
CHAPTER II

1« Patterson C 2.s' 3 has described a method for estimating 
^ j by the ratio of two linear functions of y* s, for the 

curve y = Stevens £ bl Uhas described the least

squares estimates for this exponential regression curve by 
providing table for n = 5,6, and 7 equally spaced ordinates. 
S.Lipton C 2-0 3 has extended this tables upto n=12« Pimentel 
Gomes [ 2.<j] has shown that, with equally spaced ordinates, 
efficient estimates of f can be obtained by solving equations 
of the type

Joy0 + Vi+ •••+ = 0

where the J’s are complicated polynomials in r.
In this chapter, we have extended the method as

described by Patterson C2S3 to the curve y =<+ (5"x+ /3 J*. •.(JL)
' -7 -

by putting one more condition under fixed and increasing 
variance models S»KoJ«v. L2>\ 2

29 Estimation of 2 under fixed model with five equally spaced 
ordinate si

Pull information on f can be obtained, for four equally 
spaced ordinate, by the estimate

r * (y3 - 2yg + y-^/Cyg~2y1 + yQ) 

i«.e* y3-yg(r4-2) + y1(2r+ll - ryQ =0 ••• (2«D
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We can write down a similar expression for five equally 

spaced ordinates as

y4-y3(r+S)-t-y2(2r+i)-ry1 = 0 ••• (2*2)

Thus the sum of equations (2©1) and (2#2) leads to the 

estimate

r = (Vy3"V,yi*/Cy3"y2'yi+y0* (2*3^

Note that if w* are the coefficient of y .. then 1 n-i7

X_wi - 0 and - 0 «

Now the equations (2«l) and (2*2) can he combined with the 

relative weights A-ulj where Alls to he determined* 
y4+yg(/U-->r-2)-fy2(2r+l- yu.r-2 At )+y1<-r+2rAL + At)

-r /HyQ =0 ... (2*4)

The estimate of r given hy this equation is

rss ^y4+y3(A^-2)4y2Cl-2M')^/U.y1^ / ^y3+y2CAt-2)+y1(l-2/d+«r0

(2,5)

In order to obtain full information provided by equations 

(2,1) and (2*2), M-should be so chosen so that the variance 

of r is minimum. For n = 5,
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V(r)=
S3"

l2+(M-2“y )2+(l-2/M_- SK+2 J )2+(/<t- i *2$/lt)2 + /U? J2

if3 +(M~2) ?2 + (1-2/M5 + AtJ
2 2 owhere 0 s <T /p>s • (See Appendix 3

Differentiating this with respect to/^and equating this to 

zero we get

M- =
4 y3~H3 S2 + 13? + 6

6^3+124)3 + 135 + 4
9

It is interesting to know that with these values of fj^the 

estimate (2*5) are fully efficient® The value of /U. range 

from /Mj=1*5 when ^=0 to /A.,=i when f =1* When /<A=l equation 

(2.5) is same as equation (2.3). The estimate r of jp given 

by equation (2.3) is therefore suitable for high vaLues of g a 

Similarly (2y4*-y3-4y2+3y1)/(2y3-yg«4y1+3y0) will be most 

efficient for small values of 5 . Therefore it is necessary 

to choose the value of /U, such that over all efficiency is 

95$ ® It is found that/U, =1.2 is suitable for high efficiency® 

Thus the estimate

r=<5y4-4y3-7y2+6y1)/(5y3-4y2-7y1+6y0) j ... (2.6)

is suitable for n = 5 equally spaced ordinates
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3, Estimation of § with six, seven and eight equally spaced 
ordinatess
Additional equation such as

yg~y4 (r+2) + y3(2r+l) - ry2 = 0 ... (2.7)
are combined with equations (2.1) (2S2) using weights
Atg s Mi * 1 etc*

The general expression of the estimates obtained in 
this way is

yn-l+^-2}yn-2+<V2^l+l5yn-3*,*(-3V4+V5)V'Ai-l>45i

with the condition Xwi=0, and Xi-Wi “

As usual Aii«»® are 80 chosen that the efficiencies of 
the estimates are high over the whole range of g . The follow­
ing values have been found to lead to estimates of high effi­
ciency (over 90$)t

n = 6, A4^=1®9S n2=1*5,
n b 7, 2* 1, A^=286, /Ug=l. 7,

n = 8, Mj=2.5, M>=3.5, /Mq-3« 3, M4-290 .

The actual estimates are s
I0y5-y4-I3y3-lly2+isy1
10y4-y3~ I3y2- liy^lSyQ

for n=6 ... (2e8)



The above proposed estimates (Shah IT 31 j[ ) can also be 

used to advantage as preliminary estimates of g as I have 
discussed in chapter I*. When the computation is to be done 

on desk calculators then in such a case only single iteration 

is required* The biases in the estimates can be calculated by

^2o27^ TABLE 2*1

Percentage efficiencies of proposed estimate of $ „

'\Bquc
2.6 2.8 2.9 2® XO

0*0 95.2 91.3 88®4 86.4

0® 1 98.4 97® 3 96«0 94.4 .

0.2 99.7 99.7 99.0 97.8

0»3 99,9 99.7 98.4 96.9

0.4 99.6 90.4 95.5 93.0

0*5 99.0 96® 1 91.4 87® 5

0.6 98. X 93® 7 87.1 82.6

0.7 97® 3 83® 0 76*1

0o8 96. 3 89a4 79.1 71® 8

0®9 98.4 86.7 75.9 68.2
1.0 94.5 84*7 78® 4

<■1 *• Ml^g.
64.6
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TABLE 2*2

Biases in equations (2S6) ,(298) ,(2,9) & (2® 10)

2*6 2e8 2*9 2® 10

0,0 0*270 0*091 : -0*093 -0.178

0*1 0*348 0*129 0.007 -0*080

Os 2 0*409 0*219 0.106 0.023

0.3 Os 455 0*298 0*200 0,124

0*4 0*487 Os 364 0.233 0,218

0*5 0*507 0«414 0*352 0,300

0®6 0*517 0* 452 0*406 0*401

Qe7 0*519 0,477 0.446 0.421

0*8 0*516 0*492 Oft 474 0.459

0*9 0*510 0®499 0849l 0©484

1*0 0.500
> 69 M»9 um «B»Ma <■=

0*500 0.500 0*910

4« Increasing variance Models

When equation (A) represents a biological growth '■ 

curve, x is a measure of time, and it m&y be appropriate to 

incorporate Into the model a variance that changes with time. 

One way of doing this is by means of a continuous autore­

gressive scheme in which the expected rate of growth at any 

time is given by a differential equation corresponding to(&),
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but in each element of time individuals are subject to an 

error distribution* This will produce a correlation between 

successive observations in respect of their deviations from 

the average curve as well as a steadily increasing total 

variance. The theory that follows in this section has ana­

logies with the theory of Brownian movement, based upon 

Langevin*s equation (Chandrasekar [ z ]i Finney 11 □ ),

Let us write

Define K^(©5x) as the eumulant generating function of y for 

a particular vaLue of the independent variate, x. Define 

also L {©, x) dx as the cumulant generating function for the 

distribution of the additional 'error' acquired by an indi­

vidual in the time interval (x, x + dx)®

Express the condition that the cumulant generating 

function at time (x * dx) is the sum of the functions at 

x for the variate (y + dy) and for the error, or

log § s - *Y* 
and = u*

(2® 11) 

(2.12)
(2a13)

Ky(«, x+dx) = Ky+d7^*x) + L(e,x)dx 

dy = + '"('( * +<§x-y£j dx.

(2* 14)

where
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Then

V9,x)+TT*‘lt’,S X s K(<?+Tc<+T<$>x)ax+y(i. -rdx)^9,xH

L(9,x)dx»

= i£iF^^“>+ -

^(iS^dx ■jjJq) + 3j(9fx)dx«

Hence, in the limit,

•Vu( ^K/Bu^CcT + ^+^x) (10) + ^(i0)(^K/3 (i0))-L(0,x)BO, 

or u( 31/S u)-(i@) 9K/ S (i0) + (<St*' + «< + cT x)( i@) +

*Y 1(65x)^ •< » (2j 15}

Moreover, if time is measured from the point at which the 

error begins to effect, this differential equation is subject 

to the end condition

Ky(e,0) = (< + jb ) (19) ... (2*16)

(i) Suppose now that the error increment is normally 

distribui&dnand a constant independent of y, that is to say

I(9,x) =(3/2) C2 (i©)2 ess (2*17)

Then, the solution of (2*15) subject to (2*16) is
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Ky(9 ,x)=(K + j&u+ <Tx) (10) + ( <ra/Sy>)(1-u2) (M) 2/2 \ .. 9 (2. 18)

Thus y is normally distributed, with expectation still given 

by y=<+ <Tx + pu, but with variance now expressed by

y(y) <r
2t

(i - ^>2x) (2s 19)

and tending to the limit (TV2t as x becomes large.

(ii) A second possibility is to have a normally distributed 

error increment whose magnitude is proportional to the expe­

ctation of y9 If kg(u) is written for the sth eumulant.

then L(9,x) = i?T2 k (u) (10)' (2.20)

equating coefficient of (i@> in (2® 15) then gives

uk^(u)-k^(u) + (<< + S'* J + <£x) =0 

uk^(u)-2kg(u) + ( «T2/t) kx(u) = 0

uk*(u)-sks(u) = 0 for s ^.3, 

whence} in virtue of the end condition (2.16),

Ky(e,x) ={o< + cTx+ £ u) (i9)+ ( (T2/2-y)£(1-

+2+ <TxJ (i0)2/2j ...(2.21)

Thus, the expectation of y is the same, but now the variance 

is



- 56

V(yj=c sa/a>c)[.(l- >+ + <fx}

'»* (2® 22)
Illustrations Thus for n=5, the estimator can be written 
in the form (2»5), end the variance is

(1- f)4( ?+/«.)2 • • « (2# 23)

Where X indicates time for the first observation, ana 
v2 = <r2/2t»^*~ o

The variance (2®23) is minimised by

M- = (2? + 3)7(3? + 2) ®o« C 2 ®24}
which leads to

9 pv- p 2Vmin(rp)= 10y<l+n/,P Cl-^) (3tf +4? + 3).

Thus f^=l»2 is a good approximation at moderate values of^ , 
for large f, AL=i is superior and for small?, M=l*5 is 
superior® The variances are

«r„ , 5 = -'OJiii. S.04
?,l«2y ^3

? (l~ ?) C 2 +is2)a 2

V(rp ) = .^J^LL -J:
r»- r2X, 03 , n .2 J9 (l-?) (1+9)
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} - Nlf<l+P) 33
”?jl*5 “ ^2X(1- ?33 (2$ + 3)2

TABLE ,2*3
Multipliers \$2/ ^ Cl- ? >} in the asymptotic 

variance of various estimators for the increasing

variance model

Estimator
*»m* «**•» •VMM «•** •«»» *«■<** •»« M0«»(MSS«9aC**lS •was®®**®* «■«*«•' *■*»«» cs«a

JL r 1P,1*2 rP,l P?2
WM8M —MBW*. — C3t *-»■■*»■■ !•«•■>

0,0 3* 333 3*500 4,000 3* 333

0,1 2 a 889 2*955 3*276 2*903

0a2 2,469 20488 2a 688 2,511

0® 3 2.092 2*095 2S 213 2® 165

0*4 la 767 1*767 1*832 1*864

0»5 1*491 , 1,495 la 524 1*607

0*6 1*260 1*270 1*276 la 330

0*7 1*068 1*084 1*074 1*203

0,8 0* 908 Ql*929 0,911 1.046

0*9 0,776 0*801 0*777 0*913

1.0 0,667 0*694 0*667 0*800
MU iTTT “—rut <*<B NMMM «M «*«* «*«•» »»■» *">*** BRu *« e**3k



5* Appendix.
let r = A/B ... (2.25)

where A and B are functions o? y’s.
Let E(A) = § , E(B) = .

Write R =
and define the bivariate moments of A and B by

vst = E ^(JL)S . ... (2.26)

Then, by writing

r = R(x*-*-~i ( x + — f1 ,

5 \
expanding in series and taking expectations, we have

BCr^-Cv^R^gVt3 * C’VBW/ I3 '<t1S'Kv043/\4 

+ *»« *s« (2.27)

Similarly we have an asymptotic expansion for the variance 
of r ; V'(r) = E ^r- E(r) J 2

-(vso- *vii+E%s-V \S- « *ai-» vAjbW 

3y32-^1>-a{t3ns-VoaJ+E8<^04-4J}/'l4

*** ... ... (2.28) 
When A and B are normally distributed, all odd moments 
vanishj and we have
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VCrMv^-ffiv^R2^)/ + (3V20v02 * 5V11

" l6R'rHV'08‘* ®S V03 V\4 * "• CS‘S9)

These expressions agree with those obtained by Merrill L2-^*

In particular, the general linear estimator can 

be put In the form

- JVn Wn-i * ••• * ^1*8 ..,(2.30)

«iyQ.i+lVtt.2 - — + 'Vi h
where 2-At^ = o, and 1/ML Ai§ =0 «

From equation (2*29) the variance is

7(rp) = ^ M-i *(^V ? (/V Sl%)2+**a $2l^n-l

. _n-2 „n-3 .... ,2
5 (f +/Ug f + ... +


