CHAPTER 3
HYDROMAGNETIC TUBRICATION OF POROCUS BEARINGS

The studies of the effect of a magnetic field
on the flow of -a conducting fluid show that hydromagnetic
bearings have several advantages. Such bearings not only
carry more load than ordinary bearings, but they can
carry loads even when the equivalent conventional
bearings have no load capacity. According to Kuzma [44]
friction can be reduced to zero by applying proper .
magnetic fields and the trénsient loadg have less effect

on hydromagnetic bearings thap'on ordinary bearings.

Sintered metal self-lubricating bearings are
advantageous for many applicatiqns owing to various
reasons discussed earlier. Although the beariﬁg chara-
cteristics suffer because of porosity, the numerous
design and maintenance advantages overcome these, Efforts
were made to improve bearing characteristics by the

application of electromagnetic fields [:5; 27'].

In the following sections we study the.. effect
of a transverse magnetic field on the lubrication eof

two-layered porous rectangular plates and an inclined



glider. We shall see that the effect of poresity in
decreaging the load capacity can be countered by the
applicafion of a magnetic field. But the increase in

load capacity comes at the expense of increased friction.-

3el HYDROMAGNETIC SQUEEZE FIIM BETWEEN TWO-LAY ERED
POROUS' PARALLFL RECTANGULAR PLATES

The squeeze film between two parallel plates,
one with a porous facing, was investigated by many
persons [ 5, 10, 17, 18_]. In these investigations the

porous facing - had the same permeability throughout.

Cusano [ 6, 45:} ‘showed that the seepage
through the boundary of the pbrous begring, which causes
the decrease in load capacity, might be decreased by the
-uge of mlti-layered porous houéing of different per-
meabilities, thué impfbving‘the bearing performance, He
showed that in a narrow bearing and‘aﬁ infinitely long ,
bearing, a low permeability inner la&er increaged the

load capacity and decreased the coefficient of friction.

_ In this section we study. the squeeze film
behaviour between two parallel rectangular plates, when

the upper plate has a porous housing of two layers with

t
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different permeabilities, in the pregence of a uniform

transverse magnetic field.

%.1le.l Mathematical fermulation

Congider a fluid film of thickness h between
two parallel rectangular plates where the lower plate
remains fixed and the upper plate is assumed to move
normal to itself. The upper plate has a two-layer porous
houging of thickness H = Hl + He, with permegbilities
kp, k, of the lower and upper layers respectively. 4
uniform magnetic field BO is applied perpendiculgr to
the plates as in Fig. 7. Flows in the porous regions
follow the modified Darcy's law [ 11] . In the film
region the equatiens of hydromagnetic lubrication
theory hold. Followﬁé the assumptions of porous metal
hydromagnetic lubrication of section 1.2, the basic ‘

equations governing the hydromagnetic flow of the

jubricant in different regions are obtained as @
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From equations (5) - (12) it follows that the fluid
pressures Py and P2 in the porous regions satisfy

the equations

&p, 8%y o Opy
5= + 5= + ¢ TH = 0 (14)
X’ 8z ’ ay
2 2 2
7P P P
2 2 2 2
5+ 5~ + Cg 5 = 0 (15)

ox
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The solutions of egquations (1) and (3) subject

to the no-glip conditiong on both the surfaces are

he
o= 2 & [(cos’nggi - 1)

]J.Mz 0x 0
sinh XY
M Ho
- (cosh = ~ 1) i (16)
0 sinhjg—
0

and

~ (cosh %—% -1) = MH :’ (17)

Substituting equations (16) and (17) into equation (..4)
and integrating across the film thickness h, keeping

in view that the lower plate is non-porous snd fixed,

we have
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3 ( 2 2h

3
2 .2
.2 o2, T2y (B2 tan - T (18)
jau ox 0z 0 0

Since the velocity component in the y-direction is
continuous at the plate-film interface ,

k op

ab  _ S S
v = oat = TPyn=- 2 (5 y=n (19)
From equations (18) and (19), the fluid pressure in
the film region is found to satisfy the equation
é% B )
2 2 G} 3y ’y=h
ax® 02 b -
—g ( }ZT. - 2 tanh 'z-'ﬁ-")
}1M 0 0
The associated boundary conditions with equations
(14),(15) and (20) are
p(x, 0) =0 (21)
p(x, B) =0 (22)
p(Q, z) =0 (23)
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Since the normal velocity components and the

pressures must be continuous at the interfaces

apP
( ==)
0y ¥ = h+Hl+Ir12

6}?1

505 dy = gy

(33)

(34



Pl(x, h+ Hy z) = Pz(x, h + Hy 2) (35)
p(x, 2) = Pl(xa h, z). (36)
The problem ig a coupled one in view of equation
(20) end the coupled boundary conditions (34) - (36).

301 02 SOl‘U.“bions

Solutiong of equations (14) and (15) with the

corregponding uncoupled boundary conditions are obtained

0o ©00 I'mHY/Cl
as P,(x, ¥, z) = 32 z ' sin o _x sin B _z.e
i’ mel nel Amn i n
-2r _y/c
m 1
(1 +3B e ) (37)
and
( ) o0 oo rmny/cg
Po(x, ¥y 2) = Z z sin o x sin B z.e
2 m=l nel Amn T n
2r (b + H.+H,-y)/c
(Ll +e ™ LR 2y (38)
where
. 1/2
A 2 2.2
amz%,;an=%’“-,d=§anq rmn:%(m+dn). (39)



According to equations (36) and (37)

so oo ,
p(xy, z) = I £ B_ .sin q_x sin B = (40)
’ m=1l n=1 m n n

with

r h/c -2r _ h/c

oae mn/ UL : mn 1

B = A e (L +B' e ?. (41?
The solution of p as given by (40) satisfies the

conditions (21) - (24).
From condition (35) and equations (37)-(38)

’ 2
ro (B o+ Hl)/cg (140 T Ho/Co )

Aﬂme

-2r  ( h+Hl)[

Tm B+ /e "1 (42)

=4l e 1+ Bﬁn‘e

Use of equation (42) in.equations (37) and (41)

regpectively gives



(s~ oo rmn(y*h)/ol
Po(xX, ¥y z) = £ & A _ G €
1 n=1 p=1 & ™
-2r y/c :
1+ Bl e mn' 1
. BT () sin o x sin gz (43)
1+ Bl;m e
and
- h
T e Br /c::L
m
Bn = Am o ' ~2rmn(h+}ll) /¢y (44)
1+ an e o
where
1 1
r (h+H —_—— = 2r /co T h/c
Gm__.emn(‘ l)<02 Cl)(1+e mnH2 2)e.mn 1(45)

Using equations (37) - (38) in (34)

1-F, 2r (b + Hy) /ey
B! = e——" e (46)
m 1+ an



where
2r _ Hy/c
~ k2°1 1 - W0 2/ 72

5 2r Hy/c, (47)

o k102

1L+ e

Substitution of equations (44) and (46) in equation

(40) yields
2r /e
x, 2) eooz? . 1+an+(l~Fm)e 1/ 1
PiX,2) = X
’ m=1 1=l Amn . 2
.« sin g x sin § 2. (48)

Subgtitution of equation (46) in equation (43) gives

( ) o0 ©O . rnm (y"'h)/cl
Py(Xyyyz) = Z Z . e
1y mel n=l % mn

2r__(h+H, -y)/c
Ler  +(1-F Je o 1 1 ]
. sin « x sin f z. (49}
2

.

Using equations (48) and (49) in equation (20) and

simplifying,



2r H./c
o o 1+ B +(1 - F)e mn"17 "1
dh
= I z G C
R n=1 An Ym “mn 2

sin x sin
. o an

where
2r Hl c
1
1+F_ ~(L-F e ™
o _ %;_;mn mr. mn.
m = P oo er H /oy

1+ Fﬁni-(l - an)e

no
o _* Mo Mh
- — T ( & -2 tanh 55— ).

e hy 0

~

The constants A4, are obtained by using the
orthogonality of the eigen functions sin o X ,
sin g z in equation (50)  as

’

dh
Amn = y 2r H,/c
2 mn~1 7L
4 mx” GG 1+an+(l-an)e
LO , otherwlse

(50)

(51)

if myn are odd

(52)



substituting from (52) in equation (48), the pressure

disgtribution in the film region is obtained as

0 oo 16 &
p(xy, z) = & I s——=— sin o x sin § 2 (53)
m,n odd m n Cp,

where C_, is given by (51).

Tn dimensionless form it becomes

3
P(x, z) = g%' 1'}"%
}1!&
16 ® = sin a x sin f, 2z
= == X z
7% m,n odd mm(m2 + dgnz) 1/2
- V% 1
[ —== (m dnz)l/g (M Btanh%l—) + ES - (54)
3h. clh
where
k. H
= h 1 = B
h = ‘— . — H = - (55)
by, 7 LY n ’ A



and
2
(1 -F,)e m /01 _ (1 +

D =
iel _ Zr'H/c
HL(L-7,) e L

an)
+(1 o+ F)

* (56)

The load capaclty is obtained by integrating

the pressure over the area of the plate :

B A
w = [ [ p(x,z) dxdz. (57)
0" 0 4

In ﬁimension#ess form it is obtained as

-3 00 OO

F o= - dt h'% - 64 5 5 1
ah }1.&.333 7? m,n odd mzn (m + d n )1/2
-1
1/2 Ya
. [ MBE?’ (m +d n) (Mh - 2tenh =~ ) + 1E3 nm:[ (58)

From equation (58), the time of approach as the

function of height h, for a given load W, is given

by
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t 3 00 oo 3
fldt=‘64ﬁ%§ z 1z z2 =
+ nsho'W m,n odd m'n~(m® . + d°n")
)
h . -
4
S = & ] (59)
1 - 2tanh _é- + Emn
where
MS‘I’lD
Bn = 2 1/2 (€0)
cym(m” 4 a*n )

As the asymptotic solutions of eguation (59)
are of -. 1little practical interest for small values of .
M, the integral on the right of equation (59) is
evaluated for large Hartmann numbers. Assuming that the
initial film thickness is hy at t, = 0, the time of
approach in dimensionless form is obtained as

hgw
ar = 2~ At
Ra°B
1 (BT
g4 X <o i 2%



In particular, if H, = 0y By = H, C; = Cy
ki = k are taken, the results when the upper plate has
the same permeability confirm those of Sinha and Gupta 5]

3.1l.% Results and discugsgion

Bquation (58) gives the load carrying capacity of
the bearing and equation (6l) expresses the time of
approach as a function of film thickness. The main

parameters affecting bearing characteristics are M,

H k
:2“-' ’ ~£ ana Y4 o+ Their effects are presented in ~
Hy K

tabular form with all numerical calculations carried

out upto m =n = 15,
Tables 9 and 10 show the effect of varying

- . ‘ _
E?— and -2 with varying M on W regpectivelys It .
may be observed that the increase in each of the ratios
= and T~ has adverse affect on the load carrying

1 L

capacity,.

From Tableg 11 to 13, it may be obsgserved that



the time of approach increages when (i) the magnetic
field is increasged (ii)Yidecreases (iid) h
: Hy
decreases or (iv) =  decreages.
Hy
M1 tables confirm previous results | 57 that the

effect of an applied magnetic field greatly modifiesg

the sOueegzing action.
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3¢ HYDROMAGN ETIC LUBRICATION OF AN INCLINED POROUS
SIIDER BEARING

snyder [ 467 .and Fucks and Uhlenbusch [ 47 ]
analysed the inclined glider bearing with a transverse
magnetic field. They considered only the open circult
conditions. Moreover, their analyses involved unusual
normaligzation of parameters which made physical inter-
pretation a little difficult. Hughes. [ 48 ] considered
the same configuration for open circ;uit and short circult
conditions. He found that significant load increases
could be effected by supplying extérnal power and, for
large Hartmann numbers, open circult conditions co:xld
give rise to greatly increased load capacities.
Agrawal [:49] extended the above analysis by including
the inertia effects. ﬁowever, 21l the above investigators
considered both the glider and the bearing to be

impermeable.

Prakash and Vij | 37 | analysed the hydro-
dynamic lubricating charscteristics of an inclined slider
bearing when the slider was impermeable and the stator

had a porous facing backed by a solid wall. They showed



that the effect of porosity was to decrease the load
capacity and friction but to increase the coefficient

of friction.

It was shown by Sinha and Gupta [[5_] that
hydromagnetic effects could be uged to increase the
beagring characteristics censiderably without altering

the size of the bearing.

In this section we study the effects of a
transverse magnetic field on an inclined porous slider

bearing with an electrically conducting lubricent. .

32,1 Mathemgitical formulation

We consider a fluid film of thickness
h = h(x) within an inclined slider bearing, infinite in
the g-direction, whose upper surface is non-porous and
moves parallel to itself with a uniform velocity U. The
lower surface has a porous facing of thickness H, backed
by a solid wall. A uniform magnetic field By is applied
in the y-direction as in Fig. 8. Following the assumptiens
of porous metal hydromagnetic Ilubrication of section 1.2,
the governing applicable eéuaii@n as deduced from

equation (39) of chapter 1 is






S
a [(g-g--;-o*E B){lﬁi --%1-—1-(EH—&-—E*bza:ﬂhm&'l ]
&= |lax z o) 2 5y 2h1)}
jpth

where

and
h = hz - (l’lg - hl)Xu

Introducing the dimensionless guantities

h - -~
}?:% ’a__-_i-l-g]-: ,h=%1=a-(a-l)x,
(63)
2 ) %
- Byp by
D =m and E = E v o/ R

into equation (62) we have



(&) {f Fo - e £} ]

Bil=

(M tanh ilgi). (64)

-

4
ax
Integrating equation (64) once with respect %o X

we hgve

( ME)rwtanh %-E-Né% :[
(&
1

- (g, - & tam B, (65)

where QB is constant of integration.

In general, equation (65) cannot be
integrated analytically, so we obtain its asymptotic

solutions for large and small values of M.

3.2.2 gsolutions for .» small Hartmenn nunbers

Wnep' M is small, equation (65) may be

written in rearranged form as



z-afl ki; Qg + - | (66)
h“y o a =l

B 151

where Q4 is the constant used in place of Qs in the

present case of small M and

@ = 1y - ZHE
by

Solgring equation (66) under the boundary

conditions
p@=2=>p®E=1)=0 (1)
we obtain the dimensionless pressure distribution ‘as
5 =-gT [fx-' {1,-L + 213 (2-17) )
Q4 — -
+ ;—5 iL-—I.l-:-ZVB(T-—Tl)}‘ - MEz(h—-a) ], (68)

where
am'ﬁé(a-l)ﬂu Ly ~Ip+2Y3 (TyrT;)
(69)

Q4_ = O
Ly -Io+2V3 (1y-T5)



and

L _
L:Jn[%iﬂ-—z T = pan™t ( Eo %)
R* —oli+a a\3

end I, L, and 1y, T, are the values of L and T

2 2
/
a

and n = 1 respectively.

The dimensionless. load capacity is

2
W 3 3
¥ = %é - 1 5 [23m( iwiﬁ%)
PUA B (a-1) 1+ «

Q - . .2
- 3% 3 Ly ~Lo+2V3 (Tz--ml)}- + ME_ ﬂgé—)-] (70)

The dimensionlegs frictional drag exerted by the

moving slider is

- th 1 '&3 + a3.
F = e = -—---""a — In («-—---——-*——5 )
FUAB 1 +a
- In g '
-5 iLl—-L2+2V"5~(T2—T1)} + T (71)



:92
The centre of pressure is given by

= 3
X 1 [: 1+«
- ~ | 6(1l-a) + 2(Q, - 2a)ln ( ==
2
a - 2a @
+ 4

~ {1,-1, + 277 (T, - )y

+

T 123 _
ag 1L2~51+2V3 (T,-1,) § - ME, Q—Bﬁl—] (72)

Total current I per unit length is given by

I = [[J, axdy = Jf o (EZ+uBO) dxay (73)
P r
where I

ig the area of the cross section of the
flow in the xy plane.

The dimensionless current is
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- I _ 1
I ;5§§;§%_” 12 111~E2 + 2V3 (Tl" 2)3

®

[:%i@@ahﬁ&][%JfWﬂ%4Q]

6(a-1) 1Bo® | - 6l 1T -Ly+2V3 (mz—wl)}:[. (74)

In the open circuit case, I =0 s0 that equation

(74) gives

6 Mo [[I;~Ly+2V3 (T,-T;) ]
E = - ~=(75)
' [:6‘( a+l) +M2a3:l [_Ll-L2+2\[5 (T4~ 2)] - 6(a-1) Wa®

In the ghort circuit case, X = 0, so that equation

(74) gives

e I - L, + 273 (Té - Tl)

2 _ L ]
Ly = Iy + 2Y3 ('l‘l T

T = -



3,2 % Solutions for large Hartmann numbers

When M is large, equation (65) may be

written in rearranged form as

u-1 _
G- MEZ] ,

o -ME

& __ 1 [Mz
an a -1
where
3
Ot*zgwl%—y
c

(76)

(17)

and Q5 is the constant used in place of Q in

the case of large M.

Solving equation (76) under the boundary

conditionsg (67) we have the dimensionless.

distribution as

pressure

1n ( E@L:;Q;“) _
P = MB, . Z‘* + T ] (78)
In ( .
Mo =0 ‘

The dimensionless load capacity is given by



. *
W = - ME [1+M-:—-q—-+ L *] (79)
z M( a—~1) n (M=)
Ma~ aﬁ

The dimensionless frictional drag is

F = M + & (80)

== B *
X _ Z 1L ~a M - 3all + 2a
AT e _1)° 4 Ve - o
W(a l) 1n ( 2, (1*)
-
®We oy 2
_(Ma - o) +z(a-1 . (81)
2M
The dimensionless current is
- I - [T a4+l 2 -1 Qg
I = = B, 23' + s BT :{+l (82)
e - M
M-

In the open circuit case, I = 0 so that equation

(82) gives



¥
| Sin ()
T o=-2 Ma-q . (83)

* ®
(a + 1+ &__F?{__@_Qt_ )1n (A )+ 2(a-1)
Ma~a

In the short circuit case, Ez =0 so that

equation (82) gives I = 1.

32 o4 Results and discussion

By setting M = 0. in 3.2.2, one can obtain
the results of hydrodynamic lubrication of an inclined

porous slider [ 37 .

By setting W = 0 in 3.2,3, we have the

results for a non-porous hydromagnetic inclined glider

bearing [ 48 ].

o
In other words, the section 3.2 generaligzes

both the analyses [3’7, 48:[.

Since small values of M do no%b
significantly increase the load capacity, we compute
the bearing characteristics for large M. We considex

the open circult case the results for which are displayed



i

in figures 9, 10 and Table 14,

Fig., 9 is a plet of W vs v for various
values of M. It is clear from this figure  that
significant increases in load capacity can be made by
increasing M.

®ig., 10 shows that the dimensiomless
friction increases with M.

It is seen from Table 14 that the centre
of pressure shifts to the middle of the bearing when

w or M increases. The shift due to y is not
more pronounced than the shift due to the intensity

of the applied magnetic field.

A1l the Tables.show that the hydromagnetic
inclined porous slider behaves like an impermeable one
for large values of the Hartmann number. However, the
self-lubricating nature of a porous bearing is maintained
without significently affecting the other bearing

characteristics.
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