
INTRODUCTION

we review some of the fundamental ideas required by least 

squares. IIo attempt is made to completely cover the topic, since 

many excellent treatments are already available L6j29&j45].

I. The general problem.

We begin by assuming that we have a function

y = f (x. --* ). ... Or)
we are also given a set of n observations (y^ iX,‘

where i= I,2-...,n and nyp. The variable y is called the dependent

variable»while the x's are the independent variables. Problem is to

to determine estimates of the p parameters (k=I> 2, .. „p). Of the

many possible estimates of the > we decide to choose the set of

numbers that will minimize the sum of squares of the deviations of

the observed y. from the function. Thust we wish to minimize 1
TV

1 = .i_w.j_Cy.j_ - f( xii * a, \ > >
<|,)]2 » ... (2)

where w. are the weights associated with each of the y.. Let usi . i
assume that each y. has come from some distribution with mean

E(y^) - * • • * ’ ^ (3)
and variance proportional to a given function of (x^,..,»x )»i.e.»

2- 2- p<T(y.) = <r h (xT.i.mx .)
ax (45

Here we have added a new parameter, £T , which (unless otherwise



ii

specified) must be estimated. Setting

<9 2-w. = 1/ h^(xT.....,x .) = /(T(y.) (5)
1 II Ell 1

and assuming the y^ are each from a normal (gaussian) distribution

with mean and variance given by (3) and (4), we are able to get an
xunbiased estimate of C with

2. ^ - 2 a - .X w.[y. - f(x ,...,x .; a_»a_,...,a )] /(n-p) (6)
ii ii mi i ez. p

Iwhere a, 's are the estimates of Kws . k V-

2When the function h (x,.»...»x ) is constant for all valuesI m
of the x^* we say that we have equally weighted data. We may assume 

these weights are constant and equal to I. From a purely standpoint) 

we can minimize the sum of squares Q, in (2) ’with respect to the ^by 

differentiating Q with respect to 1 setting the derivatives equal 

to zero, and solving the resulting set of p simultaneous equations, 

these equations can be written

~5Q ‘Yt . \
“25t Csri"f — 1 ^ )] = °

for k=I 2...,p and where

Ii' mi
denotes the value of the kth

(7)

partial derivative for the ith data point. Transposing and setting

f (x_. i ... tx , ; «<, ilx mi
»■<>), we obtain the more usual form

Ilf. (*7^5.
II * 1

i ,

* 1 1 (8)



!fic5*tyi = •

These are called the "normal equations" of the problem. The form 

(8) is, in general, a system of p nonlinear equations; and there 

is no guarantee that a solution to the system exists or that* if 

a solution does exist* it is unique.

2.The linear problem.

There is a large class of functions for which solutions 

do exist. An important subset of these functions is that in which 

tha parameters e<^ appear as linear coefficients of the independent 

variables. The estimation of the parameters can be done by the 

well known linear multiple regression. Here^ the general model 

can be written

f(xI,...,xm;^1,..., ) = 0<tSI(xlJ . ..,xffl) + -<2^2 (xj* . .. ,xm)
+ ...+ • • • ’xm) (9)

where are any well behaved functions of the independent 

variables Hald [9a]* .Special cases for example:

fCx-j., . ...x^;*, ) = ‘<1XI+ *2_x2+...+ *As>Xp - (10)

and f(Xj ... ,xm;<Sj.. ) = <0 + ^ x + + ...+*<^x^ (II)

are very important and they are dealt nicely in many standard 

text books in regression analysis.
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Sven when the parameters do not naturally appear linearly, 

it is often possible to make a transformation of either the dependent 

or independent variables so that the parameters (or simple trans­

formation of them) satisfy the form (8). For example* we can trans­

form the function Y=c^ expCc^x) by taking natural logarithms of 

both sides to obtain lnl = Inc^ + c^x. Setting y=ln Y* *<| = In 

and we have a function of the general linea.r form.

3-The non-linear problem.

When a function is such that 'linearization' of the 

parameters is not feasible} it is clear that another approach is 

needed. One such method is due to Gauss and it is known as Gauss 

method. The Gauss method [4la] consists essentially of linearizing 

the desired function with respect to each of the parameters by 

means of a truncated Taylor's series. Using initial estimates of the 

parameters to evaluate the coefficients of the expansion, new estimates 

are obtained. The process is repeated until some convergence criterion 

is satisfied. The method will be shown to amount to repeated application 

ofthe form given by equation (10). ,

Suppose* now* that our function is of the form in equation
(l) and that we wish to minimize ^ in (2). Suppose further that we

have initial estimates of the parameters* and let us denote the

estimate of the kth parameter by q. Thus.# our set of estimates

can be thought of as a point (aT » a_ ) in the p-dim-
IpO d. 1 o p*o
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ensional parameter space. If we expand Equation (I) in a Taylor's 

series about this pointy we obtain,, for each i (±=I>2* .. .jn)

Ay. = J. - f(xT.iX,....a ,a. )
M liO Ii 2i ei I.o 2-o pio

-- av«

"1 i-,o
4- ( ii i ) a a. 3

hi

3f-

'srl ^ lii0 5 A “k'1
(12)

where( ii |- ) means that the partial derivative of (I) with reap-* O
ect to o(w is evaluated at (aT » a ) for the ith dataI,o 2,o' p,o
point, and the A y • „ are the differences beti^een j. and the valuei> o x
of the function for the ith set of independent variables and the 

estimates of the we have now reduced the problem to one to which

linear methods can be applied. The Ay. are the dependent variables,
1$ , “ 15 °

the ( C7 I. ) are the independent variables, and the A a, T are

the parameters to be estimated. The normal equations (8) become

d c n u.yiko)]
\ C (13)

for 3=1 2 >...,p»
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The system (13) is a set of p linear equations in p unknown. If we

get a solution to the system (13)j we have obtained a set ox values

A a. T with which to modify each of the a. . We do this by Kj 1 -tvt O
applying'

kj I ak. A k,I (14)

The "improved" estimates of the a, are then placed Into equations
iv

(13) and (l4)a and the process is repeated until* after q iterations-,

the a are all deemed "sufficiently small". When this occurs* k ■ q
we say that the process has converged and we take ^ to be the 

least squares estimate of ^ .

4.Statement of the problem.

Earlier Stevens W.L. [37] has described a least-squares 

(Gauss method) technique for estimating the parameter P in the 

curve S(y) = U . It is expected that in many problems results

may be improved by adding a linear term to G(y) = <<-+ ( Shah

B.K. and Khatri C.G. [33]) . Thus* in this thesis the problem of 

estimating non-linear parameter in •' E(y) = «<+ is

considered. It is shown in chapter IjShah B.K. and Patel I.R. 
L34]>that only one initial estimate of the parameter p is necessary 

to obtained the least-squares solution using the Gauss method. 

However, this method requires a preliminary estimate of the non­

linear parameter P and exactly how accurate must be the initial
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estimate of the parameter ? Sometimes in general we have obtained

have failed to obtain convergence when the estimates were within 

20 % of what finally proved to be the correct values. At this time* 
it seems impossible to provide an all purpose answer to the general 

problem. Certainly it is obvious that some kind of estimates are 

needed to start the procedure. This decribed in subsequent chapters 

(chapters 2 and 3) in this thesis. Hartley [10,11] has described 
another method to find the estimates of the non-linear curves.

This method is known- as internal least squares. This is a very 

good method for obtaining initial estimates but is very,complicated 

and not'suitable on a desk calculators. Tootill L37»38.* 39] •> Richard 

[30]^ Cornell R.G.L3>^]^ Croxeton F.E.and Cowden D.J.L5* ]j Linhart 
L18] and various other authors have described computational 

procedures for the linear combination of exponential family of curves.

estimator Shah B.K. 131]*based on ratio of two linear functions of 

y's. Efficiencies and biases in the estimators under the constant 

variance model are also given in Tables 2.1 and 2.2 respectively.

x is measure of time* and then, it may be appropriate to incorporate

this curve into increasing variance model that changes with time. 

In this situation theory of Brownian movement as discussed by 

S.Chandrasekar i2] is considered in detailed in this chapter.

5convergence with estimates off by as much as a factor1 of 10 ; we

In chapter 2? we have considered a very simple

represents a biological growth*
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In chapter 3> we have considered the estimate of $ under
two alternative methods, (Shah B.K. and Khatri C.-G. [32]): (i) 

Patterson's l26] method of estimating^ by considering a ratio 

of two quadtratic functions of y's and (ii) modified Hartley's 

method suggested by Khatri C.G. and Shah B.K. [l6]. These are 

known as Quadratic estimators. Various theoritical results are 

established in this chapter in more detail. In Quadratic estima­

tors the efficiencies’are increased..Out of the two method^ 

modified Hartley's method is more efficient with zero bias than 

Patterson's Quadratic estimators. But the formula for estimating 

5*, a ratio of quadratic functions of y's5 is not suitable 

for practical purposes:.!.e , to say that it is not easy to 

calculate the estimator on a desk calculator.One can apply 

modified Hartley's estimator as an initial starting value in the 

Gauss method of iteration on a modern high speed computer* Shah 

B.K. L3Ia] .

quick estimate of $ by solving a quadratic equation* which can be 

obtained by using the values of TJ and V » given in Table 4.1* 

in r. We can see that the efficienciesare increased than those

In chapter b, we have described how to obtain a

and Khatri C.G. [33])*

We have gereralised the method of chapter k in 

chapter 5* Here the estimate of the nonlinear parameter is
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obtained by solving a ciibic equation, which can be obtained by

using the tabulated values of U * and Z^ given in Table 5*I.
fhah B.K. and Khatri C.G. L33a|, in r. This method is found to be

more efficient than all the previous existing method for large

number of equally spaced observations. The efficiency by this

method is very large nearly about 99«0% for all values of

for In this chapter procedure is described-to obtain the

values of U , V and Z for large n. Tables of U j V and Z xxx xxx
can be prepared for large ri>l4 using modern high speed computers. 

It Is to be noted that the efficiences in the neighbourhood of 
3= 0.2. 0.5 and 0.8 are maximum and nearly 4.00.0 percent for 

all values of n.

In the last chapters we have illustrated how a 

linear combination of exponential family of curves and even 

more complicated extensions of the exponential family of curves, 

can be solved using some modification in Harltey's LI0] method. 

Recently Lipton S. and Mcgilchrist l2I 21a] have studied the 

linear combination of exponential family of curves using 

Hartley's .internal least squares method without giving reference 

to the earlier work made by Khatri C.G. and Shah B.K. [l6].


