CHAPTER 1II

1. Patterson {{ 25 7| has described s method for estimating
$ s by the ratio of two linear functions of y's, for the
curve y = £ - B jx. Stevens [ 37 Jhas described the least
squares estimates for this exponential regression curve by
providing table for n = 5,6, and 7 equally spaced ordinates.
S.Lipton [ 20 has extended this tables upto n=l12. Pimental
Gomes [T 2971 has shown‘ that, with eyyally spaced ordinates,.
efficient estimates of § can be obtained by solving equations

of the type
JOYO+lel + oeet J vl'.l.- =9

where the J's are complicated polynomials in v,

In this chapter, we have extended the method as
described by Patterson [25] to the curve y =« + dx+ B SX."(M
by putting one more condition under flixed and inc':reas:{’ﬁg
varianee model, Shaw L3111
2, Estimation of § under fixed model with five equally spaced

ordinatess

Full information on § can be obtained, for four equally

spaced ordinate, by the estimate
T = (yg=~ 2yg + y )/ (y-27y *+ ¥

loes ya-ya(r*z) + yl(2r+.1,') - I‘Yo =0 sae (2.1
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We can write down a similar expression for five equally
spaced ordinates as
Vamyalread+yglartl)-ry, = 0 avs (2.2)
Thus the sum of equatiéns (2.1) and (2.2) leads to the
estinate
r o= (y4-y3-y2+y13/(y3-y2-yl+y03 (2.3}

Note that if wy are the coefficient of Voni? then

Now the equations (2.1) and (2.2) can be combined with the

relative welghts Msl, where Mis to be determined.
y4+y3(/% —r—2}+y2(2r+1~ Mr=-2 AL )+y1(-r+2rM + /L)

-T MY, =0 (2.4)
The estimate of r given by this equation is

r= TgHY (M =204y, (12N My | / {35t Mmad+y (-2 wag )
’ cos (2:5)

In order to obtain full informagtion provided by equations
(2+1) and (2.2), M should be so chosen so that the variance

of r is minimum, For n = 5,
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Vi(r)= $~12+(M-2-=3 32*'(1-2/\%.- sM+28 )2+(;UL.. ¢ +28 )2 +;q? ja

P N
: %.?3 Hp-2) 02 + (1=2/) 8 + M} 2
where 162 = 2/]32 + (See Appendix )
Differentiating this with respect to /4 and equating this to

zero we get

_ap%130® ¢ 120+ 6
M= 3 2
68 +12¢ + 139 + 4

It is interesting to know that ;»:ith these values of A{ the
estimate (2,5) are fully efficiente, The value of AL range
from M=1.5 when [° =0 to A=l when § =1. When AL=1 equation
(2.5) is same as equation {2,3). The estimate r of ¢ given
by equation (2,3) is therefore suitable for high values of §.
Similarly (2y4~y 3-4y2+3y1)/ §2y3-y2~4y1->3y0) will be most
efficient for small values of § . Therefore it 1s necessary
to choose the value of M such that over all efficiency is
95%, 1t is found that AL=1l.2 is suitable for high efficienecys
Thus the estimate

I‘=( 5Y4“ 4?3" 7Y2+63’l) / ( 5:"3"4}'2" 7y 1"1’ 6}?'0) s ve o ( Ze 6})

is sultable for n = 5 equally spaced ordinates.
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3. Estimation of § with six, seven and eipght equally spaced
ordinatess
Additional equation such as

V5¥, (r+2) + y3(2r+1) -~ ryy = 0 oo (2.7)
are combined with equations (2.1) (2.2) using weights

Mg 3 Mg ¢ 1 efc.
The general expression of the estimates obtained in
this way is

_ Ve 1t W2y o Wom 24+ DYy 3«*9('2%.4"‘"&1-533’2*"‘%45’1

yn_2+(f\1 2}57 (f(z"g/‘f +l)v eaﬁ( 2“‘ }yl /4\(_ 4}70

4 n-5

with the condition Fw;=0, and Yiw; =

As usual /ui,ﬁqe, sss are so chosen that the efficiencies of
. the estimgtes are high over the whole range of § . The follow-
ing values have been found to lead to estimates of high effi-

clency (over 90%):

i

n 6, /‘ll"‘legg rf\‘kz::lﬂ 5,
7y MgT2aly  [Um2.6, Mg=l7,
n = 8, ]\,ﬂl ¢5, /\.{2::3@ 5, IL13=3@ 39 /‘-{_43290 .

1]

n

The actual estimates are

10y5~Y4~13Yg~ 11y +15y |
107,4-¥ 3~ 1375117, +15Y,

for n=56 :c:o V ( 2 8)
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j%é";/
+Y =6y - -8y -+ . ( p
10y6 V5~oY, 1437 8}*2 1‘75’1 for n=? - (
W0y 574 67 5~ 147 -8y +17y, b oy
\\i /\4 Ry
- - 1% - - f . “Ih*rqx 0 md
10y +8y g 5y 5= 12Y = 11y =7y #20Y, ST e

1074757 55,4_, 123.3“ 1332“?},{20?0 for n=8 N 2910)
The above proposed estimates (Shah £ 3171 ) can also be
used to advantage as preliminary estimates of § as I have
discussed in chapter I. When the computation is to be done
‘on desk calculators then in such a case only single iteration
is required. The hiases in the estimates can be calculated by

(2,27 TABIE 2.1
Percentage efficiencies of proposed estimate of § .

; Egue

\\\?§\\\\ 2,6 2,8 2.9 2,10
0.0 95,2 91.3 88,4 86,4
0ol 98,4 97.3 96,0 94,4
0.2 99.7 99,7 99.0 97.8
063 99,9 99,7 98.4 96,9
0e4 99,6 98.4 95,5 93,0
0.5 99.0 96,1 91.4 87:5
0.6 98,1 93,7 87:1 8206
0e7 97, 3 91:4 83,0 7651
0.8 96, 3 89,4 79.1 7108
0.9 9844 86,7 - 75.9 68,2

abidl M s S o TN NI s O
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TABLE 2.2
Biases in equations (2:6),(2.8),(2.9) & (2.10)

Eque

< 2,6 208 2.9 2,10

0.0 0,270 0,091 ° -0.093  -0,178
0.1 0024 0.129 0,007 -0.080
0e2 0,409 0219 0,106 0.023
0.3 0,455 0,298 0,200 0.124
0.4 0,487 0. 364 0,283 0,218
0.5 0. 507 0s414 0,352 0. 200
0.6 0,517 0.452 0,406 0.401
0.7 0.519 0+477 0,446 ~  0.421
0.8 0,516 00492 0.474 0,459
0,9 04510 0,499 0491 0,484
1,0 04500 0,500 0,500 0,500

4, Increasing variance Model:

. When equation (A) represents a biological growth
curve, x is a measure of time, and it may be appropriate to
incorporate into the model a variance that changes with tinme.
One way of doing this is by means of a contlimious autore-
gressive scheme in which the expected rate of growth at any

time is given by a differential equation corresponding to(a),
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but in each element of time individuals are subject to an
error distribution. This wili produce a correlation between
successive observations in respect o‘f thelir deviations from
the average curve as well as a steadily incr.easing total
variance, The theory that follows in this section has ana-
logies with the theory of Brownian movement, based upon

Langevin's equation (Chandrasekar [ 2. 7 s Finney ©7 1),

Let us write
lOgg 2o h(' o6 s (2@11)
anda % = (2.12)

Then, from equation (&), % =8+ V(o + E2F) vvo (2.13)

Define Ky(e,:@ 2s the cumulant generating fwnection of y for
a particular value of the independent variate, x. Define

also L {6, x) dx as the cumulant gensrating function for the
distribution of the additional ‘error' acquired by sn indi-

vidual in the time interval (x, x + dx).
Express the condition that the cumulant generating
function at time (x + dx) is the sum of the functions at
x for the variate (y + dy) and for the error, or
Ky(‘@, X’*’dl{) = Ky+dy(@,)£) + L(e;XBdX e (29 l@)

where dy = TS +¥(« +& x—-y)] dx.



Then

Oy

oK _ ; |
Ky(e,x)m-—.’g;;—ca X = K(5+1‘a<+'\$'§x}’dx+y(l- dej(@,x)_+

L(8,%)dx.

_ (v IXIAY (10 5
= P (ie)+ K&(@,xﬂ -

Y(ie)dx SD_(}S,_, + L{ogx)dx.
Hence, in the limit,
Cu( DK/ D w-( &+l + ¥8x) (18) + V(10)( 9K/ d (18))-L(0,x)=0,
or u{3K/d w-(ie) OK/3(i9) + (S +X+d x)(i0) +
v 108,500 ... (2.15)

Moreover, if time is measured from the point at which the
error begins to effect, thig differential equation is subject

to the end condition
K (@,0) = (£X+ p) (i9) (2.16)

(i) Suppose now that the error increment is normally

distributed-and a constant Independent of y, that is to say

) 2 <
1(8,x) =(1/2) ¢ . (18)% cee (2217

Then, the solution of (2,15) subject to (2.18) is
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: 2
Ky(@,x)={°(+Pu+ dx) (i) + {6'2/2?‘)(1—-1133(1@3 /27 ..o (2,18)

Thus y is normally distributed, with expectation still given

by y=« + Jdx + pu, but with variance now expressed by

2

G 2X. .
V( ) = S I (1 - ) e S (26 199
y 5 §

and tending to the limit 6‘2/21“ as x becomes large.

(ii) A second possibility is to have a normglly distributed
error increment whose magnitude is proportional to the expe-
cbation of y, If ks(u‘} is written for the sth cumulant,

then IJ(Q,X) = %fzkl{u} (.19)2 aoe (2920)
equating coefficient of (i8) in {2,15) then gives

Lﬁcif.u)wkl(ui‘ + (L +8¥'+dx =0

v (W-2lp(n) + (€7/p) ky(u) =0

uk}(u)-skg{n) =0 for s >3,

whence, in virtue of the end condition {2.16},
K (9, %)={ci + & $9) 4+ 2 /onn ) | X, 8/
y(@x)=(e + xt puwi(ie)+ (€72 [ (- §5] & (87

S’x(a& -e%% +2,3}} +6x] (19)2/25“.(2.21)

Thus, the expectation of y is the same, but now the varianm

is



Viy)=( 62/2*@)[_(1-— 5”‘){(«(&% )+ L 1S +2p )} +8x)
ces  (2.22)

Illustrations Thus for n=5, the estimator can be written

in the form (2.5), and the varignce is

Virp)=— v&1- 9% _emPgns 6

h *9 & (ZQES)
o (- 9% 9 +m”

Where X indicates time for the first observation, and
e = «2/2\“,62" .
The variance (2,28) is minimised by

M= (29 + 3)/(3% + 2) ooe (2:24)
which leads to

2 oo, 02K, a3 o “
Vainlrp)= 10 1+E FT(1-827(38 +af + 3).

Thus pML=1.2 is a good gpproximation st moderate values of §,
for lsrge ¥ , AL=1 is superior and for small®, M=1.5 is

superior, The variances sre

2 “
Vo .y = ¥X9) 5.0
P lﬂ £, X b )
s1e2T 0B oF (per.2)?
V¢ Y149 ) 4
r?ng = J

fgx(l- 3’33 (1 +932
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y = NP $) 30 ]
182Xy 933 (28+ )

TABLE 2,3

Multipliers \92/.{”92X (1-£3] 1in the asymptotic -
Variance of various estimators for the increasing

variznce model

Estimabor
Sl Teae Tea TR
0,0 | 8,333 3. 500 4,000 3.323
0.1 | 2.889 2.955 3,276 2,903
0.2 | 2.469 2,488 2, 688 2,511
0.3 | 2.092 2,095 2,213 2: 165
0ué | 1,767 1.767 1.832 1,864
0.5 | 1,491 . 1498 1.524 1. 607
0.6 | 1,260 | 1.270 1,276 1 320
0.7 | 1.068 1,084 1,074 1,203
0.8 | 0.908 0.029 0,911 1,046
09 | 0.776 0.801 0.777 0,913
1.0 | 0.667 0,694 0,667 0.800




95; Appendix. ’ '
Let r = 4/B cos (2.25)
where A and B are functiong of y's. |
Let E(L) = §, E®) =w.
Write R =§/vL

and define the bivariate moments of 4 and B by
Voy =B {0 -§)% (B )* (2.26)
st . % "t 3 @ a9 £
Then, by writing

r=Mhﬁ§i)(1+*£%lfﬁ,

expanding in series and taking expectations, we have
E{r) =R~ WR a - 3 . vy 4
{(r)=R (vil,R‘OZ)/rQ, + (v12 Bvgg)/ ) (vl3 va4?/q1,

+ s sou (2.27)

Similarly we have an asymptotic expansion for the variagnce

of r ¢ W(r) =E {r- E(r)} 2

2 2 2 L, 3
= - R } b - bad . P
(vgg zavlf-_ vog,/YL 2(V21 2vag+F Vos)/”L

, 2 . 2 a 4
3V~ Jom 2 - }4+R P ] by
% oo vll) R( Vg o vllvog)* (3004 vbg)}/rl

- [N LR Y (2@28)
When 4 and B are normally distributed, all odd moments

vanlshs and we have
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Yol P - 2 Y/ 8 2
V() =(vgy= 2RV, ¥RV )/ W+ (BUgV, + BV,

Sud

) . A .
= 18RV, Voot ar @ vgz /A Y (2.29)

These expressions agree with those obtained by Merrill [22].

In particular, the general linear estimator can

be put in the form

_ Mg FRGYy ¥ et My Yy

= cs0(2.30)
Moy, MY o Foeee + My Ty

where LM =0, and P! M =0 .
From equation (2.29) the varisnce is

a2 2 2 :
B R ) (Mg SN §AE

(Ml S)n«-ff..’“\&a IS

V(rf’) = ﬁ
guc?

n-3 . 2
+ ss0 + }\Ln_l)



