CHAPTER VI

METHOD OF FITTING THE SOME DOUBLE EXPONENTIAL REGRESSION

Tootill [38,39,40,] has described the computational procedure for the model

 $\mathbf{Z} = \mathbf{A} + \boldsymbol{\beta} \boldsymbol{\beta} (\boldsymbol{\gamma}, \mathbf{y})$

where \emptyset (γ , y) is any non-linear function of y involving a single unknown parameter γ .

Many situations in biology, epidemiology, economics and the physical sciences yield data which can best be described by linear combinations. This is particularly true in biological radiation, growth and tracer studies.

In this chapter we will discuss the more general and complext model containing two unknown parameters of the type :

 $Z = \alpha + \beta \emptyset (\gamma_1, \gamma_2, y) \text{ and}$ $Z = \alpha + \beta x + \beta \emptyset (\gamma_1, \gamma_2, y).$

In particular, we propose the following two new curves;

(i) $y = A + B_1 d_1^x + B_2 d_2^x$ and (ii) $y = A + Hx + B_1 d_1^x + B_2 d_2^x$. Note that if $d_2 = 0$ or $B_2 = 0$, we get the Makeham's modified Gomportz's curve, i.e. containing single non-linearity.

This curves adequately fit the data on force of mortality M_{∞} or colog (probability of survivors p_x). While fitting the curves, Indira Bhanot [-14] has used the weighting coefficients proportional to $l_x/M_x(1-M_x)$ { or $p_x l_x/(1-p_x)$ }, where l_x is the no. of persons exposed to risk. Perhaps we can approximately use the weights as proportional to l_x . We have fitted one of the curves to the Makeham's data [-35] from ages 3 to 27 and observed that it fitted well and no other known curve fitted so nicely to the same data, khatsi and shah [-16].

Recently S.Lipton and C.McGilchrist [21] has described the technique for obtaining maximum likelihood estimates for the parameters using a combination of Steven's and Richard's [30] methods applied to the double exponential case. Richard G. Cornell [3,4] has shown how the method of partial totals may be used to fit linear combinations of any number of exponentials to data taken at equally spaced intervals. This method has been applied to special cases of the general model before, for instance, by Stevens [37] and Croxton and Cowden [5]. This method

- IIO -

is often useful in computing preliminary estimates for iterative maximum likelihood solution i.e. if computing facilities are not available for obtaining maximum likelihood estimates, the method provides a systematic, consistent and relatively simple estimation procedure.

(i11) $y_{i+2}^{-}(d_1^{+}d_2^{-}) y_{i+1}^{+}d_1^{-}d_2^{-}y_i = A(1-d_1^{-})(1-d_2^{-})$ and (iv) $y_{i+2}^{-}(d_1^{+}d_2^{-}) y_{i+1}^{+}d_1^{-}d_2^{-}y_i = A(1-d_1^{-})(1-d_2^{-}) + H(2-d_1^{-}-d_2^{-}) + Hi(1-d_1^{-})(1-d_2^{-}).$

When the observations are equally spaced, the different consequences of internal regressions due to (111) and (1v) are also considered.

2. Modified method of Internal least squares:

2.1 To fit $y = A + B_1 d_1^X + B_2 d_2^X$.

---------- . .

The difference equation (iii) can be rewritten as

ì

.

·-- '

$$(e_{i+2}-e_{i+1}) - (e_{i+1}-e_{i}) = r_{2}e_{i+2} - r_{1}e_{i+1} + 2a \dots (1)$$

where
$$d_{1}+d_{2} = (2-r_{1})/(1-r_{2}),$$

$$d_{1}d_{2} = 1/(1-r_{2}),$$

$$e_{i} = y_{i}-Z, \quad Z \text{ being any value, and}$$

$$A = Z - 2a/(r_{2}-r_{1}) \cdot$$

Case 1:- Let x takes values 0,1,2,...,n.

Then summing (1) over the values of i from 0 to 1-2, we have,

$$\frac{i-2}{\sum_{i=0}} (e_{i+2} - e_{i+1}) - \frac{i-2}{\sum_{i=0}} (e_{i+1} - e_i) = r_2 \sum_{i=0}^{i-2} e_{i+2} - r_1 \sum_{i=0}^{i-2} e_{i+1}$$

•

$$i \cdot e_{i} \cdot e_{i-1} = r_{2}(e_{2} + e_{3} + \cdots + e_{i}) - r_{1}(e_{1} + e_{2} + \cdots + e_{i-1}) + 2(i-1)a + e_{1} - e_{0}$$

$$= r_{2}(e_{0} + e_{1} + \cdots + e_{i}) - r_{1}(e_{0} + e_{1} + \cdots + e_{i}) + r_{1}e_{0} + r_{1}e_{i}$$

$$- r_{2}(e_{0} + e_{1}) + r(i-1)a + e_{1} - e_{0} \cdot$$

$$i \cdot e_{i} \cdot e_{i-1} = rS_{1 \cdot i} + r_{1}e_{i} + 2a(i-1) + b^{t} \cdots$$
(2)

 $\mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1$ where

$$b^{t} = (1-r_{2}) e_{1} - (1+r) e_{0}$$

 $S_{1,i} = \sum_{0}^{L} e_{k}^{i} \cdot$

and

Again summing equation (6.2) over the values of i from 1 to i, we have

$$\frac{1}{2} (e_{i} - e_{i-1}) = r \sum_{j=1}^{n} S_{1,i} + r_{1} \sum_{i=1}^{n} e_{i} + 2a \sum_{i=1}^{n} (i-1) + ib^{i}$$

$$i \cdot e_{i} - e_{0} = r \sum_{j=1}^{n} S_{1,i} + r_{1}S_{1,i} - r_{1}e_{0} + 2a(0+1+2+\cdots+i-1) + ib^{i}$$

$$i \cdot e_{i} = r \sum_{j=1}^{n} S_{1,i} + r_{1}S_{1,i} = e_{0}(r_{1}-1) + ai(i-1) + ib^{i}$$

$$or \quad e_{i} = rS_{2,i} + r_{1}S_{1,i} + ai^{2} + bi + C \cdots$$

$$(6.3)$$
where $S_{0,i} = \sum_{j=1}^{n} S_{1,j}$

~~"l.k 2.1

$$C = e_0(1-f_2) \quad \text{and} \\ b = b^t - a$$

The equation (6.3) is known as the intermal regression of (i). This equation can be solved for r, r, a, b, and C by ordinary least squares method for fixed values of S_{1.i} and S_{2.i}. This called a regression equation of e_i on $S_{1,i}$, $S_{2,i}$, i and

i². Let the least square estimates be denoted as \hat{r} , \hat{r}_1 , \hat{a} , \hat{b} and \hat{C} , then the relationship between the constants are

$$(\hat{d}_{1}, \hat{d}_{2}) = (1 - \frac{r_{1}}{2} \pm \sqrt{\hat{r} + \hat{r}_{1}^{2}} / 4) / (1 - \hat{r}_{1} - \hat{r}),$$

$$\hat{A} = Z - 2\hat{a}/\hat{r},$$

$$y_{0} = \hat{A} + B_{1} + B_{2} = Z + C/(1 - \hat{r}_{1} - \hat{r}) \text{ and}$$

$$y_{1} = \hat{A} + B_{1}\hat{d}_{1} + B_{2}\hat{d}_{2}$$

$$= Z + \hat{b} + \hat{a} + (\hat{r} + 1) \hat{C}/(1 - \hat{r}_{1} - \hat{r}) / (1 - \hat{r}_{1} - \hat{r})$$

The first two equations in (6.4) gives the values of \hat{d}_1, \hat{d}_2 and \hat{A} . Knowing the values of \hat{d}_1, \hat{d}_2 and \hat{A} , we can calculate the values of \hat{B}_1 and \hat{B}_2 by solving the last two equations. Thus all the constants of the curve (i) can be obtained. Case 2:- Let x : -m, -(m-1), ... -1,0,1,... m. Then we have the definitions of $S_{1.1}$ and $S_{2.1}$ as

$$S_{1\cdot i} = \sum_{0}^{i} e_{k} \text{ for } i \ge 0,$$

$$S_{1\cdot -1} = 0$$

$$S_{1\cdot i} = -\sum_{-1}^{i+1} e_{k} \text{ for } i \le -2, \text{ and}$$

$$S_{2\cdot i} = \sum_{0}^{i} S_{1\cdot k} \text{ for } i \ge 0,$$

- II4 -

$$S_{2,-1} = S_{2,-2} = 0,$$
 ... (6.5)
 $S_{2,-1} = -\sum_{i=1}^{L+1} S_{1,-1}$ for $1 \le -3$.

The internal regression and the relationship between the constants are the same as equations (6.8) and (6.4) respectively. Moreover we have

$$y_1 = A + B_1 d_1^{-1} + B_2 d_2^{-1} = Z + a = b + C.$$

Case 3:- Let x: -m + $\frac{1}{2}$, -(m-1)+ $\frac{1}{2}$, ..., $-\frac{1}{2}$, $\frac{1}{2}$, ..., $-\frac{1}{2}$.
Then we have the following definitions of S_{1-x} and S_{2-x} as

$$S_{1..x} = \sum_{i/2}^{\infty} e_{k} \text{ for } x > \frac{1}{2}$$

$$S_{1..x} = -\sum_{i/2}^{\infty} e_{k} \text{ for } x \leq -3/2 \text{ and } \dots \quad (6.6)$$

$$S_{1..x} = -\sum_{i/2}^{\infty} e_{k} \text{ for } x \leq -3/2 \text{ and } \dots \quad (6.6)$$

$$S_{2..x} = \sum_{i/2}^{\infty} S_{1..k} \text{ for } x > \frac{1}{2}$$

$$S_{2..x} = S_{2..3/2} = 0,$$

$$S_{2..x} = -\sum_{i/2}^{\infty} S_{1..k} \text{ for } x \leq -5/2.$$
(Here the summation is from $\frac{1}{2}, \frac{1}{2} + 1, 2 + \frac{1}{2}, \dots + x$ or

-t, -1 -t, ..., x + 1).

•

The internal regression is the same as equation $(6_{\circ}3)$ and the relationship between the constants are given as (d_1, d_2) and A same as equation $(6_{\circ}4)$, but

- II6:-

$$y_{1} = A + B_{1}d_{1}^{\frac{1}{2}} + B_{2}d_{2}^{\frac{1}{2}} = Z + (C+b/2 + a/4) / (1-r-r_{1}) \text{ and}$$
$$y_{-\frac{1}{2}} = A + B_{1}d_{1}^{-\frac{1}{2}} + B_{2}d_{2}^{-\frac{1}{2}} = Z + C - b/2 + a/4.$$

2.2 Consequences of regression equation (6.3). (c.1): When d₂=0 in equation (i), the difference equation (111) reduces to

$$y_{i+2} - d_1 y_{i+1} = A (1-d_2).$$

Hence the internal regression of the type (6.3) reduces to

$$e_{i} = r_{1}S_{i+1} + bi + C$$
 ... (6.7)

 r_1 , b and C can calculated by well known normal equations obtained by considering $S_{1,i}$ as fixed values. The constants A, B₁ and d₁ can be obtained by the following relationship

$$\hat{\mathbf{d}}_{1} = \mathbf{1}/(\mathbf{1}-\hat{\mathbf{r}}_{1})$$

$$\hat{\mathbf{A}} = \mathbf{Z} - \hat{\mathbf{b}}/\hat{\mathbf{r}}_{1} \quad \text{and} \quad \dots \qquad (6.8)$$

$$\hat{\mathbf{B}}_{1} = \hat{\mathbf{C}} \hat{\mathbf{d}}_{1} + \hat{\mathbf{b}}/\hat{\mathbf{r}}_{1}$$

1

where \hat{r}_1 , \hat{b} and \hat{c} are the least squares solution of equation

(6.7), when x : 0,1,2,..., n or x : -m,-(m-1),...0,1...m. When x : -m+ $\frac{1}{2}$, ..., $-\frac{1}{2}$, $\frac{1}{2}$,..., m- $\frac{1}{2}$, the constants are

$$\hat{d}_{1} = 1/(1-\hat{r}_{1})$$

 $A = 2-\hat{b}/\hat{r}_{1}$ and ... (6.8')
 $e_{-\frac{1}{2}} = \hat{C} - \hat{b}/2$.

(c.2): When $d_1 = d_2$ in difference equation (iii), then the solution of (iii) is $y_x = A + (B_1 + B_2 x) d^x$ and the internal regression will be the same as (6.3), but if in practice we have $r = -r_1^2/4$, then the above mentioned can be fitted and the relationship between the constants are same as in section (2.1).

(c.3): When in practice, we find $r < -r_1^2/4$, then d_1 and d_2 are complex conjugate numbers and we find from the relation of the constants that B_1 and B_2 are also complex conjugate numbers. In this case, the regression equation is the same as (6.3), but the curve is written as

 $y_x = A + G^x$ (p cos $\mu x + q \sin \mu x$) and the relations between the constants are

 $\delta^2 = w^2 + v^2 = 1/(1-r-r_{\parallel})$,

ş

$$\tan \mu = \mathbf{v}/\mathbf{w} \quad \text{or } \delta \cos \mu = \mathbf{w}, \quad \delta \sin \mu = \mathbf{v},$$

$$(d_{1}, d_{2}) = \mathbf{w} \pm \mathbf{j}\mathbf{v}$$

$$= (1 - r_{1}/2 \pm \mathbf{j}\sqrt{-r - r_{1}^{2}/4})/(1 - r - r_{1}), \mathbf{j} = \sqrt{-1},$$

$$\mathbf{A} = \mathbf{Z} - 2\mathbf{a}/\mathbf{r}.$$

When x's are measured like 0,1,2,...,n or -m,...0,...m, then $p=C \delta^2+2a/r$ and $q= \delta^2 \{(r_1/2+r) C \delta^2 +b+(r-r_1) a/r \}/v$. When x's are measured like $-m + \frac{1}{2}, ..., -\frac{1}{2}, \frac{1}{2}, ..., \frac{1}{2}, \frac{1}{2}, ..., -\frac{1}{2}, \frac{1}{2}, ..., -\frac{1}{2}, \frac{1}{2}, ..., -\frac{1}{2}, \frac{1}{2}, ..., \frac{1}{2}, \frac{1}{$

$$p = \frac{\left\{(a+4C) \ r\left(-8a\right)\left(\delta+1\right) + 2rb\delta\left(\delta-1\right)\right\}}{8r \ \delta^{\frac{1}{2}} \cos \frac{\mu}{2}}$$
 and

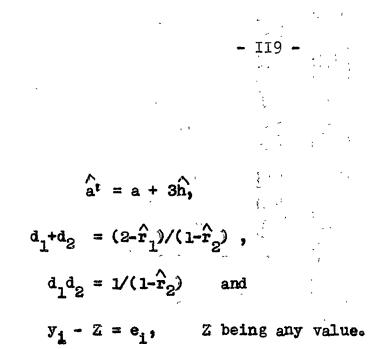
$$q = \frac{\{(a+4C) \ r\delta - 8a^{\frac{1}{4}}(\delta - 1) + 2rb f(\ell + 1)\}}{8r \ \delta^{\frac{1}{2}} \ \sin \frac{1}{2}}$$

2.3: To fit
$$y = A + Hx + B_1 d_1^x + B_2 d_2^x$$
.

The difference equation (iv) can be rewritten as $(e_{i+2} e_{i+1}) - (e_{i+1} e_i) = r_2 e_{i+2} r_1 e_{i+1} + 6hi + 2a^i \dots (6.9)$ where

$$H = -6\hat{h} / (\hat{r}_{2} - \hat{r}_{1})$$

$$A = Z - (2\hat{a} + \hat{H}\hat{r}_{2}) / (\hat{r}_{2} - \hat{r}_{1})$$



ŧ

Then summing (6.9) over the values of i from 0 to 1-2, we have

$$e_{i-e_{i-1}} = rS_{1,i} + re_{i} + 3h(i-2) (i-1) + (i-1) 2a^{i} + b^{i}$$
,

where r and b' are defined in (2.1).

Again summing the above equation over the values of i from 1 to i, we have, the regression equation of e_1 on $S_{2.1}$, $S_{1.1}$, i^3 , i^2 , and i as

 $e_1 = rS_{2.1} + r_1S_{1.1} + hi^3 + ai^2 + bi + C$... (6.10) where r, $S_{1.1}$, $S_{2.1}$ are the same as defined in (2.1) and the relationship between the constants are (when x:0,1,2,...n)

$$H = -6\hat{h}/\hat{r},$$

$$H + A = Z - (2\hat{a} + H\hat{r}_{1})/\hat{r}, \dots (6.11)$$

$$C = e_{0}(1 - \hat{r}_{2}) \text{ and}$$

$$\hat{b} + \hat{a} + \hat{h} = (1 - \hat{r}_{2})e_{1} - (1 + \hat{r})e_{0}$$

$$-120 -$$
When $x: -m, -(m-1), \dots 0, \dots, m,$
 $H = -6\hat{h} / \hat{r},$
 $H + A = Z - (2\hat{a} + H \hat{r}_1) / \hat{r},$ (6.12)
 $C = e_0(1 - \hat{r}_2)$ and
 $e_{-1} = -\hat{h} + \hat{a} - \hat{b} + \hat{C}.$
When $x: -m + \frac{1}{2}, \dots -\frac{1}{2}, \frac{1}{2}, \dots M - \frac{1}{2},$
 $H = -6\hat{h} / \hat{r}$
 $H + A = Z - (2\hat{a} + H\hat{r}_1) / \hat{r},$
 $e_{\frac{1}{2}} = (\hat{h}/8 + \hat{a}/4 + \hat{b}/2 + \hat{C}) / (1 - \hat{r} - \hat{r}_1) \dots$ (6.13)
and $e_{\frac{1}{2}} = (-\hat{h}/8 + \hat{a}/4 - \hat{b}/2 + \hat{C}).$
Note that the constants \bigwedge $\hat{a}, \hat{b}, \hat{c}, \hat{h}, \hat{r}$ and \hat{r}_1 are the

Note that the constants A a, b, C, h, r and r₁ are the solutions of the normal equations obtained by considering $S_{1.1}$, $S_{2.1}$ as fixed values.

2.4 : Consequences of the regression equation (6.10):-

(C.4):- When $d_2=0$ in equation (ii), the difference equation (iv) reduces to $y_{i+2} - d_1 y_{i+1} = A(1-d_1)+Hi(1-d_1)+H(2-d_1)$. Hence the internal regression and the relationship between the constants are respectively as $e_{i} = r_{1}s_{1.1} + hi^{2} + bi + c \qquad ... \qquad (6.14)$ and $d_{1} = 1/(1-\hat{r}_{1})$, $H = -2\hat{h}/\hat{r}_{1}$, $A=Z+(\hat{h}+H)/\hat{r}_{1}-\hat{b}/\hat{r}_{1}...(6.15)$ $e_{0}(1-r_{1}) = \hat{C}$, when x = 0, 1, 2, ... n or x = -m, ..., 0, ... m; when $x = -m + \frac{1}{2}, ..., -\frac{1}{2}, \frac{1}{2}, ..., m-\frac{1}{2}$,

- 121 -

$$e_{\frac{1}{2}} = \hat{h}/4 - \hat{b}/2 + \hat{c} \text{ or } e_{\frac{1}{2}} (1-\hat{r}_{1}) = \hat{h}/4 + \hat{b}/2 + \hat{c},$$

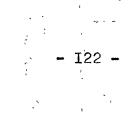
$$d_{1} = \frac{1}{(1-\hat{r}_{1})}, H = -2\hat{h}/\hat{r}_{1}, A = 2 + (\hat{h} + H - \hat{b})/\hat{r}_{1} \cdots (6.15')$$

(C.5). When $d_1 = d_2$ in the difference equation (iv), then the solution of (iv) is $y_x = A + Hx + (B_1 + B_2 x) d^x$ and the internal regression will be the same as (6.10), but if in practice, we have $r = -r_1^2/4$, then the above mentioned curve can be fitted and the relationship between the constants is the same as (2.2).

(C.6). When $r + r^2/4 < 0$, then the same argument applies as (C.3). The curve (ii) is then broken up as

 $y_x = A + Hx + S^x$ (p cos $\mu x + q$ sin μx) and the relation -ship between the constants can easily be derived from (2.3). 3. Numerical examples:-

3.1. Here we shall first fit the logistic curve which was fitted by H.O. Hartley [10] to verify our new type of formula derived in (C.1).



x	y	w=1000/y	e _i =⊯i-	z s _{1.1}	Expected
-5.5	5.308	1884	1277.91667	-1182.58335	1864.44
-4.4	7.240	1381	774,91667	-407.66668	1382,94
-3.5	9.368	1038	431.91667	-24.24999	1026.78
-2.5	12,866	777	170.91667	195 .16666	765.49
-1.5	17.069	586	-20.08333	175 .08333	573.81
-0.5	23.192	431	-175.08333	0.00000	433.19
0.5	31.443	318	-288.08333	-288,08333	330.03
1.5	38.558	259	-347.08333	-635.16666	254.35
2.5	50.156	199	-407.08333	-1042.24999	198.83
3.5	62.948	159	-447.08333	-1489.33332	158.10
4.5	75.995	132	-474.08333	-1963.41665	128,22
5.5	91,972	109	-497.08333	-2460.49998	106.30
			+0.00004	-9074.49998	

Here Z = 606.08333 and $\overline{S}_{1.1} = -756.20833$.

Corrected sum of squares and products (S.S.P.).

	^S 1.1	. 🗶 .	e				
^S 1.1	8471707-84965	-23779.91619	1760647.32966				
x		143	-20451.5				

Then the internal regression is

 $e_i = (-0.363123) S_{1.1} + (-203.40208) i + (-274.596637)$ Hence by the relationship of the constants, the curve is $w = 45.936827 + 331.684567(0.7336095)^X$, while Hartley has obtained the curve as $w = 50.4 + 323.4 (0.7336)^X$.

The difference between the constants A and B will be due to the different ways of obtaining A and B.

1

ncies"																												
contingencies"	Experted	0173174	139201	0.0115536	Q0B3249	0075084	0060752	0049903	0042153	0037098	0034337	0033480	0034159	0036031	0038792	0042177	0045934	0049884	0053858	0057728	0061395	0064786	0067853	0070568	0072691	0074908		
"Life	Ш Х Х	0•0	000		0		0.0	0.0	0.0	0.0	0.0	000	0.0	0 *0	0.0	0	0.0	000	0•0	0.0	0.0	0.0	0.0	0	0.0	0°0		
fron	ŕ	1107840	1033460	0910128	0759544	0599408	0443820	03280	0185188	0093544	31248		,	0029948	0087344	0168588	0269280	0384820	0510608	0642444	0776628	0910160	1040740	1166468	1285844	1397568		
taken	S2.X	-0.11	-0.10	-0.09	-0-01	-0.05	-0-04	- 6		8		0	0	00.0	8.0-		-0.02	-	-0-05	-	-0.07		•	-	-0.12			
a of Makeham	SI-x	0.0001728	0.0074380	0.0123332	0.0150584	0.0160136	0.0155588	0.0140540	0.0118092	0.0091644	.0062	0.0031248		0.0029948	0.0057396	- Q	0.0100692	- •	•	•	-0.0134184	0.0133532	਼	•	-0.0119376	•	21 2012 111 11	-
(1) to the data	Cx = Jx Z	0.0113452	0°0072652	0.0048952	0.0027252	0.0009552	-0°0004548	-0.0015048		-0.0026448	-0.0029348	-0.0031048	-0.0031248	-0.0029948 -0		023848	-0-0019448 -0	014848	-0.0010248 -0	-0.0006048 -0	-0°0002348 -	0000652	0.0002952 -0	0.0004852 -0	0.0006352 -	0.0007652 -0		0.00000.00
curve	z	-12	11-	10	6 	00 1		9 1	ဟ I	4	ကို	2	7	0		0	ო	4	ŋ	ဖ	~	80	თ	q	1	ឌ		C
fitted the	<i></i>	0.01337357	0.01699213	0.02021890	0.02464266	0.03016682	0.03687227	0.04429194	0.05167156	0.05674309	0°06108189	0.06388367	0,06403909	0.06147777	0.05721571	0.05205420	0.04686891	0.04240664	0.03867337	0.03673980	0.03344490	0.03172719	0.03045915	0.02943458	0.02861848	0.62	18	TOOOOOT
We have [35]	Mr. = 3x	0-017870	5	0.01142	0	i .	0.00007	•		0.00388	. 9			. 🔴	0.00378	0.00414	0.00458	0.00504			0.00629		0.00682	10200.0	0.00716	0°00729		21891°0
3•2•	oge			S	ဖ	2	00	0	9	11	12	13	14	15	16	21	18	19	8	21	22	83	24	25	20	1		

ĩ

•

.

٠

.

/

- 123 -

Here Z = 0.0065248.

 $\sum we = -0.00108075$, $\sum ws_{1.1} = -0.00099$, $\sum ws_{2.1} = -0.04181055$, $\sum wx = 0.18862962$, $\sum wx^2 = 36.58095808$.

weighted corrected S.S.P.

	x	x ²	Sl	s ₁ s ₂					
x	36.54537695	41.90536574	-0.05647117	-0.10596896	-0.00258384				
x ²		1662,28565062	-0.03173886	-1.60297659	0.08529805				
s ₁			0.00010670	0.00014647	0,00000110				
⁸ 2				0.00173022	-0.00007890				

Hence the internal regression is (by applying Doolittle technique)

 $e_x = (-0.0393712) S_{2.x} + (-0.22281618) S_{1.x} + 0.0000231 x^2$

4 e 4 5

+(-0.00055565)x +(-0.00368768).

From this, we have $(d_1, d_2) = 0.88054128 \pm j 0.130086295=w+jv$. By the use of the relationship between the constants (C.3), we have the curve (1) as

$$y_x = 0.00769825 + (0.89009852)^x \{ (-0.00409511) \cos \mu x + (-0.00163807) \sin \mu x \}$$
 where $\Lambda = 8^{\circ} 24.2^{\circ}$.