CHAPTER w VI

BIORTHOGONAI POLYNOMIALS

6.1 INTRODUCTION

Besides the classical orthogonal polynomials and
their various gererhdlizatiohs discussed in earlier éhapters,
the dlasgs of polynomials ‘{fg(xi} (Chapter II, egn.2.1(3) )
embraces yet another interesting set of polynomials in its
fdlds of geherality: This set Gécursﬁin our study of |
biorthogonal pair of polynomials associated with Jacobi .
weight function. As mentioned in Chapter I, the notion of
biorthogonal pair of polynomials was introduced by
Konhauser[ij according to whom two sets of pdlynomials
%%n(x)[ R (x) being a polynomial of degree m in the
polynomisl r(x)}, and -{Sﬁ(x)lsn(x) being a polynomial
of degree n in the polynomial s(x)‘ are gaid to form a
biorthogonal pair of: polynomials over the interval (a,b)
with respect to an admissible weight function p(x) and
basic polynomials =r(x) and s(x) if
=0, m,n=0,1,2540., m £ n ,

b
(1) J p(x) Ry(x) S,(x) ax {
&

%O, m= 1,

Among those who cdontributed to thewstudy of

biorthogonal polynomials associated with the weight function
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P ™% s the names of Konhauser (3,2 ), Carlitz (61
and Srivastavs ([3],[12] ) are worth mentioning.
Prabhakar snd Kashyap[;] studied the biorthogonal polynomials

suggested by Legendre polynomials and the particular case
(390)
P

n (x} of Jacobi polynomials.

Tn this Chapter we present our results related to

study of the polynomial sets in powers of basic polynomisls

k
r(x) = Cl§¥> and s(x) = (} %), which we denote by

(a98> (@;5) . .
Wy (x3k) and X, (x3k) respectively.

These polynomials satisfy the biorthogonality conditions

(2) Jn,m = (; X) (1*%)ﬁ (a0 (x3k) X;agé)(x;k)dx
=0 ,m£n
7-(091[2::119

which quality them to be called as the pair of bibrthogonal
polynomlals over (-1,1) with respect to the weight function

(LJ.C) (.d:..,) Re(a), Re(B) > - 1 =nd the basic

k
polynomials (l§$) and (1539.
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This chapter also containg the evaluation of an hth

order debterminant

51,3 = 142,4..,0,

which we required during the course of our -study.
. 1 k
6.2 THE POLYNOMIALS IN (1ZX)

In terms of the factorial notetion

(a), = ala+l) ... (a+n-1) = 5g12+n s 2 #0
(1) 7 ‘
(a)o =1,
1. k

we consider the ntk degree polynomials in ( 5

(asB) (14a), n (-0); (Lro+fn)y. .
i I R

n =0

as members of one set of a biorthogonal pair associated with
. . g
the admissible weight function p(x) = (%g%) (;%%j y

Re(a) > - 1, Re(B) > -~ 1 on the finite intervel (-1,1), k

being e positive integer,

This definition is suggested by that of the classical

(a35>

" (x), to which (2) would reduce

Jacobi polynomisgls P



(@ys)
when k = 1. W, (x3k) may also be written in

hypergeometric form as

-1, A(k, l+q+p+n) ;

(asﬁ) <1+d)n F 1ex k
(B W, (xk) = —~— k+1 k (3%
Ak, 1+a) ; ’

with &(m; A) as before denoting the set of par

ametors
Al Atm - 1

In order to prove that the set of polynomials

(asp) (o, 8)
W, (x;k) and the X, (x:k) satisfy the

bilorthogonality condition 6.1(2),1t is sufficient to show that

1 R £ 5 4 g (asﬁ)
(4) { D & By, (x3kK)dx = 0, i=0,1,...,n1,
# 0, i =mn,
and
1 at+ki B (asp)
(5) {(l-gi) D %, (x5x)ax = 0, 120,1,...,001,

# 0, i=n,

He first prove the condition (4). Denoting the left

hand side of (4) by I; 5 ond substituting the representation
¢
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‘(asﬁ) . ) ' L
(2) for W, (x;k) in (4), we obtain,

(14a), n (-n); (L+o+p+n)y

isn n! 520 j!(1+a)kj

2

.1 a+i+k) B
RGN COU

e f15+1) (1+a), =n (.n)j (1+a+ﬁ)n+kj T (o ik j+1)
BT (Tradf), 52 IT(Traly; Tar IFKI757E)

2 T(d4+gen) T(148) 2 ("n)3 : .
- Bl (e pon jEO 1 (a+k3+1)i(a+8+k3+1+2)n_i_1

2 Nasasn)  T(148) (m), 3 .
T T (1t 55010 jEO T Ea(“+1)i(a+3+l+2)n~i

e a ?
-1
where

E& denotes the shift operator

E, f(a) = £(a + k),

When i < n, the expression within the last summation
th

represents the n difference of a polynomial of degree n-1
in ¢ , hence Ii,n =0 for 1< n, Por i= n, Ii,n is
obviously non-gero, To determine T we observe that the

n,n
expression for L,.n may be written in the form
. 9

- 2 [(regtn) F(140) ? (—n)s (a+kj+1)n

‘&,n BT Lot fen) oo 37 (arprivkjen) -
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Now since (a#+p+l+kj+n) is a factor of

o

" :
(a+kj+1)n —(~12 (@%1)nuj, the sumation involved in In,n

may be split into two parts, one of which representing the
nth difference of a‘polynomial- of degree n-l1 in ¢, vanishes

and so In,n reduces to
’ ~ 2 1(l+ein) TY(1+8+n) (- 1) 1; (‘n)
In,n - n' (L+o+p+n)

3=0 '(m+B+1+k3+n)

1 orpen
U B L 050 7

n
= 201 Ti+ern) [aipsn)
k T (1+a+p+n) <§+P+n+1

Nl
Ve thus get

(6) S (?—X) (1+X) W(apﬁ)(x;k)dx

n
-1

n ™
= 2(=1) Tiam)  TCapan)
Iy 7 -+ B'f‘_zl_‘ﬂ_
k | (1+e+p+n) <%"“k )

n+i

For k = 1,(6) leads to the known formula (Rainville[H],
Eq. (15, p. 261)



- 74 -

1
(7) f (%539 (—iﬁb (y)dx = 2(-1)n3(1+a+n,1+s+n),
-1

where for B = 0 it reduces to (Prabhakar and Kashyap {g},
Eq.(2.14) )
n

1 o+ g
® [ Tummax - iﬁ;i‘lni?;

n+i

The proof of the other part of the biorthogonality

condition viz., (5), would require the determination of the

(asf)
polynomials X, ’ (x;k), which we do in section 8.5 of

this Chapter. We therefore defer its proof till the

(aaﬁ)
determination of the polynomials X, (x:k).

6.3 INVERSE SERIES OF 6.2(2) AND THE

(ayf)
RECURRENCE RELATIONS FOR W, " (xs k)

Making use of the definition 6.2(2) it is easy
to see that the polynomlal0 ”(“’”)(X ;k) are generated
by the relation

OTCI- (L+arp),  (a,6) n ~1-a~B r ky
i . - - ..A' AL
W It T (mRE = (1) G l(i_ﬂm
1 - x

where v = = , and
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oo (1+{X+ﬁ) . 3
(2) G’[ZJ - z (1?‘("1);] ZJ R
j:O (1+(X)k3 J! -
A comparison of (1) with the generating relation 2.1(3)
c
for the general class of polynomials -{fn(x)} s Teveals the
fact that by choosing the paramecters involved in the definition

c
of £ (x) appropriately, one can obtain the polynomialg

(ayﬁ) C

Wn (x5k) as particular case of fn(x). This fact

together with the known relation 3.2(8) leads us to the

inverse serics of 6.,2(2) in the form

¥n
OENCPIE

n

= (1+a), n! (-1)7 (1+aeBaicing) MERD
kn J=0 (n~-j)! (1+&)j(1+a+9+3)kn+1 -3

For B = 0, (3) would give the expansion of (%gz

o
in terms of the polynomials Vj(x;k) studied by Prabhakar
and Kashyap [i] .

FPor the derivation of differcntial and mixed

recurrence relation, we: put

.

- b
(4) iE(th) = (1-t) ° G ":Elifgs .

It is rcadily seen that @ (v,t) satisfies the differential

equation
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(5) gungwg ~vu4ﬂ%.ﬁﬁoté,

which in view of (1) yields the following differential

recurrence relations.

(6) (31 W as+B4n) D w( ’6)<x;k) + X(a4n) D w (x k):]
= k(o+fen) | n Wia’ﬁ)(x;k) - (asn) w;fiﬁ)(x;kij :
(7) (x-1)D ‘u'\ér(la’ﬁ)(x;k) - xn ‘n’ia,ﬁ)(x;k)
(1+a), -1 (L+o+p)

(asB)
EO TTIET“”* k(o+B+1) Wja (x:k)

21+a+6)n =

K

. (asB) 1
+ (x-1) (k#1) D VW, (X;R)J

and
(“ 5) aoﬁ)
(8) (x-1)D W, = (%;%) - kn W (x5k)
- ﬁifflgﬁw n§1 (—k)n“a(l+a+6+k&1j)(i ) W(aaﬁ)( )
(1+G.+{3)n Jmo (1"}'&)3 +0C+B j J Xy »
. _(asﬁ)
Direct differentiation of W, (x3%)
and use of the relation
vy

(V)

=k T (i von),



- 77 -

give,
(ﬁgﬁ)
(9)  (x=1) D W, (x:%)

' ksl
k(o+n) (l+a+p+n)y (-1)

) (o+le, B41)
(ITaEn), Z n-1

which could otherwise very well be obtained from equation
(6) alsc. For %k = 1, (9) reduces to the well knwon relation

for Jacobi polynomials (Rainville[ﬂg, D.26% 5 Bg. (2) )

(asﬁ)

1 (G+198+1)
(iCy TP (x) = §(l+a+3+n) P

n nel e

Purther, combination of (6) with 6,2(2) leads to

_(ayﬁ>
(11) (x-1) (o+g+n) D W, (x3k)

K n 3 n»l\) (1+o)y, 1_X)kj
= 13t jfo{“l) 1, 21+a)kj(“+5+n)kj+1Q“§”. .

o
Muliiplying both sides of (11) by (lg%) and then

differentiating k times we get

k[ ; 7}
(12) D (Ex—l) (}%ﬁﬁa D Wia s)(x;k)!

- T

e k+1 (s B+Xi+1) X
= (;%XD (~1) k(atn) (hatfen)y, W, o (x3k)/2
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From 6.2(2) it can be easily seen that
o OHBED (otyR)
(1) f (455 D W, (xk) dx

(~k) (1+a+g+n) oc+{;+n+k (<x+k B8)

el rl-x .
(1+q+n) P, -1 (x3k)
k-1
which for § = 0 simplifies to
k
1 ey, EHL o 1ex a+n+k g ]
(14) f mgzﬁ DV, (x3k)dx = (k) (wg‘ . Vhﬁi(x,k)

and for k=1 , reduces to

e QB4 (ay3) o BNt (o1, B)
(15)  J(D DR (ax = (1) (RE) Boi ().
1 k — - k
As  s(x) = =5 = lr(x) s Dy an application

of the theorem (Konhau'ser[l}, Th. 2.6), it follows that there

exist pure recurrence relations of the form

K (a,B) TN+l (a5 B)
1=x ? . - .
G5 W, (uk) =2 Pa M (mB),
and
ko (a,B) n+k (s B)
1-x s . _ 4 .
G om0 ey e
where the coefficientg bn,i and an,i are functions of n

and independent of x s Which cen be obtained by substituting



{1

P oeow b

the representation of the polynomials and equating the

powers of Cl%ﬁ) y i = 1+1,n,4..., in case of b, . and

n, i
foxy .
that of (~§f> y 1 = n,n-1, ,.. 1in case of an,q v

6.4 EVALUATION OF THE DETERMINANT

{as)y 4
Za-+b5i_1§

J

(@93)
Before we determine the polynomials Zn (x:%) ,

we prove here a lemma giving the value of the determinant

(a1 |
- swhich we shall require in the study of
{a.+b) l
-(G$B>
X, (x;%).
LEMMA
?i) D %Eili§¥~m i,5 = 1,2
= y Led = LsRsenesnd
e ) aj+b io1
stands for the nth order determinant whose (i,j) elément is
(a3)iq
?
aj+b i1
then

Y1

A n
(2) 1, l]jJ<ala> IRONY J[REP



Proof :

!
Regarding ay s and b as (n+1) independent
variables, DnA in its expanded form can be put over a
7

common denominator 'n (aj+b)n 1 which is of degree
J=1 -

n{n-1) in the (n+1) variables, As each individual term
of the determinant is of degree zero, the value of D
should also be of degree zero. Therefore the numerator must

2
be a polynomial of degree 1 -n in aé g and b,

If a; = aj , Obviously Dn vanishes, 1t, therefore,

follows that the numerator for the value of Dn , must contain

n
a factor of the form ]K (a; - aj) which is a term of degree

i> 3 )

Purther denoting the successive rows of D, by

Rl’ Rz, ...,Rn we observe that

A et g (-"(b)(a) .y |
= " (é1+b)r+m—1 I lap ) i1
where
OB, =R, - B.= (B - DR, ’

and since
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m it}

A BR.=(E~1) R,

i

- m

Rmn?"( > Rpppay * oo + (1) Ry s
1

the operation

) m m

on the (m+r)th row of D , which is equivaient to adding

to (m+r)th row an appropriate linear combination of upper m
TOWS thué leaving the value of the determinant unchanged,

- m
changes the (m+r)th row into b LI

Performing the operation described above, by taking
v = 1 snd W = n-1, N2, ..., 1 successively, the determinant

Dn becones

. n(n=1) [, 4 ™

1 o= .
(3) Dy = (-1) ﬂ: S ey spn 1,3=1,2, c00sn.
P j=1 ~ J -
n-i
(3) shows that I€ (b)j ig glso a factor of the numerator
i=1 '
n
, M ) 2
of D.. Since the degree of (ay-a.) (b), is n’-n,
n S AR i 3

i>3

we can write
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~ n n-1 1
A i};\j(aiuaj) jE1 3/ jEl(afb-)““l ’

where c, is a constant, To determine the constant e, we

note that when b = 1, Dn becomss
| 1

aj + i -1

811 a2 “r e 8’1’1 ,i9j=1929“"n9

which in view of the known result(c.f»‘Davis{}j, Lemma 11.3.1)

9 193:1,29 ...91'1

i iR

d 1,

4}
TJI (ai + bl}) ?

n n
= ﬂ <ai - aJ) j—j (bi - b:j) / o

i>j

has the wvalue

=)

e,

n-1 *

el Ne1
l{>\3(aj" - a:.!) Ql(a)! /\3_—51(&3 + 1)

It therefore follows that the constant c, in (4) is

equal to unity. Hence thc lemma,

(3) together with (2) leads us to the

COROLLARY :

If
*® . .

(6) D o= 1 !7173 = 192, ""oyﬂ 9
ol (aj+b)i~1 [ |

then
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*® n§§~12 n n
(7) D, = (-1) j§j<%-*ay,/zgfaj+bghl.

(a9§>
6,5 DETERMINATION OF Xn (x:%)

1 o+ 1+k B
1= 1+
1" S BS P

z.'f(a+i+kj+1) T(s +1)
B Tlatpritki+)

3

and consider the polynomials
#0,0)  $(0,1) ... §o,m-1) 1

(1) 3Y;a9S)(X;k) - @(130) @(1,1)'... $(1,n-1) 1%§

.

. n
$(0,0)  Bln,1) .ov Blnn-1) ()

e K] - B
Multiplyivg both sides of (1) with “559 (iééﬁ

and integrating with respect to x between the limits

-1 to 1, we get




1 k] 5 ( 9E)
rEd™ e v eon

$(0,0)  $(051) +..  P(O,n-1)  &(0,))
= | &(1,0)  &(1,1) .. E(1,m-1)  F(1,3)

.

&(n,0) dn,1) ... F@n-1)  @(n,d)

= O fOI' j;O,l,...;n—l
£ 0 for j = n:

(aaP)
Thus 6.2(5) is seen to be satisficd by \?h (x:k),

- (ayB) (avﬁ)
S0 ‘an (x:k) is X, (x:k) except for a constant

multiplicative factor.

Being guided by the explicit representation of Jacobi

(Qaﬁ)

polynomials to which X, (x;k) would corrcspond, when k=1,

we set
okl

(asB) ( k 2n (a, )

() X, (x5%) = e ' ¥, (x5,
n,0 n:
where ‘ﬁn.o is ther cofactor of the (1,n+1) clcmont of
$
. (o B)
the determinant representation of Y, (x3k).
f(a9f:3)
Now if we oxpand the determinant foz?xirl (x:k)

in terms of the elecments of its last column, substitute the
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values of ¢(i,j) and make the necessary simplificetion,

we get X, (x3k) in the form

(s ) L
1
B % mn = 1o, G5,
where
(4) s - ﬁi%) / ni Eﬂxﬁ
n,r = (\k n/ 1 Dn 0 ?
El

Dn.p Dbeing the co-~factor of (r+1,n41) clemont of the
7

(n+1)*® order detcrmingnt

!

|
’(a+1+k3-k)i~1

(a+ﬁ+2+kj—k)i_1

] igj = 1925...,1’1"‘16

o —— s ensat et

and Dn which are given by

n?r 90 f
i
n+xr
+ 1 . 1 ) X
(5) Dngr - k <r4—-w-g_}z n ("J—) &+i+kj~k 5 131’25‘..91’1,}.191?{11,},1
j:‘—l!z}oo;gn
and
_ Mol n ! 1 L

can be evaluated with the help of the result 6.4(5). We

shall thus get

n (-n). . o d
(7) .4 (x3k) = "3";"'-3“2"0 j!:i <a+1.1+1>n (12:{ ’
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o
which corresponds to the polynomials Uh(x;k) studied by

Prabhakar and Kashyap [1].

For non-zero values of B and k > 1, a closed form

expression for D .., r # 0,n , does not secem to be
H

obtainable, However D and D can be evaldated with
n,n n,0

the help of the determinant given in the previous section.

Omitting the details, which are quite straight forward, we

give below the values of Dn n and Dnaé .
2 b 4
(a+1+jk—k)i~1 o
Dn’n = (G+B+2+jk—k)i_l s 15J = 1,2544.50
n(n-1) 0
2 =1
=k ﬁ (§+1)j iy / ﬂ (o+p+2+ik=k), , >
3:‘:1 . j:i
and
n (a+l+kj~k) . o
Pn,0 = (-1) (o+ReR+kj-l), |* 09 = 15250005n
n(n-1) ,
o+l n 2 e ‘ o+ B+2 ﬁ
= ( T )n (-1) k j[£(0+1)j(3)! (‘ = -)n j_§&+§+3+k3-k)ﬁn1,
. (0598)
s0 that the leading coefficient Gn,n in X, (x3k) becomes
n 1
(8) 0 - L= Qgiﬁ%@i%) .
- N n! k n
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After having determined Cn 5 We can now evaluate
=9

the integral

<1~X> <?+%>B (asﬁ) (x3K) Xé“s@)(x;k)dxo

(asg)
Substituting right hand side of (3) for X, (x3%)

and meking use of 6.,2(4) and 6,2(8) we get

- P (ctsB)
Jn,n = Cn 0 f (1 x> <§+X En (x3%) dx

- i:llfa <q+§+n+1) 2(~1)" T(i+asn) [ (1+8+n)
n! k n k (1+a+?+n) (@iﬁi£i7>

n+l
so that
2 (1+a+n) (1+p4m)

oy g - .
(9 o, A U T (et Pn) (asfentd+im)

Next, we evaluate the integral

1 e ,
[ 1P nons

for which both members of 6.3(3) are first multiplied by

(oc)
(?~y> (;iéﬁ a (x;k) and then integrated with respect

to x over the interval {}1,1] » Thereafter an anplication of

6.1(2) and (9) gives us



1 kn 3 , '
w " @ 1 woe

2(-1)? n! T{1+p+n) T(1+oa+kn)

n!  T(2+a+B+krin)

Tt is worth mentioning here that the problem of
constructing a pair of biorthogonal polynomisls suggested
by Jacobi polynomials has alsc been investigated by

Madhekar an&iThakarefi], but our approach of introducing
] ¥

- _(a*f‘@) Z (OC,B)
the polynomials w, (x;k) and X, (x3k) is

entirely different from that of Madhekar and Thakare., It is

also worthy of note that Madhekar and Thakare's analogue of

(ayB)
X, = (x;k) which they denote by K (asByk,x) is also

representable in the alternstive form

(11) K (as8,k,%) = == z G
- . -

T T n-g R+n s
-z (-1) ( > ( ) JAN f(a)
8=0 g s /

(o) = (%ig)n

-

where

and
Af(a) = £lo+1) ~ £(a).
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v T ’
When § = 0, the coefficient of (%%ED‘ in (11) can be

successively simplified as below 2

» r r Y= 1l S
= %y 1) (.r-s> (S) AE(a)

S=l

o= <n> § (r\ [f’f(a)
r J 8=0
r (n\
)r /n ‘
() e,

o
which makes K, (a,0,k,x) a constent multiple of U, (x5k)

(Prabhakar and Kashyep[l] ); but Madhekar and Thakare fail
to take note of the above fact which leads them to make the
erroneous remark regarding the polynomials studied by

Prabhakar and Kashyap.

We conclude this Chapter wﬁth the remark that as basic
polynomials may be chosen differently, it is possible to have
more than one biorthogonal pair associated with a given weight
function, for example, in the case of Jacobi weight function,

bagic polynomials could also be chosen as

“

ic
r(x) = 155; s(x) = ;%zﬁ for which similar analysis can

be carried out.



