
Chapter 4

VARIATIONAL PROBLEMS 
AND WAVELET PACKETS

4.1 Introduction

During 1970’s the theory of Walsh functions was applied to various fields of engineer

ing and science. For example, Communication, Spectroscopy, ECG,etc ( [21], [28], [31], 

[45], [63], [68]). Later on this theory of Walsh functions is applied to mathemati

cal problems eg. Variational problems,or dinary differential equation (ODE), partial 

differential equation (PDE),Integral equations etc (refer [14]).

The basic idea of a direct method for solving variational problems is to convert 

the problem of extremization of a functional into one which involves a finite number 

of variables. Ritz’s method is well known in this area. In 1976, Chen and Hsiao [14] 

gave the Walsh series direct method for solving variational problems. In this chapter 

we first introduce the Walsh wavelet packet bases and then present a direct method
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for solving variational problems via Walsh wavelet packet bases i.e. using Haar bases 

and Walsh bases. Because of the orthonormality property of wavelet packet bases, 

the new direct method is simpler in reasoning as well as in calculation.

Now a days the wavelets are applied to technical problems whose mathematical 

models have form of boundary value problems described by ODE or PDE and integral 

equations. Such type of problems is discussed in the books by Goswami and Chen 

[30], Besnikoff and Wells [65], Fang and Thews [24]. Our aim in this chapter is to 

study Poisson’s problem in one variable using Haar bases and Walsh bases.

4.2 Direct method for solving Variational Prob
lems

The regular method for solving the extremization problem of a functional :

In this chapter, we first assume the variable y(t) as a Walsh wavelet packet bases 

whose coefficients are to be determined.

(4.2.1)

is through the Euler equation

p _ _ p. — n *v dt y

m = e~oQ wi
(4.2>2)

Taking finite terms as an approximation we have,

y(t) = Co Wo + cxWi +...........+ Cm-iWm-! = c'W(x) (4.2.3)

and as we know that,

(4.2.4)
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Then the variable y(t) can be written as

y(t) = y(A)dA + y(0) = c'PW(t) + y(0) (4.2.5)
Jo

The other functions of (4.2.1) can be expanded in terms of Walsh wavelet packet 

bases and we finally have,

J Cl).......Cm—l) (4.2.6)

The original extremization of a functional problem (4.2.1) becomes the extremization 

of a function of a finite set of derivatives of J with respect to C\ and setting them 

equal to zero, we get

dJ
dq. 0 i = 0,1,2,3 — 1

Solving for c* and substituting in to (4.2.5) we have the result.

4.3 Example

We shall apply above method to solve the following example.

§ = -Is, y(0) = y(l) = 0 (4.3.1)

Equation (4.3.1) is called a Poisson’s problem in one variable but in fact requiring 

only two integration to discover the solution 

x(l — a;3)
y(%)

12
(4.3.2)

which can be converted to variational problem:

J(y) = f
Jo

? - x2y dx (4.3.3)
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The boundary conditions are

1/(0) =0 1/(1) = o

The exact solution (4.3.2) is given by:

We shall first obtain the solution of the above problem using Haar bases and then 

using Walsh bases.

4.3.1 Solution using Haar bases

First of all we shall express y(x) in terms of Walsh wavelet packet bases using Haar 

bases with four terms as

y(x) = Z^CiHiix) = c0Hq(x) + ciHi(x) + c2.ff2(a;) + c3H3(x) = c'H(x) (4.3.5)

Integrating y(x) and using the operational matrix P, we obtain

y(x) = j y(x) = c'PH(x) (4.3.6)

Now the Walsh wavelet packet bases expansion of x2 using Haar bases can be shown 

as follows:

co =

c2 =

1
3’

-y/2

32 32
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Hence, f(x) = x2 can be expressed in terms of Walsh wavelet packet bases using Haar 

bases as

a:2 = l-Ho - 7F1\Hi - ||jf2 - ^Hs = tiH(x)
(4.3.7)

Now substituting (4.3.5),(4.3.6),(4.3.7) in (4.3.3) we have,

/ 1 /dH{x).H'{x).c - dP.H{x).H’(x)h dx

Using the orthonormality of Walsh wavelet packet bases, we get

J = ~dc — dPh = i [cq + cl + cf + c§] — dPh

Now,

c'P/i = Co Cl c2 c3

0.6250 -0.2500 -0.1250 -0.1250 i
3

0.2500 0.1250 -0.1250 0.1250 -1
4

0.0625 0.0625 0.1250 0 -y/2
32

_ 0.0625 -0.0625 0 0.1250 -3.J2
L 32 J

Hence

J = Jco + Jci + ic2 + 7^1 “ 0.29293co - 0.041034c! + 0.0003c2 - 0.0199c3
Ct Ci Cl Cl

Now using the Boundary conditions and the orthonormality of Walsh wavelet

packet bases,
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y(l) = t dX + y(0)y (A) = d t H (A) dX = d 
Jo ' Jo

1

0

0

0

Hence, y{ 1) = 0 =$• Cq = 0. 

Also,

dJ_
dci

d£
dc2

dj_
dc3

= 0 =* Cl = 0.0410

= 0 => c2 — —0.0003

= 0 =* c3 = 0.0199

and

y(x) = dPH{x)

= 0.0115^o + 0.00391A - 0.0052Ha + 0.0076iJ3 

Hence using (4.3.8), we have

0.0228

-0.0031

(4.3.8)

(4.3.9)



Chapter 4 82

4.3.2 Solution using Walsh bases

First of all we shall express y(x) in terms of Walsh wavelet packet bases using Walsh 

bases with four terms as

y(x) = E£0CiWiix) * cqWq{x) + cxWi{x) P c2W2{x) + c3W3(x) * dW(x) (4.3.10)

Integrating y(x) and using the operational matrix P, we obtain

y(x) — J y(x) = c'PW(x) (4.3.11)

Now the Walsh wavelet packet bases expansion of x2 using Walsh bases can be shown 

as follows:

co

C2

f x2.Wo(x)dx — ^ ci — ( x2.Wi(x)dx — 
Jo 3 Jq

x2.W2(x)dx = c3 = J
1 2............ 1
x2.Wz(x)dx

Hence, f(x) — x2 can be expressed in terms of Walsh wavelet packet bases using Haar 

bases as

x
1 1 1 1

Wo - 7WX - -W2 + — W3 = h'W(x)
3 u 4 x 8 ‘ 16'

Now substituting (4.3.10),(4.3.11),(4.3.12) in (4.3.3) we have, 

‘1
J IJo

-dW(x).W'(x).c - c>P.W(x).W,(x)h dx

Using the orthonormality of Walsh wavelet packet bases, we get

(4.3.12)

J = \dc — c'Ph — i [eg + cf + (% -f c3] — dPh .
Z Z
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Hence

J=-c1 + -4 + \c\ + 14 - 0.2856co - 0.0443d - 0.0260e2 + 0.0234c3 
2 2 2 2

Now using the Boundary conditions and using the orthonormality of Walsh wavelet 

packet bases,

1/(1) = f1 y(x) (A) dX +1/(0) = c> [lW (A) dX = c1 

Jo Jo

1

0

0

0

Hence, y( 1) = 0 =» cq = 0. 

Also,

dJ
dci
d£
dc2
dJ_
dca

0

0

0

d = 0.0443 

c2 = 0.0260 

c3 = -0.0234

H
-i to C
R o

H
-4 to 01 o

o10C
N

o10CMt-H
O

K
5 cn o O

o10C
M

© C
O O
x o

oLOCMC
O

o

p to cn O O

i—
4 to cn O

o

o I? Ooo

3 Q
C

\. h3 5-



Chapter 4 84

and

y(x) = dPW(x)

= 0.0143W0 + 0.0026Wi + 0.0032W2 - 0.0085W3 (4.3.13)

Hence using (4.3.13), we have

V I = 0.0116, y - =0.0222

y\ = 0.0234, V 1 1=0 (4.3.14)

4.4 Comparative Study of Error Estimates

The following tables gives the absolute error corresponding to m = 4, m = 8 and 

m — 16 at different points for different values of r. It is clear from the table that at 

most of the points amount of error is less for m — 16. This indicates that for higher 

values of m the amount of error will still decrease.
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Absolute Error for m=4

r t Haar Bases Walsh Bases Walsh Functions

0.75 0.0123 0.0081

0.9 0.25 0.0121 0.0082 0.00981

1.0 0.0125 0.0089

0.75 0.00865 0.00985

0.9 0.5 0.01165 0.01235 0.00696

1.0 0.01365 0.01425

0.75 0.00933 0.00593

0.9 0.75 0.01458 0.01003 0.00118

1.0 0.01783 0.01273

0.75 0.0016 0.0076

0.9 1.0 0.0016 0.0027 0.01851

1.0 0.0031 0
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Absolute Error for m=8

r t Haar Bases Walsh Bases Walsh Functions

0.75 0.0113963 0.0033963

0.9 0.125 0.0103963 0.0025963 0.0088037

1.0 0.0098963 0.0024963

0.75 0.0079 0.0045

0.9 0.25 0.0081 0.0045 0.0013

1.0 0.0064 0.0048

0.75 0.0116 0.0052

0.9 0.375 0.0126 0.0058 0.0182

1.0 0.0287 0.0065

0.75 0.00645 0.00505

0.9 0.5 0.00825 0.00645 0.00665

1.0 0.0159 0.00755

0.75 0.01276 0.00436

0.9 0.625 0.01526 0.00636 0.02736

1.0 0.00885 0.00766

0.75 0.00713 0.00253

0.9 0.75 0.00883 0.00493 0.01413

1.0 0.01656 0.00663

0.75 0.00286 0.00074

0.9 0.875 0.00616 0.00226 0.02234

1.0 0.00966 0.00396

0.75 0.0084 0.0054

0.9 1.0 0.0101 0.0020 0.0384

1.0 0.0074 0.0001
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Absolute Error for m= 6

r t Haa-r Bases Walsh Bases Walsh Functions

0.75 0.0135 0.0015

0.9 0.0625 0.0125 0.0009 0.0027

1.0 0.0119 0.001

0.75 0.0068 0.0013

0.9 0.1250 0.0064 0.0011 0.0031

1.0 0.0064 0.0018

0.75 0.007 0.002

0.9 0.1875 0.0068 0.0016 0.0032

1.0 0.0066 0.0025

0.75 0.0001 0.0032

0.9 0.2500 0.0005 0.0032 0.0034

1.0 0.0009 0.0035

0.75 0.0099 0.0031

0.9 0.3125 0.0099 0.0035 0.0027

1.0 0.0099 0.0042

0.75 0.0033 0.0017

0.9 0.3750 0.0036 0.0021 0.0007

1.0 0.0041 0.001

0.75 0.0024 0.0015

0.9 0.4375 0.0032 0.0021 0.0001

1.0 0.0038 0.0016

0.75 0.0041 0,0012

0.9 0.5000 0.0034 0.0018 0.0002

1.0 0.0027 0.0023
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r t Haar Bases Walsh Bases Walsh Functions

0.75 0.0044 0.001

0.9 0.5625 0.006 0.002 0.0006

1.0 0.0066 0.0025

0.75 0.0064 0.0009

0.9 0.6250 0.0081 0.0019 0.0009

1.0 0.0087 0.003

0.75 0.0074 0.0006

0.9 0.6875 0.0087 0.0018 0.0018

1.0 0.0097 0.0027

0.75 0.0099 0.0002

0.9 0.7500 0.0111 0.0014 0.0024

1.0 0.0121 0.0025

0.75 0.0018 0.0005

0.9 0.8125 0.0037 0.0011 0.0029

1.0 0.0058 0.0022

0.75 0.0104 0.0012

0.9 0.8750 0.0037 0.0011 0.0042

1.0 0.0124 0.0017

0.75 0.0085 0.0019

0.9 0.9375 0.0096 0.0001 0.0055

1.0 0.0105 0.001

0.75 0.0179 0.0035

0.9 1.0 0.0184 0.0013 0.0069

1.0 0.0187 0
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Figure 4.1: Solution Using Wavelet Packets for m=4
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For m=8 and r=0.75

Figure 4.2: Solution Using Wavelet Packets for m=8
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For m=16 and r=0.75

Figure 4.3: Solution Using Wavelet Packets for m=16
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4.5 Conclusion

On the basis of the solution obtained for the problem, we can draw the following 

conclusion :

1. The Walsh wavelet packet gives better solution than that obtained using Walsh 

functions.

2. For larger values of m as well as r we can have solution which is more closer 

with the exact solution.


