
Chapter 3

STATE SPACE ANALYSIS 
USING WAVELET PACKETS

3.1 Introduction

The very first step in the analytical study of systems is to setup mathematical equa­

tions to describe the system. Because of different analytical methods used, we may 

often setup different mathematical models to describe the same system. When the 

analysis in the time domain is to be preferred, the use of state space approach will 

offer a great deal of convenience conceptually, notationally and sometimes analyti­

cally. The notational and analytical conveniences come through the use of vector 

matrix representation which allows the system equations and the form of solutions to 

be written compactly.The adaption of the state space representation to the numeri­

cal solution is an added advantage, particularly when the system to be investigated 

contains time-varying and non-linear elements.
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In 1989, P. N. Paraskevopoulos had introduced a new orthogonal series approach 

to the state space analysis of linear time invariant system. In this approach the key 

idea was based on the orthogonal basis vector and the r x r constant matrix P, called 

the operational matrix of integration. The matrix P has been determined for Walsh 

series, block pulse series, Laguarre series etc.

This approach yields explicit expressions for the state input and output vector 

coefficient matrices X and Y. No algebraic system of equations needs to be solved 

and therefore no inversion of large matrices is required here, as compared to known 

techniques using the Kronecker product approach.Hence, our method reduces the 

computational effort involved and improves the accuracy due to round-off errors.

In this chapter we have discussed the following two problems:

1. State space analysis using wavelet packets

2. Wavelet packet series approach to state space analysis using bilinear systems

For this, we have introduced the operational matrices for Walsh wavelet packets 

using Haar bases and Walsh bases respectively (refer [29]). Using the operational 

matrices for different values of m and r we have obtained the state space matrices 

with the procedure given by P. N. Paraskevopoulos. Also, comparative study, of the 

results obtained using the Haar bases and Walsh bases with different values of m and 

r has been made.

The bilinear systems may be considered as a specialization of non-linear systems, 

under the assumption of linearity in the control or respectively in the state but not 

in both jointly
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P. N. Paraskevoulos, A. S. Tsirikos and K. G. Arvanitis [60] presented a new 

orthogonal series approach for the solution of the state- space equation of bilinear time 

invariant systems. This approach involves product of matrices of small dimensions. In 

this chapter, we are using the operational matrices of Walsh type wavelet packet series 

as defined by Glabisz [29] for solving the state space equation of bilinear time invariant 

systems.The chapter also includes, the comparative study of the exact solution and 

the solution obtained using Walsh wavelet packet series.

3.2 Preliminaries

The Concept of State :

The classical design methods for control system analysis suffer from certain lim­

itations due to the fact that the transfer function model is applicable only to linear 

time invariant systems and is restricted to Single Input Single Output (SISO) sys­

tems, as it becomes highly cumbersome for use in Multi-Input Multi-Output (MIMO) 

systems.

Another limitation of the transfer function is that it reveals only the system output 

for a given input and provides no information about the internal behavior of the 

system.

The limitations of classical methods based on transfer function models have led 

to the development of state variable approach of analysis and design. It is a powerful 

technique for the analysis and design of the linear-nonlinear, time invariant or time 

varying MIMO systems. It is easily amendable to solution through digital computers.
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State Space : The n-dimensional space whose co-ordinate axes consists of

x\ — axis, X2 — axis,.... xn — axis is called state space.

State equations are arranged as a set of first order differential equations and have 

the following form for a linear time invariant system

x = Ax + Bu

where x(t) is the n-dimensional state vector, x is the derivative of x with respect to 

time and u(t) is the m-dimensional input vector A and B are matrices of dimensions 

n x n and n x m respectively with constant elements. The output of the system is 

given by :

y(t) — Cx(t) + Du(t)

where yit) is a vector of dimension p, the numbers of outputs C and D are constants 

matrices of dimensions pxn and pxm respectively.

Here we restrict ourselves to the case of single input single output unforced systems 

for which m = 1 and p — 1.

In this chapter, we use the wavelet packets generated from the Haar filter for which, 

h0 = hi = go — —gi — ^ as defined in Chapter 2.

Let us assume that we have an arbitrary Walsh wavelet packet bases represented 

by matrix H(x) with size mxm where parameter m = 2J is further referred as a 

degree of approximation. Matrix II(x) can be represented by Haar basis, Walsh basis 

or wavelet packet basis defined for x e [0,1).
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3.3 Walsh wavelet packet bases coefficient deter­
mination

A function f(t) which is absolutely integrable in [0,1) may be expanded into Walsh 

wavelet packet bases

/(f) = coWo(t) + CiW%(t) +.........+ cnWn(t) + (3.3.1)

where Cn are the coefficients of Walsh wavelet packet bases of /(f).

It is desirable to determine the coefficients cn such that the integral square error

2

m~^CnWn{t) dt = e- (3.3.2)

is minimized.
/

Taking the partial derivative of e with respect to cn, yields

^ = 2cn-2^ f(t)Wn(t)dt 

and setting it equal to zero we have

r-l
Cn

[ Wn(t).f(t)dt 
Jo

(3.3.3)

This simple result is due to the orthonormality property of wavelet packet bases.

3.4 Operational Matrix

Let us assume that f* W(x)dx = PW(x), where P stands for the operational matrix 

(refer [29]) which is a matrix of coefficients of expansion in basis W(x), of the integral 

from W(x). Let us assume that the position of the representative point for each of
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the m intervals of x is given by the parameter r = 0, the interval’s representative 

point is located at it’s beginning, whereas if r — 1, the point lies at the interval’s end.

As given by Glabisz [29], the operational matrices for the Walsh wavelet packet 

bases is defined as follows :

For Haar basis:

2 m

mP™ - (r - |)J

m

-Hs

2(r -
(3.4.1)

For Walsh basis:

2m

mPm. — (r - |)J

I 2(r - \)I

Px = |r|

(3.4.2)

For any Walsh wavelet packet bases it is easy to obtain a modified operational matrix 

numerically using WH{x)dx = PW(x).

Operational matrices for Haar bases with m = 4 and m — 8 have the following 

forms :
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For r = 1

m — 1;

Pi = M = i 

m = 2;

2

---
---

---
--

1
to *-
*W 1

'^Z
i

1

__
__

1

-M 3 -1
4 4

[1] 2(1-IK.
1 1
4 4

m = 4;

0.6250 -0.2500 -0.1250 -0.1250

0.2500 0.1250 -0.1250 0.1250

0.0625 0.0625 0.1250 0

0.0625 -0.0625 0 0.1250

0.5625 -0.2500 -0.1250 -0.1250 -0.0625 -0.0625 -0.0625 -0.0625

0.2500 0.0625 -0.1250 0.1250 -0.0625 -0.0625 0.0625 0.0625

0.0625 0.0625 0.0625 0 -0.0884 0.0884 0 0

0.0625 -0.0625 0 0.0625 0 0 -0.0884 0.0884

0.0156 0.0156 0.0221 0 0.0625 0 0 0

0.0156 0.0156 -0.0221 0 0 0.0625 0 0

0.0156 -0.0156 0 0.0221 0‘ 0 0.0625 0

0.0156 -0.0156 0 -0.0221 0 0 0 0.0625
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Similarly we can calculate the operational matrices for different values of m and r. 

On the same line, operational matrices using Walsh bases for m = 4 and m = 8 are 

as follows :

For r = 1

m = 1;

Fa = [r] = 1 

m = 2;

P2 = 1
4

2 2ft - <1 - |K

K 2(1 - |K

3 -1
4 4

—

1 1
4 4

m = 4;

0.6250 -0.2500 -0.1250 0

0.2500 0.1250 0 -0.1250

0.1250 0. 0.1250 0

0 0.1250 0 0.1250
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m = 8;

0.5625 -0.2500 -0.1250 0 -0.0625 0 0 0

0.2500 0.0625 0 -0.1250 0 -0.0625 0 0

0.1250 0 0.0625 0 0 0 -0.0625 0

0 0.1250 0 0.0625 0 0 0 -0.0625

0.0625 0 0 0 0.0625 0 0 0

0 0.0625 0 0 0 0.0625 0 0

0 0 0.0625 0
•

0 0 0.0625 0

0 0 0 0.0625 0 0 0 0.0625

Bilinear Systems:

Bilinear systems is a specialization of non linear systems, under the assumption 

of linearity in control or in state but not jointly. A bilinear time invariant system is 

described by :

x{t) = Ax(t) + Nx(t)u(t) + Bu(t) 

x(t = 0) = ic(0)

where x(t) € Rn, u(t) e Rm and A, B and C are constant matrices of appropriate 

dimensions.
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3.5 State Space Analysis using Wavelet

Consider the linear time-invariant system

x(t) — Ax(t) + Bu(t) (3.5.1)

y(t) = Cx(t) (3.5.2)

x(0) = x0 (3.5.3)

where x(t) E Rn,u(t) E Rm,y(t) E Rl and A,B and C are constant matrices of 

appropriate dimensions.

The closed form solution of (3.5.1) is given by

x(t) = exp(At).x(0) + f exp[A(t — a)]Bu(a)da (3.5.4)
Jo

Using the new orthogonal series approach for state-space analysis method, P. N. 

Paraskevopoulos [58] in 1989 has derived the solution of equation (3.5.1) as

eT UP

eT.P UP2

X — x(0) Ax(0) . . ^"^(O)

eT.Pk-1

+ B AB .. Ak~lB

UPk
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where eT — [1,0,0—, 0] 

For k=3,

X = x(0)eT + Ax(0)eTP + ,42a:(0)eTP2 + BUP + ABUP2 + A2BUP3 (3.5.5)

To apply the proposed method, he has solved the single input system by using 

Laguarre orthogonal polynomial where the approximate (k,m)-solution is identical 

to the exact solution if k=3 and m=5.

In this paper, using the Walsh wavelet packets we are solving the single input 

system given by

x = Ax + bu, x(0) = 0

where,

0 1 0 1 0

0 0 1 ; 6 = 0 x = 1

_ 0 0 0 1 0

and u(t) — 1 + t.

Then the exact solution is given by

®i (*) 21 + |f2 + |f3 + ^t4

%2 {t) = 1 + |f2 + \tz

Mt) t+\t2

x(t) = (3.5.6)
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The Exact solution using Haar bases for m=4 and m=8 is given by

1.2167 —0.6693 -0.2024 -0.2749

x = 1.2083 -0.1615 -0.0253 -0.0916

0.6666 -0.375 -0.1105 -0.1547

1.2167 -0.6693 -0.2024 -0.2749 -0.0666 -0.077 -0.090 -0.0105

1.2083 -0.1615 -0.0253 -0.0916 0.004 -0.050 -0.0210 -0.0393

0.6666 -0.375 -0.1105 -0.1547 -0.035 -0.043 -0.051 -0.059

Similarly Exact solution using Walsh bases with m=4 and m=8 is given by

1.2166 -0.6693 -0.3376 0.0513

X = 1.2084 -0.1615 -0.0827 0.0469

0.6666 -0.375 -0.1875 0.0313

1.2166 -0.6693 -0.3376 0.0513 -0.1696 0.0257 0.0131 -0.0029

1.2084 -0.1615 -0.0827 0.0469 -0.0416 0.0234 0.0118 -0.0020

0.6666 -0.375 -0.1875 0.0313 -0.0938 0.0156 0.0078 0
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3.5.1 Solution using Haar bases

Now we shall find the solution of (3.5.1) using the method as given by Paraskevopoulos 

first using Haar bases and then using Walsh bases with m = 4, k = 3 and r = 1.

The corresponding operational matrix is given by

0.6250 -0.2500 -0.1250 -0.1250

0.2500 0.1250 -0.1250 0.1250.

0.0625 0.0625 0.1250 0

0.0625 -0.0625 0 0.1250

Now,

®(0)e3

0 0 0 0

10 0 0

0 0 0 0

Ax(Q)eTP =

0.6250 -0.2500 -0.1250 -0.1250 

0 0 0 0 

0 0 0 0
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Azx(0)eTP2

0 0 0 0

0 0 0 0

0 0 0 0

Now we will express u(t) = 1 +1 in terms of Walsh wavelet packets using Haar bases 

c° = jf (1 + t)-Ho(x)dx = \ ci = J (1 4- t).Hi(x)dx =

C2 = (l + t).H2(x)dx = c3 = j (l+t).H3(x)dx = —^L

Hence

U
3 _1 —a/2 -y/2
2’ 4 ’ 16 * 16

BUP

0.8642 -0.4063 -0.1673 -0.2298

0.8640 -0.4063 -0.1673 -0.2298

ABUP2

0 0 0 0 

0.4163 -0.2629 -0.0781 -0.1875 

0 0 0 0
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A2BUP3

0.1762 -0.1294 -0.0286 -0.1080 

0 0 0 0 

0 0 0 0

Hence using (3.5.5)

1.6651 -0.7857 -0.3209 -0.4628

x = 1.4136 -0.2629 -0.0781 -0.1875

0.8640 -0.4063 -0.1673 -0.2298

On the same line solution using haar bases with m=8 and r = 1 is given by

1.4322 -0.7220 -0.3013 -0.4228 -0.1364 -0.164 -0.188 -0.234

1.3044 -0.2116 -0.0570 -0.1585 -0.0138 -0.043 -0.059 -0.099

0.7682 -0.3906 -0.1618 -0.2243 -0.0723 -0.088 -0.103 -0.119

Similarly the solution of the input system can be obtained for different values of r 

and different values of m.

3.5.2 Solution using Walsh bases
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The corresponding operational matrix is given by

0.6250 -0.2500
*

0.2500 0.1250

0.1250 0

0 0.1250

-0.1250 0

0 -0.1250

0.1250 0

0 0.1250

Now,

o;(0)er

0 0 0 0 

10 0 0 

0 0 0 0

Ax(0)eTP =

0.6250 -0.2500 -0.1250 0 

0 0 0 0 

0 0 0 0

A2x(Q)eTP2

0 0 0 0 

0 0 0 0

0 0 0 0
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Now we will express u(t) = 1 + t in terms of Walsh wavelet packets using Walsh bases

cq = f (l + t).Wo(x)dx — ci = [ (l + t).W1(x)dx
Jo * Jo

c2 = f\l + t).W2(x)d 
Jo

“1 f1
■X = —, c3 = j (1 + t).W3(x)dx — 0

Hence

U
3-1-4 
2’ 4 ’ 8 ’

BUP

0.8594 -0.4063 -0.2031 -0.0313

0.8594 -0.4063 -0.2031 -0.0313

ABUP2 0.4102 -0.2617 -0.1328 0.0547

A2BUP3

0.1743 -0.1284 -0.0679 0.0396

0 0 0 0
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Hence, using (3.5.5)

1.6587 -0.7847 -0.3960 -0.0708

x = 1.4102 -0.2617 -0.1328 0,0547

0.8594 -0.4063 -0.2031 0.0313

On the same line solution using Haar bases with m=8 and r = 1 is given by

1.4239 -0.7209 -0.3637 0.0605 -0.1823 0.0303 0.0153 -0.0033

1.3003 -0.2100 -0.1069 0.0508 -0.0537 0.0254 0.0127 -0.0020

0.7617 -0.3906 -0.1953 0.0313 -0.0977 0.0156 0.0078 - 0

Similarly the solution of the input system can be obtained for different values of r 

and different values of m.

Solution for Haar bases with m=4 and different values of r for

xi (t) —21 + (l/2)t2 + (l/6)t3 + (l/24)£4

t i
4 1

2
3
4 1

Exact solution 0.2612 0.8336 1.4972 2.2748

xFO
II 0.0999 0.9017 1.2758 2.3518

r=0,5 0.1531 0.9683 1.3551 2.4639

r=0.8 0.3149 1.1803 1.6103 2.8321

r=1.0 0.4256 1.3332 1.7963 3.1053
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Solution for Haar bases with m=4 and different values of r for

x2(t) = 1 + (1/2 )t2 + (l/6)i3

t l4 1
2

3
4 1

Exact solution 1.0110 1.0826 1.2403 1.4993
ll o 0.9993 1.0839 1.1644 1.5052

r=0.5 1.0025 1.1091 1.2004 1.5720

00o
IIt-i 1.0209 1.1951 1.3209 1.7867

r=1.0 1.0402 1.2612 1.4113 1.9417

Solution for Haar bases with m=4 and different values of r for

x3(t) = t + (1/2 )t2

t i
4

1
2

3
4 1

Exact solution 0.1347 0.4473 0.8222 1.2598

1---
---

--

•-
* II o 0.0524 0.4880 0.7016 1.3140

r=0.5 0.0805 0.5225 0.7421 1.3609

G
O

oII 0.1649 0.6257 0.8639 1.5015

r=1.0 0.2211 0.6943 0.9453 1.5953
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Solution for Walsh bases with m=4 and different values of r for

®i (£) = 2i + (1/2 )t2 + (l/6)i3 + (l/24)i4

t i4 1
2

3
4 1

Exact solution 0.2610 0.8336 1.4970 2.2748

r=0.4 0.2136 0.7786 1.4290 2.1872

II o Q
J\ 0.2679 0.8439 1.5119 2.2951

00o
II 0.4340 1.0510 1.7802 2.6484

r=1.0 0.5488 1.1992 1.9766 2.9102

Solution for Walsh bases with m=4 and different values of r for

x2(t) = 1 + (l/2)i2 + (l/6)t3

t i
4 12

3
4 1

Exact solution 1.0111 1.0827 1.2403 1.4995

O
II 1.0112 1.0700 1.2116 1.4516

r=0.5 1.0176 1.0918 1.2520 1.5138

00o
II%
-i 1.0451 1.1675 1.4885 1.7141

r=1.0 1.0704 1.2266 1.4844 1.8594
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Solution for Walsh bases with m=4 and different values of r

xs(t) = t + (1/2 )t2

t X
4 12

3
4 1

Exact solution 0.1355 0.4479 0.8229 1.2605

-st*
o
II 0.1125 0.4187 0.7875 1.2189

r=0.5 0.1407 0.4531 0.8281 1.2657

ooo
II 0.2251 0.5563 0.9499 1.4063

r=1.0 0.2813 0.6249 1.0313 1.5001

Now we represent the exact solution and the solution by Haar as well as Walsh 

bases graphically.
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Figure 3.1: Solution Using Haar Bases
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Figure 3.2: Solution Using Walsh Bases
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
State Haar bases for m=16 and x3(t)=t+(1/2)t2

Figure 3.3: Solution Using Haar Bases
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
State Walsh bases for m=16 and x2(t)=1+(1/2)t2+(1/6)t3

Figure 3.4: Solution Using Walsh Bases
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3.6 Conclusion

1. Solution of the input system using Walsh bases with r = 0.5 coincide with that 

obtained using Walsh functions.

2. For larger values of m and different values of r we gent the solution which is 

very much closer to the exact solution.

3. Solution using Walsh bases is very much smoother than that obtained using 

Haar bases.

4. As observed by P. N. Paraskevopoulos the solution with Laguaxre Polynomials 

agrees with the exact solution with m=5 but in wavelet packets we require 
higher values of m due to the1 fact that the functions used in the bases are not 

polynomials.

3.7 Wavelet Packet series approach to State Space 
Analysis of Bilinear Systems

Consider a bilinear time invariant system described in state space by the following 

equation

x(t) = Ax{t) + Nx(t)u(t) + Bu{t) (3.7.1)

x (t = 0) = a;(0)

where x(t) € Rn,u(t) 6 Rm and A and B are constant matrices of appropriate 

dimensions.The term Nx(t)u(t) is a bilinear form in variable x(t) and u(t).
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The solution of [3.7.1] is given by

x(t) = xL(t) + xB(t) (3.7.2)

where xL(t) is the solution for the state vector x(t) for a linear time invariant system 

given by x(t)Ax(t) + Bu(t) and xB(t) is due to the bilinear term Nx(t)u(t).

The term xL(t) can be approximated via orthogonal series as 

XL{t) = G0fr(t)

where

Mt) = fi(t)-------

is the orthogonal basis vector.

Gr~ TDTtxr 0 sz it

fr-l{t))

Go x(0) Ax(0)--------------Ak xa;(0)

eTPr

+ B AB Ak- 1B

eTPk-1

UPr

UP?

(3.7.3)

UPk

where e is a constant r x 1 vector, whose form depends on the particular orthogonal:

series and Pr is the r xr operational matrix of Walsh type wavelet packet series and'
(

U is m x r coefficient matrix of input u(t).
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The second term xB(t) is defined as

i
xB(t)

i—1
where

Gi Ej-l L

NjGi-i ANjGi-x - A^NiGij^i-1

UjPr

UjP?

UjP?

(3.7.4)

for i = 1,2,3----------- 1.

Hence using (3.7.2) x = Go + J2i=iGi-

This method involves three approximations. The first is for the truncation of 

power series expansion of eAt and e'4(t~r) where the first &-terms are kept. The second 

is for the truncation of the series (3.7.4) where the first l-terms are kept and the third 

is for the truncation of the orthogonal series.

3.8 Example

Consider the bilinear system (3.7.4) with

A =
0.5 -2 

—2 0.5
B = 0 N = I2x2
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u(t) = e 1

The exact solution of the given bilinear system has the form

eAl + eA2 

eAi _ eA2

where Ai = —e"4 — 1.5£ + 1 and A2 = ~e~l + 2M + 1

Taking k = 4, l — 3 and r = 4 we are obtaining the solution using Walsh wavelet 

packet series.

Absolute Error of XI for m=4

t 1/4 1/2 3/4 1

r=0.025 0.5852 1.4587 2.7625 2.0805

r=0.05 0.5758 1.4192 2.5822 1.1190

r=0.1 0.5555 1.3312 2.1654 1.1925

r=0.15 0.5327 1.2005 1.6574 4.1486

C
N

oil 0.5073 1.1116 1.0339 7.9400
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Absolute Error of X2 for m=4

t 1/4 1/2 3/4 1

r=0.G25 0.7240 1.5563 2.7731 2.018

r=0.05 0.7108 1.5140 2.5922 1.0548

r=0.1 0.6829 1.4203 2.1733 1.2628

r=0.15 0.6528 1.2836 1.6618 4.2276

r=0.2 0.6201 1.1888 1.0336 8.0302

Absolute Error of XI for m=8

t 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1

r=0.025 0.2302 0.3802 0.5452 0.6114 0.2356 1.5386 7.2520 23.3801

r=0.05 0.2256 0.3697 0.5216 0.5572 0.1051 1.8666 8.0941 25.5414

r=0.1 0.2159 0.3477 0.4719 0.4414 0.1770 2.5823 13.9757 30.3072

r=0.15 0.2055 0.3242 0.4183 0.3149 0.4901 3.3865 12.0403 35.7308
C

N
O
II 0.1947 0.2992 0.3605 0.1765 0.8379 4.2911 14.4163 41.9019

Absolute Error of X2 for m=8

t 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1

r—0.025 0.2961 0.4415 0.5878 0.6254 0.2161 1.5947 7.3490 23.5264

r=0.05 0.2897 0.4293 0.5627 0.5698 0.0841 1.9246 8.2241 25.6924

r=0.1 0.2763 0.4037 0.5097 0.4513 0.2009 2.6444 14.0827 30.4681

r=0.15 0.2627 0.3768 0.4529 0.3219 0.5172 3.4532 12.1538 35.9024

r-0.2 0.2485 0.3483 0.3919 0.1803 0.8687 4.3628 14.5374 42.0848
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Figure 3.5: Solution Using Wavelet Packets for in=4
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 3.6: Solution Using Wavelet Packets for m=8
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 3.7: Solution Using Wavelet Packets for m=16
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3.9 Conclusion

1. Prom the graphical representation we say that we get better solution by in­

creasing the value of m and decreasing the value of r. Also the length of the 

interval over which exact solution matches with the solution by wavelet packets 

increases with the increase in the value of m.

2. From the table about absolute error we can say that absolute error goes on 

decreasing as we increase the value of m and decrease the value of r.


