn(x), the recurrence relations given sbove can be

particularized to corresponding recurrence relations for the

various classes of polynomials that are included in the
c
definition of £.(x).
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2.5 GENZRATING FUNCTION FOR £,  (x)

The generating function that we propose to derive

in this secbion is

3] 1_0' et
(1) z f%m(x) t'n = (1 + yi") o | EW oy
=0 I E_.,,y(i,}_f m)wnj (1+ywm)r \
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where

(2) w=t(1+yw) ™™ , w0)=o0,

o~ s an arbitrary complex number and 7y the cocfficient

n 9

of z% in the power series for G[z]is independent of ¢ .

To prove (1) we start with the function

u

n/w] [-c-nr+mrk
(3) F(An'aysrsm’c) = I )

yk Ak ’

(=0 ]

where 4, is an arbitrary sequence such thet X ]An[ <o,
n=0

m 2 1 is an integer and other parsmeters are unrestricted in

genersl,,

For arbitrary complex values of o it ig easy to sce
that ) N
‘o ] i oo n o —Cm =TT~ L1 ik
(4) Z F(A,7,r,myctem)t = T AF % [ \ (yt7)7"..
n=0 =0 k=0 k
On surming the inner geries on the right hand side

of (4) with the help of the following conseguence of



. Lagrange's expun81on formula (Péiya and Szegdfi]); p;146
Problem 216) '

(5) ¥ (,a ¥ bn) Jc‘n (1+v) ﬁ_ (b 1)v_l

=0 n
= 't(j_ + 'V')

we get after a'little si@plification the general formulsa

(6) F(An,y,r,456+°“n)t

n=0
. o I
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1+ y(1 +omw n=0 (1 + ywH)¥ B

where W is given by (2).

In (6) if we take A, =Wﬁg ¥ and then meke use of
2.1(5) -and R.1(4), we are immediately led to:the generating
function (1), .

Alﬁerngtitgly, we may start with the following

consequence of the defining relation 2,1(3)

Bl (e-d)y () 4
kﬁo k! " oo
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(7) fﬁ(x) =

and then arrive at (1) by using the method illustrated by
Singhal [17. Yet ﬁnother method of prOV1d1ng (1) Would run
“parallcl to that of Rekhs Srivastava [1] which ghe employed

for deriving a corresponding generating function for

. gC+n
én

(xyr,8) wherein by putting ‘s = 1 we shall get the
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cese m = 1 s ¥=-=1 of our result (1),
For ¢ =0 , (1) evidently reduces to 2.1(3),
whereas the substitution ¢ = - 1/m  transforus it to

o  Cu -1 Cr-1/m,
@ I 1, Rt = (1™ 6 [ (1ot 1.
=

On the other hand by putting ¢ = - 2/m we shall get

(9) = £, (x)t : ’ -
=0 . -
-1/2 @\ ° 1 r-2/m
=(1-4yt™) (5‘31 - Ayt ) ¢ xt@-ﬂ”-AL—é“”t ) 5
\
and by putting e= 1/m we shall get
o Cc4+n/m
(10) =f, = (x)t"
n=0 -
m— l-c
o o=1/2/ / ™
‘=(1+4_y'tm) &1+\%+4vt 7
¥
-r-1/1_n‘{
1V ieavt™ ‘
G {xt ee— .
Various other particular cases of (1) can be

. ) c
given by particularizing £, (%) and assigning different

values to 6~ ,

It is worth mentioning here that the particular

case (8) of (1), when expressed in the form
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o b R
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yields the expansion formula

X /T ] (b= SO o B N -
(12) £y B oy b A

! -
n %0 k! n-wk
which is analogous to the gimilar consequence of 2,1(3)
given by equation (7) above.
2.4 ANOTHER GENERATING FUNCTION FOR

C+omn

. (x)

In this section we prove the following generating
relation :

oo ¢ -1 C+on I
(1) = S e Y f, (%,5,1/m,m)%
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where
n 9}

() w=1-y" <% | y0) =1,

ond

o 1 Xk
(3) Y(z) = kEO _ c~1?+ (+ 1/m)k ﬁrkz .

The above generating relation may also be expressed in the

alternative form :
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(@) njg—o = ic‘* (6%+1/m)11 L (X,y,1/m,m)t

-1 - 1/m
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where
1/m s~ +1/m

(5) M= (1) % (14y™
and Y (z) is given by (3).

To prove the relation (1) we first note that the

explicit representation of fl(i'*"'f Bx) is given by

eron En/@ -0-—1’1/m-o'~n+ n-mk .
(6) £ (X,Ygl/m,m) = 3 v % v ’
i ‘ k=0 X J n-mk
and therefore,
o ¢ - 1 C+a 1 n
") nio c=1+{0c+1/m)n fn (%, 7,1/m,m)%

7 e+ o n+ o mk4n /mik-1
o« [~

= ¥ I o 1
-n:—-O k=0 C-1+(T+1/m)(n+mk) \ .

n mk
Yo(xt) (- ™),

which by the following consequence of TLagrange's expansion

formula (Pélya and Szego[G], p.146, Problem 212)

o a “a-t-bn)n a b
(8) nio a3 n n t =2 , 2=14+ 4tz

yvields (1).
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The substitution o= - 2/m transforms (1) to

(9) % ~—~—-——7~° =1 _ ¢ _2n’/m(x 1/, m)t™
_1~n m n ,y’ 3l
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where

. oo - 1
(10)  $(=) '—=k§O *ﬁm Yy 2,

vhereas for ¢~ = - 1/m it evidently reduces to 2,3(8)
with r = 1/m , that is
c-n/m n c-1

(11) % £ ()t = (1-yt™) ¢ [=] .
O h “

On the other hand on putting ¢ = 0 , we shall get

9y ¥ e=1 5 n mi=e  x
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where

- ioo O - 1 i k ’ .
(1) 6@ = 1 oS Ve et »
And on putting ¢ = 1/m » (1) would reduce to |

e -1 c4+n/m

g n
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wWhere
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(18) P(z) = §' ‘ga5+%k>m ‘ykzk *
s+ k=0

The relation (1) may also be stated in the form of

following theoren :
Theorem 1: < ‘ B
Let {pn(x)} be fhe’polynomials possessing the

genergting relation,

©0 n m 1-c (‘m =
(16) £ py(mt = B¥EI e |
Nn=0 14y (1+ o m)w (1+yw )

where w is given by 2,3(2) and G[z] is given by 2.1(2),
then '

s +1/m

nEO T3 F/mn (¥t = u ??[%ﬁ u ,J ’

[es]

(17)

where u and ¥ are given by (2) and (3) respectively,

When o~ = -2, ¢=1-a , ¥y =1 and m = 1, Theorenm 1
would partiéularize to the known Theorem 1 given in
(Mc Bride [F], p.85), whereas if we put oo = 1, v = -1,
m =1 and replace ¢ by 1+a , our Theorem 1 would correspond

to its particular case given in (Mc Bride [F], Theorem 2,p.85).

Another worth mentioning particular case of our

Theorem 1 is the known rasgult
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where

B+1
(19) B =%(1+%) , %) =o0;

derived earlier by Srivastava ( [il:{ s BEq. 2.4).



