CHAPTER 7 -----

, ,

.

_

Hardness of d-AHT crystals

S1. No.	Contents	Page
7.1	Application of Møyør's law & Kicks law to orthorhombic crystal :- d-AHT	94
7.1(a)	Meyer's law	94
7.1(b)	Kick's law	95
7.1(c)	Experimental	97
7.1(8)	Observations	98
7.1(@)	Results & Discussions	99
7.1(f)	Modification in Kick's law & Mey er's law	101
7.1(g)	Variation of standard hardness and exponent with orientation	104
7.1(h)	Curvilinear plots between diagonal length & applied load	107
7.1(i)	Conclusions	
	References	

,

7.1 <u>Application of Meyer's Law and Kick's Law to orthorhombic</u> <u>crystal : d-AHT</u>

From the hardness point of view, there are two ways of studying empirically the mechanical response of a material to the applied load:

- i) Variation of applied load (p in gm) with diagonal length (d in µm) of the indentation mark;
- ii) Variation of hardness (H in kg/sqmm) represented by hardness number, with applied load.

In this chapter, it is proposed to discuss quantitatively the variation of applied load with diagonal length of the indentation mark produced by a knoop indenter on prism, sphenoidal and cleavage faces of synthetic single crystals of ammonium hydrogen d-tartrate (d-AHT). For ball and pyramidal indenters, two empirical laws are suggested. They are as follows: (i) Meyer's law & ii) Kick's law.

7.1 (a) Meyer's Law:

On the basis of experimental observations, Meyer (1908) had given a relation between applied load and the diameter of the indentation mark produced by a ball indenter, viz. for a given diameter of a ball indenter, the variation of the applied load (p in gm) with the diameter of the indentation mark, (d in μ m) is given by the following empirical relation:

 $P = ad^n \dots (7.1)$

.94.

where "a" and "n" are constants for a given material. The above expression symbolically represents Meyer's law (1). "n" varies from about 2.0 to 2.5 depending on the condition of the material. It has a higher value for a fully softened state and decreases with the degree of cold working given to the specimen. The value of "n" can be considered as the capacity for work hardening (2).

(b) Kick's Law:

Kick (1885) (3) has given a formula connecting applied load with diagonal length of the indentation mark produced by an indenter. It is given by :

where "a" is termed the "standard hardness" of the material for an indenter of fixed diameter and "n" is an exponent giving a measure of the variation in hardness as a function of "p" or "d". It has been shown that in case of Vicker's microhardness, "n" is equal to 2 (Kick's Law, 1885) for all indenters that give geometrically similar impressions. Hanemann and Schultz (1941) (4) from their observations concluded that in the low load region "n" generally has a value less than 2. Onitsch (1947) (5) found such low values of "n" (1 to 2) by observing variation of hardness with load while Grodzinski (1952) (6) found variation of "n" values from 1.3 to 4.9; the value of "n" was nearly found to be 1.8.

.95.

Since the applied load value (P) in the above formula is a product of two quantities, the change in the values of "n" for a constant "d" is accompanied by a change in the values of "a", the standard hardness of the material. Hence, these values thus obtained were expected to yield constant results but actual results obtained by different workers revealed disparities amounting to 30-50%. These disparities may be attributed to the following reasons:

1) Equation $P = ad^n$ is not valid;

.

- Microstructures exercise considerable influence on measurements involving very small indentations;
- 3) The experimental errors due to mechanical polishing, preparation of specimen, vibrations, loading rate, indenter shape, measurement of impression, etc., affect the hardness determinations considerably.

In the present case, the microhardness refers to the applied loads ranging from the lowest possible load to maximum load of 200 gms. Further, in what follows the term "hardness" and "microhardness" of crystals are used to indicate the same d-AHT will be used to indicate ammonium hydrogen dmeaning. tartrate single crystals. In the tables the measured and calculated quantities are given upto three places after decimal. the calculations were carried out by the use of mathematical as tables/ calculators. However, the accuracy is upto the first figure after the decimal place. This value is normally considered during discussion. The present work is taken up with

.96.

the express purpose of critically re-examining the Meyer's Law and Kick's Law by systematically studying microhardness of synthetic single crystals of d-AHT. It is an extension of the work reported by earlier workers in this laboratory (7,8,9,10,11).

7.1 (c) Experimental:

Single crystals of d-AHT grown from gel by the method described in Chapter IV were used for the present study. The study was carried out on as-grown faces and cleavage faces of d-AHT. Freshly cleaved crystals and clean, smooth, as-grown faces of d-AHT having 2 mm thickness were fixed on glass plates with an adhesive. The levelling of the specimen was tested by using a table microscope. The hardness tester described in Chapter VI was used to produce indentations by using rhomb-based knoop pyramidal indenter. The filar micrometer eyepiece was used to measure the surface dimensions of the indentation marks. In order to avoid the influence of one indentation mark on the other, the distance between two consecutive indentations was maintained at least four times the diagonal length of the indentation mark, the indentation time for all specimens was kept 15 seconds. The load was varied from 1.25 gms to 160 gms. Care was taken to see that errors introduced during the work ο£ indentation and measurements were avoided or minimized. The indentation marks were produced for different orientations of the longer diagonal of the Knoop indenter with respect to directions [001] on a fresh cleavage plane (010) and m (110) surface and in

.97.

case of z(111) face along one of the edges parallel to [100]. These orientations were designated by angle "A" between the reference direction [001] and the longer diagonal of knoop indentation mark in case of cleavage (010) and m(110) and along one of the edges parallel to [100] in case of z(111) face.

The different faces for which measurements were made are:

I the sphenoidal faces : -

1) z(111)

2) $z(\bar{1}1\bar{1})$

II the prism faces $\dot{m}(110)$ and

III the cleavage faces, (010)

The different angles in degrees for which measurements were made are :

ð

0,10,20,30,40 ... 180 in steps of 10 degrees.

III	Cleavage; (010);	0	-	180
II	Prism face; m(110);	0	- 1	180
I (1) sphenoidal faces; $z(\widehat{1}1\widehat{1});$	0	-	180
I (a	a) sphenoidal faces; z(111):	0	~	180

Due to non-availability of a hot stage and corresponding optical components of microscope to be used with it in hardness tester, the indentation work was carried out at room temperature (303° K) for studying the variations of hardness with load. For these experiments, crystals of approximately equal sizes were used.

7.1 (d) Observations:

.98.

The longer diagonals of the knoop indentation marks produced by various loads for different orientations of indenter were measured. It is assumed that there is negligible elastic recovery in the major diagonal direction compared to the minor diagonal direction when the indenter is removed (12). Several sets consisting of a large number of observations on as-grown faces and freshly cleaved faces of synthetic d-AHT single crystals indented by various loads at room temperature for different orientations of indenter were taken and a typical set of observations, recorded in table 7.1 a,b,c,d were studied graphically by plotting log d versus log P (Fig. 7.1(a)i-vi, (b)i-vi, (c)i-vi, (d)i-v) for different A's where P is the load in gms, "A" is the angle in degrees, "d" is the average value of the longer diagonal length of the indentation mark in microns.

7.1 (e) Results and Discussions:

i) <u>Straight line plot of log P vs log d:</u>

Taking logarithms on both sides of the equation representing Meyer's law for ball indenter or Kick's law for pyramidal indenter yields:

$$\log P = \log a + n \log d$$
 .. (7.2)

The values of constants "a" and "n" can thus be determined from a graph of log d versus log P. Since the relation between log P and log d is linear, the graph is a straight line the slope of this line gives the value of "n" and the intercept on log P axis gives the value of log a and hence "a". For all indenters that

.99.

give geometrically similar shapes (impressions), Meyer's Law/Kick's law postulates a constant value of "n" viz. n = 2. This implies a constant hardness value for all loads according to the definition of knoop hardness number (KHN).

A careful study of the graphs (log d vs log P) shows that there are two clearly recognizable straight lines for all faces including cleavage faces of d-AHT synthetic single crystals of different slopes meeting at a kink, which is obtained at a load of about 30 gms for all faces and all orientations.

The first part of the straight line corresponding to observations taken at low loads upto the kink at room temperature has slope (n1) of higher value whereas for the second part of the straight line for higher load the slope (n2) has values around or nearly equal to 2. Since "n" values are different in different regions of the graphs of log d versus log p, being greater in the first region, the "a" values also vary in two regions being less in the first region of low loads and more in second region of high loads. For Knoop indentation on different faces of d-AHT; the values of "n" and "a" are recorded in Table (7.1) a,b,c,d.

It may be remarked that several workers have reported visible scattering in "n" values, e.g. Hanemann and Schultz (4), Onitsch (5), Grodzinski (6). However, none has reported the splitting of graphs into two straight lines and their characteristics. The study of the variation of load with diagonal length of Vickers indentation mark on faces of different types (c-,m-,d-, and o-

.100

faces) of natural and synthetic barite crystals (13) has shown very clearly the existence of two distinctly recognizable straight lines of the graph of log deversus log p. Later, Mehta (14), Shah (7), and Acharya (8) verified the splitting of the graph of log d versus log p on CaCO3, Zn, TGS, KBr, NaCl and KC1 crystals. In the present investigation the author has verified for d-AHT, the splitting of the graph into two regions using pyramidal indenter, The splitting varies with the Knoop oreintation of the indenter with respect to the crystal lattice. It is thus certain that the splitting of the graph into two straight lines in natural and is due to varied reactions of the crystal surfaces to different applied loads used for producing indentations.

7.1 (f) Modification in Kick's law and Meyer's law:

The analysis of hardness data based on Kick's law and Meyer's law postulates a constant value for n, viz. 2, for all indenters and for all geo metrically similar impressions. Schultz and Hanemann (4) supported the above analysis by proposing that hardness number and macrohardness values are comparable. However, Kick's law represented by equation (7.1) has not received wide acceptance on account of the fact that "n" usually has a value less than 2. Hays and Kendall (16) attempted to overcome this difficulty by assuming that a resistance to deformation could be evaluated by considering it as a Newtonian resistance pressure of the specimen itself. They assumed that a part of the applied load is used in overcoming a resistance/pressure "W" which

.101.

depends on the nature of the material under test. It is further understood that "W" does not allow any plastic deformation. Hence according to them the effective load which produces indentation and therefore plastic deformation is (P-W) for which the variation is proportional to the square of the diagonal length of the indentation mark, i.e. d . Thus modified Kick's law according to the above understanding is :

$$P - W = bdn \qquad \dots \qquad (7.3)$$

or

 $\log (P-W) = \log b + 2 \log d \dots (7.4)$

where "b" is a constant, likely to be the characteristic of the material and the exponent of "d" is 2. Since the factor "W" allows the limiting case to prevail where microhardness is independent of load, "n" should turn out to be 2. Elimination of P from equation 7.1 and 7.3 yields the value of "W" :

or

 $d^{n} = b/ad^{2} + U/a$ (7.6)

The equations (7.2),(7.4) and (7.6) can be used to verify experimentally the validity of modified Kick's law (7.3) and assumption for the existence of resistance/pressure "W" by plotting graphs based on experimental observations. Thus by the plot of log d vs log P (Figs. 7.1, a, b, c, d) one can obtain the values of exponent "n" and standard hardness "a" as follows (cf.Figs. 7.1 a-d):

.102.

Slope = n

Intercept = log a

or a = Antilog (intercept) ... (7.7)

Using the value of "n" from the above, a graph of $d^n vs d^2$ (Figs. 7.2 (a)i-vi, (b)i-vi,(c)i-vi, (d)i-vi) can be plotted. The plot indicates it to be a straight line graph with the slope and intercept given by :

Slope = b/aIntercept = W/a (cf Figs. 7.2, a,b,c,d) Hence b = a x slope W = a x Intercept (7.8)

where the value of "a" obtained from (7.7) is substituted on the right hand side of (7.8). The values of b and W obtained above can be substituted in (7.4) for a plot of log (P-W) Vs log d (Figs 7.3, (a)i-iii, (b)i-vi,(c)i-vi, (d)i-vi). The slope ng of this graph should be 2 which in turn should establish the validity of modified Kick's law. This is indeed found to be the case for the present study of cleavage faces and as-grown faces of synthetic single crystals of d-AHT in the HLR. Modified Kick's law was also found valid for Calcite (18).

The graph of log d Vs log P (cf Figs. 7.1 a,b,c,d) consists of two recognizable straight lines with different slopes n_1 and n_2 and intercepts a_1 and a_2 for low load region (LLR) and high load region (HLR) respectively. Hence for d- AHT crystals, corresponding to two straight lines representing effects of LLR

.103.

and HLR, there should be two values of b and W viz. b_1 , W_1 , b_2 , W_2 . This was found to be so for calcite crystals also (18).

In the present case for all faces and for all orientations it was found that modified Kick's law was not applicable in the low load region.

The values for n_2 , n_3 , W_2 , b_2 and a_2 for the HLR of hardness of as-grown faces and cleavage faces of d-AHT single crystals are given in Table (7.2, a,b,c,d).

7.1 (g) <u>Variation of standard hardness and exponent</u> with orientation:

In order to determine the relative importance of various factors affecting the values of "a" and "n", the study was carried out for various orientations of indenter and crystal surfaces at room temperature. It is obvious from table 7.1 that the values of and and n_1 for LLR show comparatively large differences for all orientations (A) of the indenter and for all faces of the crystal. Further their variations appear to have no clear relation with A whereas a_2 and n_2 values obtained from the second part of the graph are independent of A. In view of these observations it is not possible to develop with certainty empirical relations between these variables.

Application of modified Kick's law should eliminate the variation in the exponent of "d". The variations of standard hardness values a_1 and a_2 replaced by b_1 and b_2 with A will now be considered. Since modified Kick's law is not applicable in the

.104.

low load region, b_1 and w_1 values are not possible due to the non-linear plot of $d^n Vs d^2$. The comparison of b_2 and a_2 values for different but constant A indicate that b_2 values are many times greater than a_2 values. " n_2 " and " n_3 " values are not significantly different from 2. This suggests that modified Kick's law is valid for HLR of hardness for as- grown and cleavage faces of d-AHT.

It is reported that "n" represents the capacity of workhardening of the crystal specimen and that a higher value (>2) of "n" indicates the fully softened state and a lower value the degree of cold-working of the specimen (2). Symbolically for d-AHT single crystals this can be represented in a tabular form:

Region	Meyer's/1 Exponent	Kick Int	's laws ercept	Modified Exponent	Kic Int	k's law ercept
LLR	n>2	\mathbf{a}_1	low	not	val	id
HLR	n>2	az	high	n 🕿 2	b2	high

It is clear from the above that the physical meaning of a fully softened state and degree of cold-working cannot be quantitatively deduced from the observations on applied load and dimension of the indentation mark. The indentation does produce plastic deformation and cold-working alongwith some elastic recovery. However, the above data is insufficient to explain the physics of static indentation hardness. It further implies that there are several factors such as surface energy, concentration of different types of impurities and imperfections and their interactions, effect of penetration of indenter in the surface

.105.

and propagation of stress waves along different directions in the crystal, anisotropy, etc. which operate in a way unpredictable from the present study and are responsible for experimentally observed deviations in the analysis.

A careful study of the values of n_3 and W_2 (Table 7.2, a,b,c,d) for different but constant values of A reveals surprising results. The modified n_3 values are more or less equal to 2 for different orientations of all the different as- grown and cleavage faces. Further, for all the values of "A"s the resistance pressure values " W_2 " are negative. This means that the resistance/pressure which is not assumed to produce plastic deformation helps applied load (HLR) in producing plastic deformation.

This interpretation defeats the very purpose of assuming resistance/pressure. Hence, this implied meaning cannot he This (negative value) can be understood in terms accepted. of reactions of the surface layers and bulk material of this crystal. The negative W_2 values in the HLR suggest that modified Kick's law is not applicable to HLR of hardness of d-AHT single crystals. Further modfied values of na namely 2 indicate that while considering the applicability of modified Kick's law. more weightage should be given to the negative values of "W2" and less to "ng" values.

The above discussion suggests that for n = 2 and finite resistance/pressure the Meyer's law/Kick's law is independent of the geometrical nature of the indenter. However, it should be

.106.

remarked that optical study of microstructures of indented surfaces by high resolution microscopy indicate that indentations for different applied loads and fixed orientations are similar but not identical.

The above analysis indicates that Kick's law and modified Kick's law are not fully applicable to all crystals (Barite, Calcite, sodium nitrate, Zn, TGS, KBr, KCl and d-AHT) studied in this laboratory. For most of the cases, the modified Kick's law is not valid in LLR due to the non-linear plot between d^n Vs d^2 . Further for some crystals "W" values are negative (e.g. d-AHT, Calcite, etc.). In the application of Kick's law, the variation in "h" and "a" are not fully explainable in LLR and HLR regions of plots of log d Vs log P, It is therefore, necessary to study the experimental observations on load and indentation mark by considering the whole plot of log d Vs log P as a curve and applying the standard curve-fitting method. This assumes that the plot is continuous, Further this also supports the attributions made in section 7.1(b) while discussing the disparities reported by earlier workers.

7.1 (h) Curvilinear plots between diagonal length and applied load:

In the earlier analysis, the plot of log d Vs log P consisted of two straight lines with a kink in between them. Instead it is desirable to have a plot of "d" Vs P, so that the standard curve fitting method can be easily applied. Fig 7.4 shows one of

the typical plots of D Vs P. The curve passing through the points is plot of observed readings and the slightly curved straight line is the best fit for the observation. A careful analysis of the plot (19) indicates it to be a quadratic equation:

$$D = AP^2 + BP + C \dots (7.9)$$

where A,B,C are constants obtained from the following equations:(19)

$$\sum_{i}^{n} \frac{4}{k} + \sum_{i}^{n} \frac{3}{k} + \sum_{i$$

where k denoted the number of the observation and N, the total number of observations. The values of A,B & C for different faces and different orientations are recorded in Table .7.3 a,b,c,d.

In the actual work, load was applied to the indenter to produce indentation mark of longer diagonal length "d". The length was measured by a filar micrometer eyepiece. By introducing the values of A,B & C and putting the values of different loads in the equation (7.9), D values were calculated and a comparison of calculated D values with experimenally observed D values were made and the percentage deviation from the calculated D values were found. This is given in Table 7.4 for some orientations on all faces. Further this percentage variation is made for

.108.

equations i) $P = ad^n$ and ii) $D = AP^2 + BP + C$. It is clear from the table that the percentage variations for i) is more than the corresponding variations for ii). Hence the obvious conclusion is that experimental observations are graphically better represented by the curvilinear plot and the expression ii).

To verify the values of the constants A,B and C, the equation used was :

 $D_1 = AP_1^2 + BP_1 + C \dots (7.13)$

$$D_2 = AP_2^2 + BP_2 + C \dots (7.14)$$

subtracting (7.13) - (7.14)

$$D_1 - D_2 = A(P_1^2 - P_2^2) + B(P_1 - P_2)$$

 $= A(P_1 + P_2)(P_1 - P_2) + B(P_1 - P_2)$

the equation on simplifying becomes, $(D_1 - D_2)/(P_1 - P_2) = A (P_1 + P_2) + B ... (7.15)$

which gives a straight line whose intercept is B and slope is A. These values were compared with the calculated values of A & B (Fig 7.5 (a)i,(b)i,ii,iii,(c)i,(d)i,ii,iii).

The equation (7.9) is based on the experimental observations. Hence it should be valid for other crystals also (8,11,18). A comparison of this equation with (7.2) and (7.4) indicates that kink at a certain load, is the point showing the splitting of the two straight lines. The quadratic equation therefore suggests that the kink should be the point of inflexion. This point depends on applied load and the direction along which the indentation is carried out. It is also clear that dependence of kink point on direction is more than that on load. In the earlier studies it had been shown that this point was susceptible to the thermal treatment of the specimen. (11)

For Meyer's Law (P=adⁿ), it was shown that taking,

 $\log P = \log a + n \log d$,

there was a linear relation between $\log P$ and $\log d$, which in the present case was shown to be comprising of two straight lines. Solving the equation (eqn. 7.9) for A,B and C, it was found that C had a finite value when P=O, i.e. C=do, when P=O.

It is interesting to consider the consequences of having (i) a finite positive value (ii) zero value of C. If C is zero, the equation (7.9) becomes

 $D = AP^2 + BP$ D/P = AP + B

or

Hence the plot of D/P Vs P should be a straight line. However, this is not the case. Hence, zero value of C is ruled out. The correlation between the splitting of the graphs of log P Vs log D and finite value of C, simply indicates that the C should be associated with the kink point which occurs for applied load of about 30 gm. It can thus be concluded that the finite positive

.110.

value of C should be held responsible for the splitting of the graph into two recognisable straight lines.

Alongwith the mathemati cal interpretation of finite value of C, it is also desirable to consider its physical meaning. Since hardness test is a convenient test of the plastic deformation behaviour of the material, it can be assumed that d_0 represents plastic deformation for some unknown load. Hence (D-d₀) should represent the actual deformation where D is the diagonal length for applied load, P.

Thus following Meyer's law/Kick's law, $P = ad^{2}$ $P_{o} = ad_{o}^{2}$ $P-P_{o} = a (d^{2}-do^{2}) = a (d-d_{o})(d+d_{o})$ $P = a (d-d_{o}) (d+d_{o}) + P_{o}$

Thus the above equation indicates that aplot of P Vs $(d-d_0)$ $(d+d_0)$ should be a straight line. However, this is not found to be the case. Hence, the obvious conclusion is that Meyer's law and Kick's Law are not valid when C has a finite positive value. Similarly, a plot of log P Vs log $(d+d_0)$ $(d-d_0)$ has not yielded meaningful result.

It was mentioned earlier (cf.chapter 6) that tensile stress operating in unindirectional compression or extension are entirely different from those used in static indentation. This can now be understood better by looking at the above analysis and a simple example of a solid under uniaxial stress. The behaviour

.111.

of a material subjected to stress, above the elastic range, may be divided into two parts: i) total plastic deformation and ii) fracture. Part i) can be further be subdivided into a) elastic deformation b) anelastic deformation and c) permanent plastic deformation. This behaviour of a material under unidirectional stress is shown in the stress-strain diagram (fig.7.8) The stress on the material is progressively increased, crossing the elastic range and from a certain point in the plastic region, it is suddenly removed. The material exhibits total strain OD consisting of elastic strain CD and plastic strain OC which includes permanent plastic strain and anelastic strain. In the case of static indentation test, on the removal of applied load, the anelastic strain does not exist whereas there is a plastic deformation which consists of a permanent set and elastic deformation. The observations and analysis indicate that do is the minimum plastic deformation for some unknown applied load. $(D-d_0)$ represents the actual deformation for applied load, P. It consists of elastic deformation and plastic deformation. It is not possible to separate these deformations. Hence any plot involving applied load and (D-d_o) should not yield a linear relation. This is indeed found to be the case as mentioned above.

This simply indicates that although d_o represents plastic deformation and is associated with the Kink in the plot of log P Vs log d it is difficult to relate it to equations given by Meyer's law and Kick's law and hence modified Kick's law.

<u>Conclusions:</u>

.112.

The mathematical treatment of measurements of diagonal length (d) of indentation mark and applied load P, based on Meyer's law, Kick's Law and quadratic equation has shown very clearly that,

- a) the graphical analysis of variation of diagonal length of indentation mark with applied load clearly suggests that there are two regions of applied loads, namely low load region and high load region, where the behaviour of d-AHT appears to be different.
- b) Consideration of the values of intercepts and resistance/pressure shows clearly that application of modified Kick's law is highly limited.
- c) The indentation does produce plastic deformation (hence workhardening) and cold working along with some elastic recovery, however, the present analysis is insufficient to explain the physics of static indentation hardness.
- d) The values of intercepts slopes and resistance/pressure are indicative of the anisotropic character of the crystal. However, the present analysis is incapable of finding their individual effects on the anisotropic character.
- e) the kink observed in the straight line graphs of log P Vs log d, is a point of inflexion in the curvilinear plot of log P vs log d or P vs d.
- f) The Kink is connected with d_0 , the plastic deformation for unknown load P_0 .

.113.

- g) For an applied load, P, the deformation (D-do) consists of elastic and plastic deformation which cannot be separated.
- h) The treatment based on empirical laws is insufficient to unfold the actual mechanism operating in a material under hardness test. However, the expression used for the best fit of the curve of P vs d (or log P vs log d) appears to be more reliable than empirical laws.

REFERENCES

01.	Meyer, L (1908) Quoted in "The Science of Hardness Testing and its Research Applications", American Soc. for Metals, Ohio, 1973. Quoted in "Microindentation Hardness Testing", Butterworths Scientific Publications, London, Ch.1, 1956.
02.	Mott, B.W, "Microindentation Hardness Testing", Butterworth Scientific Publications, London, Ch.1.,1956.
03.	Kick, F Das Ge Setzder Proportionalen Winderstande and Science Ans Wanddring (Leipzig Felix.ed) 1885.
04.	Hanemann, H & Schultz, F; Metalkunde, Z 33, 122, 1941.
05.	Onistsch, E.M Microsekopie, 2, 131, 1947.
06.	Grodzinski, P Schwaiz, arch, angew wiss, 18, 282, 1952.
07.	Shah, R.T Ph.D Thesis, M S Uni. Baroda, 1976.
08.	Acharya, C.T Ph.D Thesis, M S Uni. Baroda, 1978.
09.	Bhagia, L.J Ph.D Thesis, M S Uni. Baroda, 1982.
10.	Shah, A.J Ph.D Thesis, M S Uni. Baroda, 1984.
11.	Patel, M.B Ph.D Thesis, M S Uni. Baroda, 1987.
12.	Tabor, D The Hardness of Metals, Oxford Uni Press, 100, 1951.
13.	Saraf, C.L Ph.D Thesis, M S Uni. Baroda, 1971.
14.	Mehta, B.J Ph.D Thesis, M S Uni. Baroda, 1972.

- 15. Bhagat, S.D Dissertation, M S Uni. Baroda, 1982.
- 16. Hays, C & Kindall, E.G Metallography, 6, 275, 1973.

-

- Pratap, K.J & Haribabu, V Bull. Mater Sci., 2, 43, 1980.
- 18. Joshi, D.R Ph.D Thesis, M S Uni. Baroda, 1989.
- 19. Shah. C.C Advances Topicas in Engineering mathematics IV edition 1966.

.

CHAPTER 7

Hardness of d-AHT crystals

Sl. No.	Contents	Page
7.2	Introduction	115
7.2(a)	Observations	121
7.2(b)	Results & Discussions	121
7.2(c)	Conclusions	126
	References	

Hardness Anisotropy of orthorhombic crystals:-

.

Synthentic d-AHT single crystals

S1.			
No.	Contents		Page

7.3	Introduction	127		
7.3(a)	Observations	128		
7.3(b)	Results & Discussions	129		
7.3(c)	Conclusions	131		
	References			
	List of Tables			
	Caption to Figures			

HARDNESS OF d-AHT

Introduction:

From the discussion of the previous chapter it is clear that application of modified Kick's law to the cleavage and as-grown faces of d-AHT is highly limited.

The present chapter considers this point alongwith a detailed study of variation of hardness expressed by hardness number with orientation of the knoop indenter with respect to the crystal lattice. The knoop hardness number, H, is defined by the equation (1):

 $H = 14230 P/d^2 \dots (7.16)$ $H = c P/d^2 \dots (7.17)$

where applied load, "P" is in gms and the diagonal length "d" of the indentation mark is in microns and c = 14230, is a constant of the indenter geometry. This factor can be obtained in the following way from the general definition of Knoop hardness number :

Applied load P (kg) H (kg/sq mm) = ------(7.17a) Projected area of the Knoop indentation mark A (sq mm)

The projected area A is given by :

 $A = 1/2 d^2 \text{ Cot } 172.5/2 \text{ tan } 130/2$ $A = 1/2 d^2 (0.0655) (2.1455)$ $= d^2 (0.07028)$

where "d" is in mm and 172.5 and 130 are the angles made by the opposite edges of the indenter (cf. Chapter VI Fig. 6.1)

Thus :

- H = P/A
 - $= P / 0.07028 d^2$
 - = $14.230 P/d^2 Kg/sqmm$

In the above formula P is in Kg and d is in mm. In actual work P is in gms and d is in microns (μ m). Hence following the usual conversion, one obtains,

H = 14230 P/d^2 (7.18) where P is in gms and d is in microns.

The hardness number H is not an ordinary number, but a constant having dimensions of stress and has a deep but less understood physical meaning. The combination of (7.17) with Meyer's law / Kick's law (P = adⁿ) yields:

 $H = c.a.d^{n-2} \dots (7.19)$ or in terms of applied load and hardness number it is given by : $H = c. a^{2/n} . p^{n-2/n} \dots (7.20)$

The above equation can be tested by comparing the values of left hand and right hand sides obtained from measurements. Thus H can be determined from (7.18) whereas on the right hand side the value of "a" can be substituted from the earlier studies of the above laws (Meyer's law). Since c and P or d are known, the right hand side value can be calculated. Comparison of values obtained for the two sides of (7.19),(7.20) can indicate the degree of correlation of the experimental work with the theoretical work.

Instead of using Kick's law, it is also possible to use modified Kick's law by putting n = 2 and substituting (P-W) instead of P in the above formulae. Thus :

 $H = c \mathbf{x} (P-W)/d^2$ $(P-W) = bd^2$

 $H = cb \dots (7.21)$

Since c and b are constants, the above equation indicates that hardness is a constant quantity, independent of applied load and dimension of the indentation mark. It was shown earlier (Section 7.1) that modified Kick's law is independent of indenter (ball or pyramidal) geometry. Thus the above equation shows that the multiplication of geometrical constant (numerical figure) with "b" the standard hardness, gives the hardness number. The present work aims at analysing the hardness behaviour by examining the relations (7.19), (7.20) and (7.21) experimentally.

It also aims at studying variation of hardness with orientation.

It is mentioned above that the dimensions of hardness number and stress are the same. This similarity appears to have been obtained from the consideration of a solid subjected to uniaxial compression (or extension). For a uniaxially compressed solid, the Young's modulus of elasticity (E) is given by :

 $E = 6 / \epsilon$ ----- (7.22)

where δ is the compressive stress defined as load per unit area. $\delta = P/A - (7.23)$

and the compressive strain \in is defined as the decrease in length per unit length. The area of cross-section, A, increases with compression. Hence for a constant volume of a geometrically well defined solid, length is inversely proportional to the area of cross-section. If A_0 represents the initial area of crosssection with a normal length l_0 and A, the final area with normal length 1 after small compression, one obtains:

 $1.A = 1_0.A_0$ or $1/1_0 = A_0/A$ ----- (7.24)

Therefore,

$$\epsilon = (1-1_0)/1$$

 $= (A_0 - A)/A - - - - (7.25)$

Hence, for a simple uniaxial compressive stress, when the area is a geometrical function of deformation, determined here by constant volume, the resistance to permanent deformation can be expressed simply in terms of load and corresponding area. In indentation process, the volume change is very very small; volume of solid can therefore be considered as constant. Hence the indentation hardness can be measured by using the above formula (7.26).

.118.

Indenters are made in various geometrical shapes such as spheres, pyramids, etc. The area over which the force due to load on the indenter acts, increases with the depth of penetration. The resistance to permanent deformation or hardness can be expressed in terms of force or load and area alone (and/or depth of penetration). These remarks are true for solids which are amorphous or highly homogeneous and isotropic.

The above analysis presents a highly simplified picture of the processes involved because there is a great difference between deforming a solid under a simple uniaxial compression and deforming a surface of a solid by pressing a small indenter into Around the indentation mark, the stress distribution is it. exceedingly complex and the stresssed material is under the influence of multiaxial stresses. The sharp corners of a indenter produces a sizeable amount of pyramidal plastic deformation which may reach 30% or more at the tip of the indenter. This should be compared with the deformation of a crystalline material which is even less than one percent of its original dimension. Further the surface of contact is inclined by varying amounts to the directions of applied force. In view of these complications a simple expression corresponding to that for the modulus of clasticity cannot be derived for hardness. In the absence of any formula based on concrete theory an arbitrary expression is used which includes both known variables loads and area in the present case. Hence the hardness number, H, iя defined as the ratio of the load to the area of impression:

.119.

H = P/A - (7.27)

For pyramidal indenters the load P varies as the square of the diagonal d. Thus for a given shape of pyramid :

 $P = ed^2$ -----(7.28)

where "e" is a constant which depends on the material and shape of the pyramid. The area of the impression, A, is also proportional to the square of the diagonal :

A = f d² -----(7.29) where "f" depends upon the shape of the pyramid. Combination of equations 7.27, 7.28 and 7.29 gives :

 $H = ed^2/fd^2 = e/f = constant --- (7.28)$

Hence for a given shape of pyramidal indenter, hardness is independent of load and size of indentation. This statement represents Kick's law. In view of defining equation (7.17a) for hardness, hardness number can also be considered as hardness modulus.

Due to the complicated behaviour of indented anisotropic single crystals of various materials and arbitrary expression for hardness, it is clear that theoretical treatment of the problem is extremely difficult. Hence it is desirable to approach this problem via experimental observations, interpretations and with a probable development of empirical relations(s). Further the analysis can be used for developing model theory/theories of The hardness. present work is taken up from this phenomenological point of view and is an extension of the work carried out by earlier workers. (2-9)

.120.

7.2 (a)Observations:

The observations which were recorded for studying the Kick's law/Meyer's law ($P = ad^n$) are used in the present investigation. The Knoop hardness numbers are calculated using equation (7.16) for various orientations. (Table-7.5 a,b,c,d). The observations are graphically studied by plotting the graph of Hardness number H versus load P (Figs 7.6 (a)i-ii, (b)i-ii, (c)i, (d)i-ii). In what follows the hardness and Knoop hardness number will be used to indicate the same meaning.

7.2 (b)Results and Discussions:

Variation of Knoop Hardness number with applied load at constant temperature and indenter orientation:

It is clear from the graphical analysis of the variation of hardness number H with load P (Figs 7.6,a,b,c,d) that contrary to theoretical expectations, the hardness varies with load. For d-AHT single crystals, the hardness at first increases with load for all orientations, reaches a maximum value at a certain load, then gradually decreases with increasing load and attains almost a constant value for all higher applied loads. The complex behaviour of microhardness with load can be explained qualitatively on the basis of depth of penetration of the indenter. At small loads the indenter penetrates only surface layers, hence the effect is shown more sharply at these loads. However, as the depth of penetration increases, the effect of the surface layers become less dominant and after a certain depth of

.121.

penetration, the effect of the inner layers become more and more prominent than those of surface layers and ultimately there is practically no change in the value of hardness with load. This is apparent from the graphs of Knoop hardness number Vs load.

clear from the plots of H Vs P that the theoretical It is conclusion that hardness is independent of load appears to be The graph of H Vs P can true only at higher loads. be conveniently divided into three parts, AB, BC and CD, where the first part represents the linear relation between hardness and load, the second part the non-linear relation and the third part the linear one. In some cases BC part is absent. It should be noted that there is a fundamental difference between linear noted that there is a fundamental differences between linear portions AB and CD of the graph ABCD. This possibly reflects varied reactions of the surfaces to loads belonging to different regions.

The present approach for the study of hardness behaviour with a change in different parameters is an integrated one. Hence the graphical analysis of log d vs log P plots (cf. Chapter 7.1) should now be extended in the present work by studying the relations (7.19), (7.20) and (7.21) namely,

- (7.19) H = c.a.d(n-2)
- (7.20) H = c.a 2/n . p(n-2)/n
- (7.21) H = c. b...

.122.

For synthetic d-AHT single crystals, there exists two distinct regions of applied load, viz. LLR and HLR corresponding to plot of log d vs log P consisting of two straight lines with different slopes (n_1 & n_2) and intercepts (a_1 & a_2) or to two regions/parts on either side of the pointer of inflexion whereas the plot of H vs P (Fig. 7.6 a,b,c,d) shows three ranges of applied load, viz. low load region LLR, intermediate load region ILR and high load region HLR designated by AB, BC and CD respectively and that CD corresponds to that range of applied loads where hardness number calculated by using equation (7.14) is almost contant and independent of applied load. It is clear from the plots that for applied loads greater than 30 gms hardness is constant and independent of load. It is in this range hardness behaviour of these crystals is analysed and reported in the present work.

It was shown in the earlier chapter that the straight line plot of log d vs log P consists of two straight lines with different slopes and intercepts corresponding to LLR & HLR. The slope and intercept in this region (HLR) are n_2 and a_2 respectively. In the case of modified Kick's law b_2 corresponds to a_2 and $n_3 = 2$. This is equally true for curvilinear plots with a point of inflexion. It is therefore desirable to consider the following relations:

.123.

instead of (7.19), (7.20) & (7.21) and try to find the correlation amongst these relations. The observed graphical values of hardness can now be compared with the values of hardness at constant temperature and orientation, calculated from the formulae (7.32) & (7.33) and presented in a tabular form (Table 7.6). Table 7.7 indicates percentage deviation of hardness values from the observed values. It is clear from table 7.7 that the percentage deviation is very large indicating very little correlation between hardness values (Table 7.6). It can be concluded that hardness behaviour of synthetic d- AHT single crystals at constant temperature and orientation indicates very little correlation amongst Meyer's law/Kick's law, modified Kick's law and formula for hardness number. This was the case with calcite cleavages also, but not with sodium nitrate cleavages which gave a very good correlation amongst Meyer's law/Kick's law, modified Kick's law and formula for hardness number (9). This simply suggests that the basic symmetry elements physical and chemical properties of these different crystals might be intimately connected with the mechanical behaviour indicated by hardness at applied loads.

It is difficult to give the exact reason responsible for observing the three different regions in the hardness plot. There are several factors such as anisotropy, imperfections and their interactions, introduction of additional imperfections on indentations and their interactions among themselves and with the grown- in imperfections, range of hardness numbers etc., which should be acting in a way unpredictable from the present study.

.124.

Since the present approach for studying hardness is an integrated one, it is, therefore, natural to have the extension of the analysis of variation of load with diagonal length. Following the analysis, it is possible to represent hardness curve by a quadratic equation:

 $H = XP^2 + YP + Z \dots (7.34)$

where X, Y, Z are the constants of the equation. Following the method for the best fit curve, the values of these constants are obtained. These values are different for different faces. Thus, for cleavage face,

X = -0.002 Y = 0.51 Z = 10.28For prism face, X = -0.002 Y = 0.44 Z = 9.6

It is clear from the above values that X,Y,Z are not very much different for different faces.

For P=O, H=H_o, say. Putting these values in 7.34 one obtains,

 $H_0 = Z$

Thus $H = XP^2 + YP + H_0$ (7.35)

Using the above equation, a table is prepared showing the values of hardness number calculated on the basis of the above formula, H_{cal} and also the one which is obtained by using formula for Knoop hardness number, H_k (cf.eqn.7.18). The percentage deviation from the H_k values, namely $(H_k - H_{cal})/(H_k)$ are also shown in table 7.9. It is thus clear from the above table, that the percentage deviations are quite noticeable. Hence it can be

.125.
concluded that the above analysis, although mathematically exact, is incomplete, some unknown important parameter is also involved. This situation is similar to one experienced while analysing the quadratic equation (7.9), relating diagonal length of indentation mark and the applied load. It is thus clear that the present empirical analysis is unable to unfold the mechanism operating on an indented surface.

7.2 (c) Conclusions:

.

- 1. Hardness varies with load. It increases steeply initially with load for all orientations and for all the different faces, then the increase is gradual and attains almost a constant value for all higher applied loads. This behaviour reflects the varied reactions of the surfaces to the applied loads.
- 2. Irrespective of the indenter geometry, Meyer's law/Kick's law, modified Kick's law and hardness formula cannot be experimentally correlated with one another for synthetic d-AHT single crystals.

.126.

REFERENCES

01.	Mott, B.L "Microindentation Hardness Testing" Butterworth Scientific Publication, London, Ch.1,1956.
02.	Saraf, C.L Ph.D Thesis, M S Uni.Baroda, 1971.
03.	Mehta, B.J Ph.D Thesis, M S Uni. Baroda, 1972.
04.	Shah, R.T Ph.D Thesis, M S Uni.,Baroda, 1976.
05.	Acharya, C.T Ph.D Thesis, M S Uni., Baroda, 1978.
06.	Bhagia, L.J Ph.D Thesis, M S Uni., Baroda, 1982.
07.	Shah, A.J Ph.D Thesis, M S Uni., Baroda, 1984.
08.	Patel, M.B Ph.D Thesis, M S Uni., Baroda, 1987.
09.	Joshi, D.R Ph.D Thesis, M S Uni., Baroda, 1989.

HARDNESS ANISOTROPY OF ORTHORHOMBIC CRYSTALS SYNTHETIC d-AHT SINGLE CRYSTALS.

7.3 Introduction:

In the earlier chapter the hardness of d-AHT was experimentally studied by considering their variation with applied load for different but constant orientations of the indenter with the crystal lattice. The present work aims at studying the microhardness anisotropy of d-AHT by employing Knoop indenter of low symmetry. An important feature of the Knoop hardness test is that the hardness value is dependent on the orientation of the major axis of the indenter in a given plane as well as on the orientation of the plane itself with reference to the principal axis of anisotropy (1). Further the depth of penetration of indenter is shallow. Hence brittle materials like glass or mineral could be indented without causing premature fracture. Besides, the indenter shape is relatively non-symmetric, the variation in hardness along different directions on a given surface can be determined. For such a study, single crystals can serve as ideal materials to establish the orientation dependence of hardness values. It is from this point of view that hardness anisotropy study of synthetic single crystals of d-AHT is carried out and reported here.

It is apparent from the hardness studies presented here that macroscopically there are three parameters affecting hardness viz. i) applied load; ii) orientation of the indenter diagonal (major) with reference to the crystal lattice; & iii) crystal

.127.

plane under indentation. The empirical formulae derived in the present work is valid for majority of crystals of different materials (2).

7.3 (a) Observations:

studying the anisotropic behaviour of orthorhombic crystals For d-AHT, the observations recorded in Chapter 7.1 are used for of considering in a quantitative manner the effect of the three major factors, viz. i) Applied Load (P); ii) Orientation of the major diagonal of indenter with reference to direction [001] on a fresh cleavage plane (010) and m(110) surface and in case of z(111) face along one of the edges paralell to [100] and iii) Crystal plane/face for indentation (F). For the purpose of quantitative study of the relations amongst P, A, H and F; variations between any two factors are considered by keeping remaining parameters constant. The applied load P should be considered as constant. However, it was shown (vide Chapter 7.2) that it represents a range of applied loads in HLR where hardness (H) is constant and independent of load. The range of applied loads was from 30 to 160 gms. In this range of applied loads, there is a slight change in values of hardness. In the discussion, mean value of hardness was considered. The hardness anisotropy for different orientations is studied at constant temperature, viz. room temperature. Thus the approach to hardness study is basically phenomenological. This approach is likely to be useful for the development of model theory of hardness of crystalline materials.

.128.

7.3 (b) Results and Discussions:

Table 7.8 presents values of Hardness number, H, in Kg/Sq.mm for different orientations of Knoop indenter (range 0-180°) and for cleavage, prism and sphenoidal faces. The plots of Hardness Vs Angle for prism and sphenoidal faces are shown in figs. 7.7(a) and 7.7(b). Following the curve fitting method, the equation showing the relation between hardness (H) and angle (A) is represented by a power series:

$$H = a_0 = a_1 A + a_2 A^2 + a_3 A^3 + a_4 A^4 + a_5 A^5 + \dots a_n A^n \dots (7.36)$$

where a_0 , a_1 , a_2 , ..., a_n are constants of the nth power equation. Following polynomial method for nth degree equation, the values of constants for different faces were computed and is given in Table 7.10. Since the coefficients are upto 10th degree of A, the above equation is rewritten as,

$H = a_0 x a_1 A + a_2 A^2 + a_3 A^3 + a_4 A^4 + a_5 A^5 + a_6 A^6 + a_7 A^7 + a_8 A^8 + a_9 A^9 + a_1 0 A^{10}$

It is clear from the table 7.10 that the coefficients of As are decreasing with the increase in degree of A and becomes negligible but because of the power of A, they cannot be neglected. Further, the order of signs before the coefficients is important from the point of view of symmetry e.g. m-face and cleavage face has planes of symmetry. Hence the order of signs of coefficients of A, A^2 to A^{10} are alternately positive and negative, whereas this is not the case for z-face which does not possess any symmetry element. These coefficients are also

.129.

associated with anisotropy because hardness values are different along different directions on the same face i.e. planar anisotropy; even in space these values should be different. It is therefore, desirable to designate these coefficients as anisotropic coefficients.

When A=0, the hardness value has a finite value along a reference direction which is different for different faces. Thus for prism and cleavage face, the reference direction is [00]) and for zface it is [100]. Thus for these faces, a_0 values will be as follows:

For cleavage face c (010), $a_0 = 31.74 = H_{(001)} = H_0$ prism face m (110), $a_0 = 30.4 = H_{(001)} = H_0$ z-face z(111), $a_0 = 40.7 = H_{100} = H_0$

These values are in agreement with the observed ones mentioned in Table 7.8.

It is interesting to note that if the h ardness values are taken upto 90° , the equation relating hardness and orientation is of the 2nd order in A instead of the tenth order (7.36). The 2nd degree equation is as follows:

 $H = a_0 + a_1 A + a_2 A^2$ this equation

When this equation is applied to prism face m (110), the anisotropic coefficients are as under:

These values are obviously different because the observations are restricted upto 000 . This range of observations are taken in view of the observations on hardness and orientations reported by other workers for different crystals. The observations on hardness values for different orientations and for different crystals are presented in a tabular form in Table 7.11.

It is clear from the table on hardness anisotropic coefficients for the above mentioned crystals (Table 7.12) that for A=o, the values of a_0 for the above crystals agree with the observed values along the corresponding reference direction.

7.3 (d) <u>Conclusions</u>:

- Hardness anisotropic coefficients are obtained from the graphical analysis of the observed data.
- 2. The analysis is extended to the observation reported in the literature for different crystals and the hardness anisotropic coeffcients for these crystals are determined.

30°C	Temp.	Room							7.1 (a)	TABLE									
6.3e-04	2.3e-04	3.2e-04	2.4e-04	3.0e-04	2.3e-04	5.6e-04	3. le-04	3.2e-04	3.5e-04	4.4e-04	6.5e-04	3.7e-04	2.7e-04	1.7e-04	1.1e-04	2.5e-04	4.0e-04	3.4e-04	A2
4.1e-15	4.le-12	2.8e-12	8.0e-10	1.0e-10	5.8e-10	2.7e-13	7.0e-11	7.7e-12	1.2e-12	8.8e-11	9.38-11	3.1e-10	8.6e-11	9.1e-10	3 .4 e-08	6.8e-11	1.2e-11	1,6e-13	Al
2.220	2.459	2.422	2.511	2.504	2.580	2.429	2.559	2.579	2.553	2.494	2,393	2.478	2.525	2.612	2.640	2.457	2.348	2.343	N2
7.879	6.400	6.525	5.252	5.831	5.465	7.388	6.138	· 6.639	7.119	6.091	6.044	5.606	5,896	5.258	4.373	5.746	6.083	6.904	N
				71717	7/717	0/7.7	767.7	177.7	2.238	762.2	2.259	2.314	2.293	2.323	2.340	2.360	2.399	2.418	2.204
2.409	2.362	2.366	7.352	7.797	616 6	016 6	12.2	CV1.12	017"7	007.7	7.77	2.286	2,263	2.285	2.324	2,353	2.376	2.383	2.146
2.399	2.362	2.346	2.317	776.6	7.258	766 6	101.2	100	701.2	2.1/5	2.201	2.244	2.249	2.223	2.316	2.311	2.323	2.376	2.079
2.367	7.45	862 6	7 267	707"7	C01,1	741-7	2.11.5	2.141	2.133	2.137	2.162	2.156	2.198	2.193	2.286	2.306	2.266	2.338	000
CIC.7	907.7	212.2	Z.169	2.169	2.134	2,105	2.069	2.086	2.082	2.076	2.140	2.124	2.165	2.168	2.207	2.257	7.764	022 6	1.643
2.291	2.211	2.199	2.173	2.119	2.112	2.095	2.048	2.056	2.052	2.073	2.076	2.094	2.145	2.138	002 C	20102	01717	2.215	1.778
2.216	2.174	2.169	2.134	2.108	2.076	2.058	2.037	2.034	2.032	2.037	2,070	7.088	210.2	000 °2	171 c	2,150	2.128	2.211	1.699
2.194	2.165	2.142	2.114	2.058	2.048	2.048	2.029	1.989	2.026	2.014	7.044	020 6	110.2 7 077	2+0-7	2.101	2.106	2.114	2.162	1.602
2.182	2.110	2.096	2.072	2.052	2.036	1.998	2.019	1.951	1.9R0	211.1	1.007	1.73/	1.4/2	1.994	2.089	2.047	2,091	2.137	1.477
2.127	2.085	2.032	1.998	1.998	1.963	626.1	2.000	1000 1	1.714	1-01-	576 1	set.1	1.969	1.989	2.017	2.027	2.055	2.085	1.398
2.096	2.048	7,077	104.1	1 957	1 045	1.000	1.050	CBB. I	C/8.1	1,889	1.912	1.949	1.945	1.972	2.009	2.012	2.024	2.058	1.301
1.774	100.2	1.707	1.780	1.755	C26.1	1.875	1.866	1.878	1.866	1.885	1.871	144.1	1.927	1.969	2.002	2.003	7.007	6CU C	242.1
1.984	1.972	1.965	1.976	1.929	1.920	1.871	1.861	1.866	1.856	1.856	1.866	1.920	1.925	1.965	998	1.700	1.770 7007	2.017	1.211
1,980	1.969	1.959	1.959	1.925	1.916	1.866	1.851	1.856	1.846	1.851	1.861	1.912	1.916	1.008	1,17.1	714.1	1.445	2.042	1.176
1.972	1.965	1.947	1.947	1.918	1.905	1.861	1.846	1.846	1.836	1.846	1.856	1.903	1.007	120 1	1.763	1.955	1.987	2.019	1.138
1.969	1.961	1.939	1.941	1.907	1.889	1.856	1.836	1.841	1.826	1.836	128 1	100.1	1/2.1	C74"I	146.1	1.961	1.976	2.042	1.097
1.961	1.945	I.935	1.937	1.896	1.885	1.846	1.831	1.836	1.870	178 1	C10-1	104.1	1.866	1.918	1.929	1.955	1.972	2.019	1.051
1.957	1.937	1.925	1.929	1.875	1.880	1.836	1.815	1 870	100.1	+00" T	1.807	1.861	1.861	1.905	1.920	1.937	1.945	1,991	1.000
1.953	1.933	1.920	1.925	1.866	1.861	1.871	1.708	1.007	1.173	1./8/	1./78	1.854	1.856	1.892	1.916	1.925	1.941	1.984	0.942
1.949	1.918	1.916	1 . RRO	1 854	1 856	1.001	1.707	109.1	1./8/	1.781	1.784	1.836	1.851	1.880	1.910	1.898	1.931	1961	0.875
1.730	1 897	1 898	1.800	1.846	CI8.1	1.798	1.781	1.787	1.781	1.769	1.775	1.826	1.846	1.866	1.892	1.892	1.912	107-1	0.044 0.786
1,007	1.880	1.866	1.856	1.839	1.809	1.787	1.763	1.778	1.775	1.763	1.769	1.815	1.812	1.861	1.849	1 977	1.070	1.73/	4/0.0
1.884	1.871	1.851	1.846	1.817	1.804	1.775	1.751	1.760	1.754	1.751	1.763	1.801	1.804	1.870	110.1	170 1	1.88/	1.925	0.398
1.878	1.866	1.841	1.831	1.809	1.787	1.769	1.735	1.741	1.747	1.731	1.751	1.772	1.795	CO/ 1	1./98	1.851	1.851	1.861	0.097
1.861	1.839	1.831	1.817	1.763	1.757	1.766	1.721	1.728	1.735	142.1	1 775	1 741							-> (d)60-
180	170	160	150	140	130	120	110	<u>10</u>	06	8	20	99	20	40	30	50	0]	0	lan 1 a- 1

Knoop indenter for prism face

,

1011)m race

î	198	16	133	12	149	127	127	17	146				1.0	111				+ + + + + + + + + + + + + + + + + + + +	2	45	8	15	195	75	15	533	51	186	1 29	946	97	NITA MANANAN		5	10)	
-	1.8	1.9	1.9	1.9	1.9	1.9	-	-						4 0	4 6	0 ° C		7.0	1.7	Z-1	2.1	2.2	2.7	2.2	2.3	2.3	2.3	2.3	2.4	7.0	7.4		1.1e-	1.6e-	3(C(01	
170	1.851	1.856	1,861	1.871	1.889	1.907	1.975	596 5	070 1	1 057	1707 J	070 J	1 001		700-7	110.2		010 C	80.7	2.079	2.127	2.169	2.208	2.244	2.283	2.301	2.318	2.353	2,383	5.304	2.417		4.8e-10	3.1e-04	Temp. Face	
160	1.841	1.851	1.866	1.880	1.889	1.898	1 913	1 075	220 1	100	141.1	1.747	101-1	1 073	7/6-7	1.780	1.78/	2.002	2.022	2.052	2.094	2.132	2.167	2.202	2.277	2.294	2.310	2.341	2.371	6.452	7.275		3.4e-12	9.2e-04	Room	
150	1.836	1.846	1.856	1.861	1.866	1.871	1 075	000 1	1 000	1 000	1.070	714 1	1.727	11111	/04.1	1.707	1.789	2.002	2.022	2.061	2.091	2.121	2.150	2.177	2.223	2.244	2.266	2.304	2.340	6.474	7.449	011.17	4.6e-12	3.4e-04		
140	1.826	1.836	1.841	1.851	1.856	1.861	770 \$	1.000	1.0/1	1.000	1.878	1.710	1.733		1.701	1.7/6	1.441	2.005	2.022	2.052	2.085	2.116	2.147	2.179	2.215	2.232	2.248	2.281	2.313	5.521	7 479	7/017	3.1e-10 	1.2e-04		
130	1.804	1.815	1.820	1.831	1.836	1.841	770 1	1.070	1.631	1.001	1/9/1	1.550	1.867	1.707	624.1	C44.1	1.465	1.980	1.994	2.019	2.061	2.099	2.134	2.167	2.206	2.223	2.242	2.275	2.310	6.694	0 450	101.17	2.9e-12	3.7e-04		
120	1.809	1.831	1.851	1.871	1 875	1.880	000 1	1001	1.074	1.70/	1.420	1.455	1.449	Set.1	/c/.1	1 961	1.969	1.984	1.998	2.026	2.061	2.094	2.127	2.165	2.199	2.221	2.242	2.279	2.308	6.022	0 53D	070-7	3.0e-11	2.6e-04		
110	1.856	1.866	1.871	1.875	1 880	1 999	1000	1.878	1,905	1.70/	1.912	1.916	1.920	674°I	1.929	1.933	1,941	1.961	1,980	2.019	2.058	2.094	2.129	2.165	2.197	2.213	2.228	2.256	2.283	11.814	9 EEJ	70017	3.0e-22	2.5e-04	93	;
100	1.731	1.744	157.1	1.763	1 775	1 787	10/01	1./78	1.804	1.815	1.826	1.836	1.846	1.861	1.885	1.898	1.912	1.949	1.976	1.991	2.045	2.058	2.079	2.110	2.132	2.140	2.167	2.202	2.264	5.392		740"7	1.5e-09	1.6e-04	vage ba	
60 06	1.744	1.757	1777	1 769	1 775		1./0/	1.795	1.798	1.815	1.836	1.851	1.866	1.871	1.875	1.880	1.889	1.916	1.984	1,991	2.026	2.042	2.070	2.082	2.119	2.129	7.160	2.208	2.219	5.538		2-130	7.4e-10	1.5e-04	.1 (b) r clea	
- 8	1.738	1.751	1 747	1 775	- 101 ·	10/11	R4/ 1	1.804	1.809	1.815	1.831	1,851	1.866	1.875	1.885	1,889	1.898	1.912	1.929	2.022	2.045	2.076	2.105	2.119	2.181	2.190	7.764	2.228	2.250	5.450		Z.254	1.0e-09	3.2e-04	ABLE 1 Iter ho	
70	797	1 BAL	1015	760 1	070"1	1.651	1.836	1.846	1.861	1.875	1.889	1.903	1.912	1.920	1.929	1.933	1.937	1.949	1.965	1,991	2.019	2.070	2.113	2,145	2.174	7.186	2 202	7.746	2.252	5.660		2.649	2.2e-10	1.7e-04		
60	1 703	000	1.001	P10"1	100.1	1.841	1.846	1.851	1.866	1.880	1.894	1.903	1.912	1.929	1.945	1.953	1.961	1.969	1.998	2,029	2.039	2.055	2,108	2 129	7.181	191.5	076 6	2.785	2.292	5.358		2.446	7.7e-10	4.2e-04	Knoo	5326
50	720)	1.044	1.070	109.1	1.801	1.866	1.875	1.885	1.889	1.898	1.907	1.912	1.920	1.929	1.937	1.945	1.953	2.002	2.026	2.032	7.087	2114	2 174	101 6	2116 6	900 C	176 6	386 6	2.306	B.093		2.463	4.1e-15	3.4e-04		
9	1001	070-1	1.830	1.840	1,836	1.861	1.866	1.880	1.889	1.898	1.912	1.916	1.920	1.929	1.933	1.945	1.961	1.980	2.009	7.057	080	110	· · · · ·	10107	1 700	316 6	026 6	007.7	2.292	7.594		2.642	3.8e-14	1.5e-04		
30	000	1.860	1.678	1.90/	1.912	1.916	1.925	1.937	1.949	1.953	1.965	1.969	1.984	2.002	2.009	2.012	2.022	7.032	7.073	2 174	671 6	701 *7	100 0	177"7	206 6	007°7	71717	2.311	2.362	6.374		2.613	3.1e-12	1.1e-04		
20		1.800	I.894	1.903	1.912	1.916	1.920	1.925	1.929	1.933	1.937	1.953	1.969	1.976	1.984	1.991	7.002	2.019	1 1/1	000 6	061 0	171.2	+07"7	/17.7	407.7	7,200	C97*7	747.2	2.379	7.871		2.479	4.9e-15	2.8e-04		
10		1.851	1.836	1.871	1.880	1.894	1.898	1.925	1.929	57.9.1	1.953	196.1	1.969	1 994	2.015	7.019	7 079	0.57	700.7	/0/17	171-7	2.11/	2.217	7.268	2.772	2.338	2.343	2.374	2.417	A 730	A07.	2.227	6.1e-09	6.5e-04		
0		1.894	1.903	1.912	1.925	146.1	1,961	576.1	676 1	10/11	1074	1. 024	1 987	2 017	210.7	010°5	050 C	750.2	0C0'7	2.046	2.150	2.202	2.232	2.242	2.264	2,311	2.318	2.356	2.392	7 105	r11*/	2.280	6.1e-14	5.0e-04		
Angle->	> (d)bo7	0.097	0.398	0.574	0.699	0.796	A 875	V.010	744 0	1.000	100.1	1.07/	1.1.20		112.1	1 443		1.501	1.398	1.477	1.602	1.699	1.778	1.845	1.903	2.000	2.041	2.079	2.146			N2		A 2		

30°C Z(111)Z	Temp. Face	Room							7.1 (c)	TABLE									
2.6e-04	1.6e-04	4.7e-04	5.6e-04	1.7e-04	2.9e-04	3.7e-04	1.5e-04	4.3e-04	5.2e-04	4.1e-04	7.1e-04	8.3e-04	6.2e-04	4.2e-04	2.4e-04	1.0e-04	2.3e-04	1.8e-04	A 2
5. le-11	9.6e-12	4.7e-09	1.Je-17	1.1e-08	4.5e-12	5.3e-12	9.2e-20	2.9e-10	9.3e-12	2 . 4e-10	6.4e-10	3.4e-13	1.6e-10	1.3e-09	4.0e-12	3.2e-12	6.3e-12	4.6e-11	 22 121001 12100111
2.470	2.581	2.359	2.343	2.592	2.505	2.470	2.672	2.476	2.471	2.534	2.426	2.372	2.402	2.467	2.550	2.699	2.502	2.526	N2 N2
5.876	6.221	4.858	9.340	4.769	6.564	6.594	10.544	5.726	6.630	5.830	5.654	7.475	5.825	5.343	6.592	6.510	6.316	5.854	
10017	7*0*7	140.1	1.941	000.12	7.67.7	Z. 501	2.2/3	2.244	2.230	2.226	2.223	2.242	2.264	2.254	2.288	2.294	2.338	2.346	2.204
2.33/	2.511	2.550	2.311	2.283	2,273	2.270	2.238	2.230	2.208	2.186	2.184	2.208	2.238	2.246	2.256	2.283	2.320	110.2	10°7
2.306	2.277	2.304	2.273	2.262	2.244	2.223	2.204	2.217	2.169	2.165	2.157	2.167	2.217	2.230	7.236	7.77	70 6 6	C/Z.2	2.041
2.272	2.258	2.277	2.254	2.234	2.219	2.190	2.193	2.177	2.155	2.132	2.127	2.157	PT1 5	111.1	401°7	C77.7	2.202	2.270	2,000
2.244	2.240	2.244	2.234	2.195	2.202	2.174	2.174	2.155	2.137	511.6	201.2	77V.2	2,105	2.134	2.174	2.181	2,184	2.230	1.903
2.202	2.199	2.213	2.190	2.169	7.167	151 0	70177	700-7	C/N"7	900 0	3C0.2	2.073	2.094	2.099	2.147	2.157	2.160	2.193	1,845
121.2	2.141	2.142	2.129	2.137	2.113	2.105	2.076	2.052	2.032	2.024	2.015	2.039	2.073	2.064	2.119	2.127	7.145	2.179	1.677
2.137	2.121	2.110	2.094	2.099	2.082	2.073	2.039	2.036	2.015	1.998	1.965	2.015	2.029	2-045	210.2	2.001	2,080	2.091	1.602
2.099	2.091	2.085	2.055	2.073	2.052	2.029	2.015	2.012	1.980	1.961	245.1	1.710	1.771	C0%.I	1.998	2.029	2.045	2.067	1.477
2.064	2.061	2,052	2.026	2.039	1.998	0/1.1	1.701	1.920	1.905	1.880	1.875	1.885	1.916	1.941	1.980	1,991	2.026	2.052	1.398
Z00-Z	1.444	1.980	1.961	1.961	1.937	1.937	1.941	1.903	1.866	1.875	1.866	1.856	1.903	1.920	1.933	1.984	2 017	1.774 7 005	1.273
1.984	1,984	1.976	1.953	1.949	1.929	1.920	1.933	1.894	1.856	1.871	1.856	1.846	1,898	1. 207	1.975	1.9/2	1.991	1.994	1.243
1.984	1.984	1.976	1.953	1.949	1.929	1.920	1.933	1.894	1.856	1.871	1.856	1.044A	C88.1	1,885	1.912	1.945	1.957	1.969	1.211
1.953	1.961	1.965	1.937	1.925	1.912	1.885	1.920	1.800	1841	1.846	1.826	1.820	1.875	1.875	1.907	1.933	149.1	1.957	1.176
1.424	C#6.1	1.941	1.925	1.898	1.894	1.866	1.903	1.856	1.831	1.836	1.820	1.809	1.871	1.871	1.898	1.925	1.937	1.941	160.1
1.925	1.937	1.925	1.916	1.885	1.885	1.861	1.898	1.846	1.820	1.831	1.809	1.804	1.866	1.866	C/9.1	1.916	1.929	1.933	1.051
1.916	1.929	1.907	1.912	1.871	1.875	1.856	1.894	1.836	1.809	1.820	1.798	1 798	1C8.1	1.851	1.861	1.907	1.925	1.925	1.000
1.907	1.920	1.889	1.907	148.1	1.866	1.041	1.000	CIR.1	1./8/	1.804	1.775	18/.1	1.836	1.836	1.856	1.898	1.907	1.916	0.942
1.004	1.070	1.8.1	1.878	1,836	1.846	1.831	1.880	1.804	1.781	1.793	1.763	1.775	1.820	1.809	1.851	1.889	1.894	1 9/7	0./70
1.875	1.885	1.861	1.894	1.826	1.836	1.826	1.875	1.793	1.769	1.775	1.751	1.769	1.798	1.793	1.841	1.875	1.873	1.887	0.699
1.866	1.875	1.851	1.889	1.815	1.831	1.815	1.871	1.781	1.763	1.757	1,738	1.767	1781	1./02	1.826	1.856	1.871	1.871	0.574
1.861	1.866	1.841	1.875	1.804	1.826	1.804	1.866	1.769	1.757	1 744	12/-1	1./38	1./65	1.757	1.809	1.851	1.866	1.851	0.398
1.851	1.861	1.836	1.861	1.793	1,815	19/1	1.836	16/.1	1.738	1.725	1.718	1.725	1,757	1.751	1.793	1.846	1.861	1.831	0.097
1.841	1 856	408 1	1 051	101	000				- (() for				****				A1	N	Angle->
180	170	160	150	140	130	120	110	100	96	8	02	99	50	4	92	20	9	<	

1

Knoop indenter for sphenoidal face

z(<u>111</u>)	Temp. Ice	Room Fr					face	<u>]</u> enoidal	7.1 (d or sphe	TABLE inter b	apni qo	Knoc							
3.7e-04	3.9e-04	4.3e-04	6.5e-04	8.4e-04	2.5e-04	4.2e-05	2.0e-05	1.3e-04	1.5e-04	1.5e-04	1.1e-04	2.1e-04	2.1e-04	7.4e-05	1.7e-04	4 2.3e-04	1 2.9e-0	3.2e-04	AZ
9.0e-13	5.3e-08	4.5e-16	4.4e-11	2.9e-13	2.9e-09	1.3e-05	1.1e-04	1.8e-14	3.9e-16	7.8e-15	1.9e-12	4.0e-10	3.4e-10	6.5e-14	2 6.4e-13	1.9e-12	75.9e-11	1.Se-05	AI
2.483	2.473	2.439	2.326	2.227	2.364	2.636	2.760	2.656	2.613	2.622	2.686	2,543	2.576	2.822	2.678	2.617	2.599	2.589	N2
7.040		8.775	6.006	6.985	4.899	2.832	2.411	7.590	8.484	7.768	6,608	5.433	5.479	7.517	7.124	9.902	6.200	5,383	IN
			000.1	0/017	0++*7		CUC. 2	2.52/	2.511	2.339	2.315	2.322	2.321	2.251	2.241	2.248	2.232	2.210	2.204
1766 6	407.1 486 C	286 6	106.2	90C'7	676°Z	C/4.2	2.481	2.285	2.303	2.285	2.292	2.278	2.265	2.241	2.213	2.223	2.178	2.202	110.2
CIZ.7	2.219	2.234	2.266	2.313	2.399	2.457	2.458	2.250	2.272	2.248	2.246	2.268	2.245	2.206	2.186	2.174	2.156	101.2	2.041
2.193	2.199	2.219	2.246	2.290	2.386	2.448	2.447	2.223	2.217	2.222	2.215	2.240	2,195	2.190	CT1.2	7.13/	2,125	2.113	2.000
2.172	2.181	2.206	2.228	2.268	2.374	2.439	2.435	2.206	2.208	2.206	7.179	2.205	-11.1 Las c	101 1	7.133	7.121.2	2.091	2.072	1,903
2.124	2.140	2.177	2.186	2.217	2.348	2.421	2.411	2.167	C11.7	71.100	291 6	111.2	2.120	2.085	2.121	2.096	2.062	2.048	1.845
2.099	7.012	2.140	2 150	7 188	112 6	2.52/	2,548	2.116	2.116	2.116	2.137	2.132	2.095	2.079	2.062	2.075	2.032	2.029	1.778
2.052	2.048	2.055	2.070	2.129	2.232	2.273	2.313	2.102	2.096	2.105	2.121	2.099	2,082	2.061	2.055	7.027	1.712	C#7.1	1.602
2.026	2.015	2.005	2.026	2.096	2.186	2.213	2.275	2.048	2.085	2.045	2.045	2.047	2.012	7.048	1 080	720 1	C#4.1	1.903	1.477
1.984	1.972	1.972	1.998	2.045	2.140	2.197	2.232	2.015	2.015	2.019	210.2	174.1	1.494	1.949	1.941	1.925	1.903	1.894	1.398
-146-1	1.949	1.957	1,707	1.771	140.2	7,181	2.184	1.991	1.984	1.991	2.005	1.976	1.980	1.937	1.907	1.918	1.875	1,885	1.201
1.920	1.920	1.920	1,953	1.984	2.058	. 2.172	2.172	1.984	1.976	1.984	1.976	1.969	1.972	1.933	1.898	1.903	1.041 1.866	C/8.1	1.245
1.903	1.912	1.907	1.941	1.976	2.026	2.162	2.160	1.980	1.969	1.980	1.969	1.957	1.965	1.975	1.480	1,8/3	1.846	1.866	1.211
1.885	1.907	1.898	1.929	1.969	1.991	2.152	2.147	1.976	1.961	1.972	1.747	C44.1	1.45/	1,912	1.875	1.866	1.841	1.861	1.176
1.866	1.903	000 T	1.916	196.1	C44	2.121	2.105	1.957	1.941	1.961	1441	1441	1.931	1.903	1.866	1.856	1.831	1.856	1.138
1.851	1.875	1.880	1.889	1.945	1.937	2.099	2.070	1.949	1.933	1.953	1.933	1.937	1.912	1.892	1.861	1.030	C18.1	1.815	1.051
1.841	1.861	1.871	1.880	1.937	1.929	2.076	2.032	1.941	. 1.929	1.945	1.920	1.933	1.905	C/8.1	1.846	1.826	1.804	1.812	1,000
1,836	1.846	1.866	1.801	1.977	1.712	2.029	1.972	1.925	1.916	1.925	1.903	1.866	1.894	1.871	1.841	1.820	1.793	1.801	0.942
1.820	1.804	1.851	1.851	1.907	1.903	2.005	1.953	1.916	1.912	1.920	1.889	1,861	1.871	1.866	1.826	1 809	L//.1	1./84	0.796
1.815	1.787	1.846	1.846	1.898	1.894	1.980	1.933	1.907	1.903	1.907	1.880	1.851	1.866	1.070	1./75	RV1.1	167.1	1.769	0.699
1.809	1.769	1.836	1.836	1.889	1.885	1.953	1.912	1.903	1.894	1.903	1.000	1,630	1.831	1.841	1.793	1.787	1.738	1.754	0.574
1.804	1.763	1.826	1.831	1.875	1.875	1,074	1.000	1.004	1.880	1.889	1.861	1.831	1.823	1.831	1.778	1.781	1.725	1.731	0.398
1.793	1.744	1.809	1.815	1.856	1.861	1.866	1.866	1.861	1.871	1.866	1.856	1.815	1.787	1.784	1.766	1.751	1.708	1 714	Log(P) <-
180	170	160	150	140	130	120	110	100	90 1 co (1) 1	80	70	60	50	40	30	20	10	0	Angle->

Angle	N2	N3	W	В	A2
0	2.343	2.772	-8.40254	0.00231	3.3591e-04
10	2.348	2.838	-8.34243	0.00277	4.0331e-04
20	2.457	2,348	-11.18001	0.00308	2.4835e-04
30	2.640	2.355	-16.01522	0.00348	1 .05 01e-04
40	2.612	2.375	-14.87219	0.00445	1.6951e-04
50	2.525	2.275	-13.02878	0.00442	2 .6896 e-04
60	2.478	2.897	-11.13580	0.00465	3.6707e-04
70	2.393	2.308	-9.65422	0.00509	6.4766e- 04
80	2.494	2.951	-11.71940	0.00575	4.4163e-04
90	2.553	2.192	-13.58693	0.00613	3.4999e-04
100	2.579	2.139	-14,21116	0.00628	3.1543e-04
110	2.559	2.572	-13.79912	0.00578	3.1498e-04
120	2.429	2.147	-10.38594	0.00531	5.6338e-04
130	2.580	2.201	-14.27143	0.00495	2.3055e-04
140	2.504	2.232	-12.37873	0.00442	3.0077e-04
150	2.511	2.327	-12.25238	0.00381	2.4023e-04
160	2.422	2.163	-10.13444	0.00319	3.1604e-04
170	2.459	2.197	-11.07514	0.00291	2.3006e-04
180	2.220	2.281	-5.39730	0.00218	6.3115e-04

Room Temp. 30°C d-AHT m (110)

Table 7.2 (a) (For High Load Region)

Angle	N2	N3	W	В	A2
0	2.280	2.253	-7.15376	0.00241	5.0007e-04
10	2.227	2.183	-5.76343	0.00235	6. 5386e-04
20	2.438	2.117	-11.45694	0.00318	2.8418e-04
30	2.613	2.146	-16.35463	0.00326	1.1062e-04
40	2.642	2.069	-17.18942	0.00455	1.4632e-04
50	2.463	2.246	-12.15192	0.00408	3.3719e-04
60	2,446	2.524	-11.40105	0.00452	4.1992e-04
70	2.649	2.361	-17.24219	0.00536	1.7491e-04
80	2.534	2.119	-14.09483	0.00537	3.2421e-04
90	2.730	2.238	-19.70381	0.00648	1.4752e-04
100	2.692	2.201	-18.43738	0.00596	1.6107e-04
110	2.552	2.052	-14.56596	0.00473	2.5060e-04
120	2.528	2.156	-13.75755	0.00441	2.6080e-04
130	2.459	2.140	-11.91762	0.00430	3.6752e-04
140	2.672	2.087	-17.88787	0.00435	1.1707e-04
150	2.448	2.092	-11.57066	0.00383	3 .3924e -04
160	2.225	2.202	-5.55978	0.00316	9.1924e-04
170	2.412	2.238	-10.61417	0.00303	3.0960e-04
180	2.497	2.078	-12.99466	0.00260	1.5967e-04

Room Temp. 30°C d-AHT C (010)

Table 7.2 (b)) (For High Load Region)

Angle	N2	N3	ω	В	A2
0	2.526	2.159	-13.93359	0.00332	1.8396e-04
10	2.502	2.297	-13.12973	0.00360	2.3360e-04
20	2.699	2.157	-18.80193	0.00432	1.0034e-04
30	2.550	2.115	-14.70438	0.00454	2.4016e-04
40	2.467	2.144	-12.25568	0.00495	4.1765e-04
50	2.402	2.159	-10.36370	0.00515	6.2128e-04
60	2.372	2.034	-9.64897	0.00574	8.2678e-04
70	2.426	2.244	-11.07029	0.00636	7.0516e-04
80	2.534	2.232	-14.02321	0.00644	4.08 34e-04
90	2.471	2.036	-12.36170	0.00597	5.1626e-04
100	2.476	2.187	-12.53499	0.00528	4.3201e-04
110	2.672	2.073	-17.88597	0.00527	1 .5 117e-04
120	2.470	2.192	-12.35516	0.00449	3.6518e-04
130	2.505	2.014	-13.36080	0.00439	2 .9354e -04
140	2.592	2.115	-15.85614	0.00418	1.719Be-04
150	2.343	2.042	-8.79227	0.00363	5.6353e-04
160	2,359	2.108	-9.26181	0.00334	4.6856e- 04
170	2.581	2.036	-15.40124	0.00370	1.5603e-04
180	2.470	2.131	-12.31499	0.00336	2.5578e-04

Room Temp. 30°C

d-AHT Z (111)

Table 7.2 (c) (For High Load Region)

Angle	N2	N3	W	B	A2
0	2.589	2.282	-15.45296	0.00669	3.2067e -04
10	2.599	2.069	-15.90561	0.00641	2.8842e-04
20	2.617	2.227	-16.41067	0.00574	2.2753e-04
30	2.678	2.254	-18.28559	0.00577	1.6570e-04
40	2.822	2.272	-22.22561	0.00562	7.3689e-05
50	2.576	2.552	-15.04397	0,00448	2.0505e-04
60	2.543	2.277	-14.41434	0.00402	2.1345e-04
70	2.686	2.410	-18.33018	0,00433	1.0798e-04
80	2.622	2.249	-16.30312	0.00421	1.4722e-04
90	2.613	2.324	-16.18884	0.00419	1.5368e-04
100	2.656	2.196	-17.31542	0.00430	1.2574e-04
110	2.760	2.042	-20.69219	0.00169	1.9629e-05
120	2.636	2.488	-16.94509	0.00171	4.1532e-05
130	2.364	2.089	-9.55115	0.00202	2.5101e-04
140	2.227	2.074	-5.66309	0.00294	8.4006e-04
150	2.326	2.162	-8.28605	0.00379	6.5133e-04
160	2.439	2.087	-11.48076	0.00450	4.3151e-0
170	2.473	2.049	-12.31865	0.00480	3.8972e -0
180	2.483	2.106	-12.55843	0.00481	3.7021e-0

Table 7.2 (d)	Room Temp. 30°C	
(For High Load Region)	d-AHT Z (111)	

TABLE 7.3 (a)

Constants A, B, C derived from the quadratic equation

Room Temp : 30°C ; d-AHT :- m (110)

۴

.

;	Angle	} }	A in 10 ⁻³		B	ł	Ç	
 ;		· }	-1.1604	· }	1,0971	·	89.1440	•
1	10	{	-0.5702	1	1.7985	ł	83,9216	
1	20	ł	-1.2523	ł	1.0285	t	77.2929	
ł	30	:	-1.7709	ł	1.0496	1	75.3128	
с 8	40	ł	1.0081	1	0.5351	ł	75.3447	
ł	50	1	-0,9095	÷	0.8242	1	67,0688	
:	60	1	1.7289	ł	0.4593	1	70.2465	
ŀ	70	ł	-0.5942	ł	0.7307	;	59.9416	
ŧ	80	ł	0.6904	ţ	0.5410	1	60,3053	
	90	ł	0.2484	ł	0.5517	ŧ	60.4566	
;	100	1	0.3072	ł	0.5272	ł	61,4309	
ł	110	1	0.1123	1	0.5926	ł	60.7581	
ł	120	;	0.4402	ŧ	0.5676	ł	63.3301	
2	130	:	-0.1035	ł	0.6660	ł	67.4987	
i	140	;	-0.2402	:	0.7224	ł	69.1932	
ł	150	1	0.6737	ł	0.6730	ł	76.0811	
:	160	ł	-0,1802	1	0.8813	ł	75.9200	
;	170	1	-1,7057	ł	1.1304	ł	76,0204	
ł	180	\$ {	-2.9075	ł	1,4269	s E	77.6908	

,

TABLE 7.3 (b)

Constants A, B, C derived from the quadratic equation

Room Temp : $30^{\circ}C$; d-AHT :- c (010)

L.

 Angle	 A in 10 ³		B	 	C	
 0 10 20 30 40 50 60 70 80 90 100 110 110 120 130	 $\begin{array}{r} -2.4147 \\ -4.6847 \\ -2.7492 \\ -3.6318 \\ -2.6835 \\ -2.2890 \\ -0.9431 \\ -2.3291 \\ -3.2206 \\ -2.3434 \\ -2.2324 \\ -1.5433 \\ -1.2448 \\ -2.0654 \\ -2.5472 \end{array}$		1.5537 1.9638 1.4291 1.5437 1.2303 1.2213 0.9934 1.1086 1.2840 1.0433 1.0836 1.0201 1.0302 1.2024 1.2533		77,7907 66,4063 72,5800 74,3236 65,8468 66,3464 65,2419 62,4334 53,3674 55,8830 55,4372 69,0070 69,3390 61,8619 66,1945	
150 160 170 180	 -1.5927 -1.0783 -2.6438 -2.9744	* * * * * *	1.1799 1.2219 1.4721 1.5921		67.5230 70.4560 71.4328 79.5498	

TABLE 7.3 (c)

Constants A, B, C derived from the quadratic equation

Room Temp : $30^{\circ}C$; d-AHT :- z (111)

1	Angle	1	A in 10 ³	1	В	;	С	1
ŧ	0	ł	-3,7420	ł	1.5575	ł	69.3289	}
ł	10	ţ	-2.0661	ŧ	1,2506	ł	71.5900	1
ł	20	ł	-3.1794	ł	1.3222	;	67.9298	ł
ł	30	ł	-3.1417	ł	1.3018	ł	61,7225	ł
ł	40	1	-2.9195	ł	1.2527	ł	56.3890	ì
1	50	;	-1.6673	;	1.0481	ł	58.3756	1
i ł	60	ł	-2.0651	ţ	1.0787	ł	51,6042	ł
ł	70	ł	-1.7826	ł	0.9852	ł	51.7500	1
ł	80	;	-1.7142	1	0.9606	1	54.7600	ł
ì	90	ŧ	-2.0906	2	1.0545	;	53.4263	:
ł	100	ł	-2,6858	÷	1,1828	1	55,7782	2
;	110	ţ	-0.9756	ŧ	0,8868	ł	69.5011	1
ł	120	1	-2,2396	1	1.1937	ł	60,3371	ł
ł	130	ł	-2.9105	:	1.2970	ł	61,7000	ł
ł	140	ł	-3.7075	ł	1.4488	;	60,6846	1
;	150	ţ	-1.4438	ł	1.1657	ł	69.6240	:
ł	160	;	-2.9770	ţ	1.4579	;	65.9775	÷
ł	170	1	-2.5353	ł	1.3137	ţ	71.0310	;
ł	180	ł	-2,8954	:	1.4353	1	68.3514	1

TABLE 7.3 (d)

Constants A, B, C derived from the quadratic equation

Room Temp : 30°C ; d-AHT :- z (111)

1	Angle	;	A in 10 ³	;	B		C	
ł	0	ł	-1,5388	;	0.9222	ł	55.5154	ł
ŧ	10	ł	-2.2582	ł	1.0520	ł	53,1553	ŧ
ł	20	1	2.2231	ł	1.0794	;	57.6602	t T
ł	30	;	-2.8634	ł	1.1583	ţ	58.2332	ţ
;	40	;	-2.2324	ł	1.0711	;	64.9972	ł
ł	50	ł	-1.1626	ł	1.0129	ŧ	69.3240	ł
ł	60	;	-2.9883	ł	1.3337	ţ	66,5243	ì
1	70	ł	-1.7681	i	1,0958	;	72,2270	ł
ł	80	1	-0.5599	;	0,9286	ł	76,9780	;
ł	90	ł	-1,3179	ł	1.0430	ł	74.1580	ł
ł	100	ł	-0,8953	;	0,9663	1	76.3370	1
Ŧ	110	:	-1.0702	1	3.1157	ţ	77.8179	ł
ł	120	1.	-0.8826	1	2.7826	ť	85.0484	ł
1	130	÷	-0.7494	ł	2.5109	ł	63.53 96	ł
;	140	ł	-1,1128	1	1.2618	ł	72.2600	ł
ł	150	ţ	-1.7916	ł	1.2286	;	63.6662	ł
ł	160	ł	-2,5878	;	1.2369	ł	61.1353	i
ł	170	ļ	-2,3810	ł	1,2027	ł	57.8682	ł
ł	180	ł	-1.4879	ł	1.0639	į	60.3195	;

TABLE 7.4 (a)

Forcentage deviation of the observed diagonal length from the diagonal length calculated from the equations (a) $P = ad^n$ (b) $D = AP^2 + BP + C$ for d-AHT

Room Temp : 30° C ; Angle = 0° ; d-AHT :- c (010)

· ·		·	
P D D obs cale	% deviation	D calc	% deviation
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 $6, 46$ 3 15.36 3 15.36 3 18.55 2 19.43 9 18.92 4 17.32 0 18.40 3 19.25 3 19.25 3 19.25 3 19.88 1 20.39 4 20.12 5 20.44 5 16.71 6 16.94 0 17.10 7 11.45 7 19.59 9 18.62 8 17.96 9 21.44 8 22.06 8 21.10 7 23.10 9 19.27 8 17.99	79.73 61.66 63.58 85.49 67.41 89.31 91.20 93.08 94.96 96.83 98.69 100.55 102.40 104.24 106.07 107.89 115.12 122.22 136.07 149.44 162.32 174.71 186.63 209.01 219.47 229.46 247.97	$ \begin{array}{c} 1.74\\ 2.07\\ 2.37\\ 1.68\\ 0.11\\ -2.33\\ -1.11\\ 0.08\\ 1.18\\ 2.24\\ 2.43\\ 3.43\\ -0.41\\ 0.59\\ 1.53\\ -4.37\\ 0.76\\ -2.16\\ -3.75\\ -6.48\\ -5.06\\ 0.05\\ 1.62\\ 2.00\\ 5.19\\ 1.14\\ 0.62\\ \end{array} $

•

TABLE 7.4 (b)

Percentage deviation of the observed diagonal length from the diagonal length calculated from the equations (a) $F = ad^n$ (b) $D = AF^2 + BF + C$ for d-AHT

Room Temp : 30° C ; Angle = 0° ; d-AHT :- z (111)

{		P = ad	^n }	$D = AP^{\uparrow}$	2 + BP + C;
Ъ Р	D	D	%	D	
	0D5 .	calc	09V13t10n	ca.cc	deviation;
1.25	67.73	56.91	-19.01	71,26	4.95
2.50	70.99	69,00	-2,88	73.19	3,01
3.75	74.26	77,22	3.83	75.12	1.14 }
1 5.00	77,52	83,65	7,33	77.02	-0.65
6.25	79.15	89.00	11.07	78.92	-0.29
1 7.50	80.78	93.62	13.72	80.79	0.01
8.75	82.42	97.71	15.65	82.67	0.30
10.00	84.05	101.41	17.12	84.53	0.57
11.25	85,68	104.78	18.23	86.38	0.81
12.50	87.31	107,89	19.07	88.21	1.02
13.75	88.94	: 110.79	19.72	; 90.03	1.21
15.00	90.58	113.50	20,19	91.85	1.38
16.25	93.01	116.05	19.85	93.65	0.68
17.50	98.74	118.46	16.65	95.43	-3.47
18.75	98.74	120.75	18.23	97.21	-1.57
: 20.00	101.18	: 122.94	17.70	98.98	-2.22
1 25.00	112.61	: 130.80	13,91	105.93	-6.31
: 30.00	116.69	: 137.60	15.20	112.69	-3.55
: 40.00	123.22	151.97	18.92	125,64	1.93
: 50.00	1 137.90	169.01	18.41	137.85	-0.04
1 60.00	150.96	184.34	18.11	149.31	-1.11
; 70.00	155.86	198.38	21.43	: 160.02	2.60
80.00	: 169.73	: 211.40	19.71	: 169.98	0.15
:100.00	186.05	: 235.10	20.86	187.66	0,86
:110.00	188.49	: 246.02	23.38	195.38	3.53
120.00	: 207.26	256.43	19.17	202.34	-2,43
1140.00	1 217.06	: 275.96	21.34	214.04	-1.41
160.00	221.95	: 294.07	24.52	: 222.73	0.35
1	1			8	

TABLE 7.4 (c)

1

Percentage deviation of the observed diagonal length from the diagonal length calculated from the equations ****** (a) $P = ad^n$ (b) $D = AP^2 + BP + C$ for d-AHT

Room Temp : 30° C ; Angle = 0° ; d-AHT :- z (111)

.

	1 { 1	: P = ad	^n }	$D = AP^{2}$	2 + BP + C
-	, D	D	* :	D	%
P	l obs	calc	deviation:	calc	deviation
1.25	51.82	45.87	-12,97	56,66	8.54
2,50	53.86	51.78	-4.02)	57.81	6.83
3.75	56.71	55.59	-2.01	58,95	3,80
5.00	: 58.75	58.46	-0.50 :	60,08	2.21
6.25	60.79	: 60.79	0.00	61,21	0,69
7.50	61.20	62.76	2.49	62.34	1.83
8.75	63.24	64.48	1.92	63.46	0.35
10.00	64.87	: 66.00	1.71	64.58	-0.45
11.25	65,28	67.37	3.10	65.69	0.62
12.50	: 66.91	68.63	2.51	66.80	-0.16
13.75	1 71.81	69.78	-2.91	67.90	-5.76
15.00	1 72.62	70.85	-2.50	69.00	-5.25
16.25	1 73.44	1 71.85	-2.21	70.09	-4.78
17.50	1 75.07	72.79	-3.13	71.18	-5.47
18.75	1 75.89	73.67	-3.01	72.26	-5.02
20.00	; 76.70	1 74.51	-2,94	73.34	-4.58
25.00	1 78.34	; 77.48	-1,11	77.61	-0.94
30,00	1 79.97	1 79.99	0.03	81.79	2.23
40,00	1 88.13	87.68	-0.51	89.94	2.01
50.00	94.25	96.65	2.48	97.77	3.60
60.00	106.89	104.66	-2.13	105.31	-1.50
70,00	: 111.79	111.95	0.14	112.53	0.66
80.00	117,91	118.67	0.64	119.44	1.28
100.00	: 129.74	: 130.82	0.83	132,35	1.97
1110.00	137.09	; 136.38	-0.52	138.34	0.90
120.00	: 144.43	141.66	-1.96	144.02	-0.28
140.00	1 159.12	: 151.53	-5.01	154.46	-3.02
160.00	162.06	: 160.62	-0,90	163.67	0.98
1	ł			ł	

TABLE 7.4 (d)

Percentage deviation of the observed diagonal length from the diagonal length calculated from the equations (a) $P = ad^n$ (b) $D = AP^2 + BP + C$ for d-AHT

Room Temp : 30° C ; Angle = 20° ; d-AHT :- c (010)

		P = ad	^ n }	D = AP ⁺	2 + BP + C
р	D	D	%	D	% ;
	obs	Calc	deviation	calc	deviation;
1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00 11.25 12.50 13.75 15.00 16.25 17.50 18.75 20.00 25.00 30.00 40.00 50.00 60.00 70.00	73.44 78.34 79.97 81.60 82.42 83.23 84.05 84.86 85.68 85.68 85.68 85.68 93.02 94.66 96.29 97.92 100.37 104.45 115.06 125.66 134.64 159.94	57.24 57.24 69.24 77.40 83.77 89.06 93.64 97.69 101.34 104.67 107.75 110.60 113.28 115.80 115.80 118.18 120.44 122.60 126.10 136.45 154.55 170.22 184.20 196.92	-28.30 -13.14 -3.32 2.59 7.46 11.12 13.96 16.26 18.14 19.73 18.84 17.88 18.26 18.70 18.13 17.17 15.68 18.69 20.90 13.17 16.30 17.86	74.36 76.14 77.90 79.66 81.40 83.14 84.57 86.59 88.31 90.01 91.71 93.39 95.08 96.75 98.41 100.06 106.59 112.98 125.35 137.16 148.43 159.14	$\begin{array}{c} 1.24 \\ -2.89 \\ -2.66 \\ -2.44 \\ -1.25 \\ -0.11 \\ 0.61 \\ 2.00 \\ 2.98 \\ 3.91 \\ 2.13 \\ 0.40 \\ 0.44 \\ 0.48 \\ 0.50 \\ -0.31 \\ 2.01 \\ -1.84 \\ -0.25 \\ 1.84 \\ -7.75 \\ -3.58 \\ -1.21 \end{array}$
100.00	184.42	229.79	19.74	187.99	1,90
110.00	192.58	239.47	19.58	196.52	2,00
120.00	198.29	248.67	20.26	204.48	3,03
140.00	212.98	265.83	19.88	218.77	2,65
160.00	239.09	281.65	15.11	230.86	-3,56

TABLE 7.4 (8)

Percentage deviation of the observed diagonal length from the diagonal length calculated from the equations (a) $P = ad^n$ (b) $D = AF^2 + BP + C$ for d-AHT

Room Temp : 30° C ; Angle = 20° ; d-AHT :- z (111)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	l t	1	P = ad	^n	$D = AP^{2}$	2 + BP + C
1.2570.18 55.04 -27.51 69.56 -0.87 2.5070.99 66.62 -6.56 71.22 0.32 3.7571.80 74.50 3.62 72.64 1.43 5.00 72.62 80.64 9.95 74.45 2.47 6.25 75.07 85.75 12.45 76.06 1.30 7.50 77.52 90.17 14.03 77.67 0.19 8.75 79.15 94.08 15.87 79.25 0.13 10.00 80.78 97.61 17.24 80.83 0.06 11.25 62.42 100.83 18.26 62.40 -0.02 12.50 83.23 103.80 19.82 83.96 0.87 13.75 84.05 106.56 21.12 85.51 1.71 15.00 85.68 109.14 21.50 87.05 1.57 16.25 86.13 111.58 21.02 86.57 0.50 17.50 93.84 113.88 17.60 90.09 -4.16 20.00 96.29 118.15 18.50 93.10 -3.43 25.00 97.92 117.98 17.00 98.99 1.08 30.00 106.89 126.66 15.61 104.73 -2.06 40.00 116.69 141.66 17.63 115.73 -0.31 50.00 126.48 154.51 18.45 144.90 0.88 40.00 116.69 141.66 1	Р	D 1 obs 1	D calc	% deviation	D calc	% deviation
2.5070.9966.62 -6.56 71.220.323.7571.8074.503.6272.841.435.0072.6280.649.9574.462.476.2575.0785.7512.4576.061.307.5077.5290.1714.0377.670.198.7579.1594.0815.8779.250.1310.0060.7897.6117.2480.830.0611.2562.42100.8318.2682.40-0.0212.5083.23103.8019.8283.960.8713.7584.05106.5621.1285.511.7115.0085.68109.1421.5087.051.5716.2588.13111.5821.0288.570.5017.5093.84116.0619.1591.60-2.4520.0096.29118.1518.5093.10-3.4325.0097.92117.9817.0098.991.0830.00106.89126.6615.61104.73-2.0640.00116.69141.6617.63115.73-0.8350.00126.48154.5118.14126.09-0.3160.00133.82165.8719.32135.821.4770.00143.62176.1218.45144.90.8860.00151.78185.5218.19153.351.02100.00167.28202.3417.33168.35 <t< td=""><td>1.25</td><td>70.18 (</td><td>55.04</td><td>-27.51</td><td>69.58</td><td>-0.87</td></t<>	1.25	70.18 (55.04	-27.51	69.58	-0.87
3.75 71.80 74.50 3.62 72.84 1.43 5.00 72.62 80.64 9.95 74.46 2.47 6.25 75.07 85.75 12.45 76.06 1.30 7.50 77.52 90.17 14.03 77.67 0.19 6.75 79.15 94.06 15.87 79.25 0.13 10.00 80.78 97.61 17.24 80.83 0.06 11.25 82.42 100.83 18.26 82.40 -0.02 22.50 83.23 103.80 19.82 83.96 0.87 13.75 84.05 106.56 21.12 85.51 1.71 15.00 85.68 109.14 21.50 87.05 1.57 16.25 86.13 111.58 21.02 88.57 0.50 17.50 93.84 116.06 19.15 91.60 -2.45 20.00 96.29 118.15 18.50 93.10 -3.43 25.00 97.92 117.98 17.00 98.99 1.08 30.00 106.89 126.68 15.61 104.73 -2.06 40.00 118.69 141.66 17.63 115.73 -0.63 50.00 126.48 154.51 18.14 126.09 -0.31 60.00 133.82 165.87 19.32 135.82 1.47 70.00 143.62 176.12 18.45 144.90 0.88 80.00 151.78 <t< td=""><td>2,50</td><td>70.99</td><td>66.62</td><td>-6.56</td><td>71,22</td><td>0.32</td></t<>	2,50	70.99	66.62	-6.56	71,22	0.32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.75	71.80	74,50	3.62	72.84	1,43
6.2575.0785.75 12.45 76.06 1.30 7.50 77.5290.17 14.03 77.67 0.19 6.75 79.1594.08 15.87 79.25 0.13 10.00 80.78 97.61 17.24 80.83 0.06 11.25 82.42 100.83 18.26 82.40 -0.02 12.50 83.23 103.80 19.82 83.96 0.87 13.75 84.05 106.56 21.12 85.51 1.71 15.00 85.68 109.14 21.50 87.05 1.57 16.25 86.13 111.56 21.02 88.57 0.50 17.50 93.84 116.06 19.15 91.60 -2.45 20.00 96.29 118.15 18.50 93.10 -3.43 25.00 97.92 117.98 17.00 98.99 1.08 30.00 106.89 126.66 15.61 104.73 -2.06 40.00 116.69 141.66 17.63 115.73 -0.83 50.00 125.48 154.51 18.14 126.09 -0.31 60.00 133.82 165.87 19.32 135.82 1.47 70.00 143.62 176.12 16.45 144.90 0.88 80.00 151.78 185.52 18.19 153.35 1.02 100.00 167.28 202.34 17.33 168.35 0.64 110.00 171.36 209.9	5.00 1	72.62	80.64	9.95 1	74,46	2.47
7.50 77.52 90.17 14.03 77.67 0.19 8.75 79.15 94.06 15.87 79.25 0.13 10.00 60.78 97.61 17.24 80.83 0.06 11.25 62.42 100.63 18.26 62.40 -0.02 12.50 83.23 103.80 19.82 83.96 0.87 13.75 84.05 106.56 21.12 85.51 1.71 15.00 85.68 109.14 21.50 87.05 1.57 16.25 88.13 111.58 21.02 88.57 0.50 17.50 93.84 113.88 17.60 90.09 -4.16 18.75 93.84 116.06 19.15 91.60 -2.45 20.00 96.29 118.15 18.50 93.10 -3.43 25.00 97.92 117.98 17.00 98.99 1.08 30.00 106.89 126.66 15.61 104.73 -2.06 40.00 116.69 141.66 17.63 115.73 -0.83 50.00 126.48 154.51 18.14 126.09 -0.31 60.00 133.82 165.87 19.32 135.82 1.47 70.00 143.62 176.12 18.45 144.90 0.88 80.00 151.78 185.52 18.19 153.35 1.02 100.00 167.28 202.34 17.33 168.35 0.64 110.00	6.25 ;	75.07	85.75	12.45 (76.06	1.30
8.7579.1594.08 15.87 79.250.13 10.00 80.78 97.61 17.24 80.83 0.06 11.25 82.42 100.83 18.26 82.40 -0.02 12.50 83.23 103.80 19.82 83.96 0.87 13.75 84.05 106.56 21.12 85.51 1.71 15.00 85.68 109.14 21.50 87.05 1.57 16.25 88.13 111.58 21.02 88.57 0.50 17.50 93.84 113.88 17.60 90.09 -4.16 18.75 93.84 116.06 19.15 91.60 -2.45 20.00 96.29 118.15 18.50 93.10 -3.43 25.00 97.92 117.98 17.00 98.99 1.08 30.00 106.89 126.66 15.61 104.73 -2.06 40.00 116.69 141.66 17.63 115.73 -0.83 50.00 126.48 154.51 18.14 126.09 -0.31 60.00 133.82 165.87 19.32 135.82 1.47 70.00 143.62 176.12 16.45 144.90 0.88 80.00 151.78 185.52 18.19 153.35 1.02 100.00 167.28 202.34 17.33 168.35 0.64 110.00 171.36 209.99 18.40 174.89 2.02 120.00 186.86	7.50 }	77.52 }	90.17	14.03	77,87	0.19
10.00 80.78 97.61 17.24 80.83 0.06 11.25 82.42 100.83 18.26 62.40 -0.02 12.50 83.23 103.80 19.82 83.96 0.87 13.75 84.05 106.56 21.12 85.51 1.71 15.00 85.68 109.14 21.50 87.05 1.57 16.25 88.13 111.58 21.02 88.57 0.50 17.50 93.84 113.68 17.60 90.09 -4.16 18.75 93.84 116.06 19.15 91.60 -2.45 20.00 96.29 118.15 18.50 93.10 -3.43 25.00 97.92 117.98 17.00 98.99 1.08 30.00 106.89 126.66 15.61 104.73 -2.06 40.00 116.69 141.66 17.63 115.73 -0.83 50.00 126.48 154.51 18.14 126.09 -0.31 60.00 133.82 165.87 19.32 135.82 1.47 70.00 143.62 176.12 18.45 144.90 0.88 80.00 151.78 185.52 18.19 153.35 1.02 100.00 167.28 202.34 17.33 168.35 0.64 110.00 171.36 209.99 18.40 174.69 2.02 120.00 186.86 217.22 13.98 180.81 -3.35 140.0	8.75	79.15 ¦	94,08	15.87	79.25	0.13
11.25 62.42 100.83 18.26 62.40 -0.02 12.50 83.23 103.80 19.82 83.96 0.87 13.75 84.05 106.56 21.12 85.51 1.71 15.00 85.68 109.14 21.50 87.05 1.57 16.25 88.13 111.58 21.02 88.57 0.50 17.50 93.84 113.88 17.60 90.09 -4.16 18.75 93.84 116.06 19.15 91.60 -2.45 20.00 96.29 118.15 18.50 93.10 -3.43 25.00 97.92 117.98 17.00 98.99 1.08 30.00 106.89 126.66 15.61 104.73 -2.06 40.00 116.69 141.66 17.63 115.73 -0.83 50.00 126.48 154.51 18.14 126.09 -0.31 60.00 133.82 165.87 19.32 135.62 1.47 70.00 143.62 176.12 18.45 144.90 0.88 80.00 151.78 185.52 18.19 153.35 1.02 110.00 171.36 209.99 18.40 174.89 2.02 120.00 186.86 217.22 13.98 180.81 -3.35 140.00 191.76 230.65 16.86 190.72 -0.55 160.00 196.66 242.95 19.05 198.06 0.72 <	10.00 }	80.78 :	97.61	17.24	80.83	0.06
12.50 83.23 103.80 19.82 83.96 0.87 13.75 84.05 106.56 21.12 85.51 1.71 15.00 85.68 109.14 21.50 87.05 1.57 16.25 88.13 111.58 21.02 88.57 0.50 17.50 93.84 113.83 17.60 90.09 -4.16 18.75 93.84 116.06 19.15 91.60 -2.45 20.00 96.29 118.15 18.50 93.10 -3.43 25.00 97.92 117.98 17.00 98.99 1.08 30.00 106.89 126.66 15.61 104.73 -2.06 40.00 116.69 141.66 17.63 115.73 -0.83 50.00 126.48 154.51 18.14 126.09 -0.31 60.00 133.82 165.87 19.32 135.82 1.47 70.00 143.62 176.12 18.45 144.90 0.88 80.00 151.78 185.52 18.19 153.35 1.02 100.00 167.28 202.34 17.33 168.35 0.64 110.00 171.36 209.99 18.40 174.89 2.02 120.00 186.86 217.22 13.98 180.81 -3.35 140.00 191.76 230.65 16.86 190.72 -0.55 160.00 196.66 242.95 19.05 198.08 0.72 <td>11.25 </td> <td>82.42 </td> <td>100.83</td> <td>18.26 ;</td> <td>82.40</td> <td>-0.02</td>	11.25	82.42	100.83	18.26 ;	82.40	-0.02
13.75 84.05 106.56 21.12 85.51 1.71 15.00 85.68 109.14 21.50 87.05 1.57 16.25 88.13 111.58 21.02 88.57 0.50 17.50 93.84 113.88 17.60 90.09 -4.16 18.75 93.84 116.06 19.15 91.60 -2.45 20.00 96.29 118.15 18.50 93.10 -3.43 25.00 97.92 117.98 17.00 98.99 1.08 30.00 106.89 126.66 15.61 104.73 -2.06 40.00 116.69 141.66 17.63 115.73 -0.83 50.00 126.48 154.51 18.14 126.09 -0.31 60.00 133.82 165.87 19.32 135.82 1.47 70.00 143.62 176.12 16.45 144.90 0.88 80.00 151.78 185.52 18.19 153.35 1.02 100.00 167.28 202.34 17.33 168.35 0.64 110.00 171.36 209.99 18.40 174.89 2.02 120.00 186.86 217.22 13.98 180.81 -3.35 140.00 191.76 230.65 16.86 190.72 -0.55 160.00 196.66 242.95 19.05 198.08 0.72	12.50	83.23	103.80	19.82	83,96	0.87
15.00 85.68 109.14 21.50 87.05 1.57 16.25 88.13 111.58 21.02 88.57 0.50 17.50 93.84 113.88 17.60 90.09 -4.16 18.75 93.64 116.06 19.15 91.60 -2.45 20.00 96.29 118.15 18.50 93.10 -3.43 25.00 97.92 117.98 17.00 98.99 1.08 30.00 106.89 126.68 15.61 104.73 -2.06 40.00 116.69 141.66 17.63 115.73 -0.83 50.00 126.48 154.51 18.14 126.09 -0.31 60.00 133.82 165.87 19.32 135.62 1.47 70.00 143.62 176.12 18.45 144.90 0.88 80.00 151.78 185.52 18.19 153.35 1.02 110.00 171.36 209.99 18.40 174.69 2.02 120.00 186.86 217.22 13.98 180.81 -3.35 140.00 191.76 230.65 16.86 190.72 -0.55 160.00 196.66 242.95 19.05 198.08 0.72	13.75	84.05	106.56	21.12	85.51	1.71
16.25 88.13 111.58 21.02 88.57 0.50 17.50 93.84 113.88 17.60 90.09 -4.16 18.75 93.84 116.06 19.15 91.60 -2.45 20.00 96.29 118.15 18.50 93.10 -3.43 25.00 97.92 117.98 17.00 98.99 1.08 30.00 106.89 126.66 15.61 104.73 -2.06 40.00 116.69 141.66 17.63 115.73 -0.83 50.00 126.48 154.51 18.14 126.09 -0.31 60.00 133.82 165.87 19.32 135.82 1.47 70.00 143.62 176.12 16.45 144.90 0.88 80.00 151.78 185.52 18.19 153.35 1.02 100.00 167.28 202.34 17.33 168.35 0.64 110.00 171.36 209.99 16.40 174.69 2.02 120.00 186.86 217.22 13.98 180.81 -3.35 140.00 191.76 230.65 16.86 190.72 -0.55 160.00 196.66 242.95 19.05 198.08 0.72	15.00 1	85,68 1	109.14	21.50	87.05	1.57
17.50 93.84 113.88 17.60 90.09 -4.16 18.75 93.84 116.06 19.15 91.60 -2.45 20.00 96.29 118.15 18.50 93.10 -3.43 25.00 97.92 117.98 17.00 98.99 1.08 30.00 106.89 126.66 15.61 104.73 -2.06 40.00 116.69 141.66 17.63 115.73 -0.63 50.00 126.48 154.51 18.14 126.09 -0.31 60.00 133.62 165.87 19.32 135.82 1.47 70.00 143.62 176.12 16.45 144.90 0.88 80.00 151.78 185.52 18.19 153.35 1.02 100.00 167.28 202.34 17.33 168.35 0.64 110.00 171.36 209.99 18.40 174.89 2.02 120.00 186.86 217.22 13.96 180.81 -3.35 140.00 191.76 230.65 16.86 190.72 -0.55 160.00 196.66 242.95 19.05 198.08 0.72	16.25 :	88.13	111.58	21.02	88.57	0.50
18.75 93.84 116.06 19.15 91.60 -2.45 20.00 96.29 118.15 18.50 93.10 -3.43 25.00 97.92 117.98 17.00 98.99 1.08 30.00 106.69 126.66 15.61 104.73 -2.06 40.00 116.69 141.66 17.63 115.73 -0.63 50.00 126.48 154.51 18.14 126.09 -0.31 60.00 133.62 165.87 19.32 135.82 1.47 70.00 143.62 176.12 16.45 144.90 0.88 80.00 151.78 185.52 18.19 153.35 1.02 100.00 167.28 202.34 17.33 168.35 0.64 110.00 171.36 209.99 18.40 174.89 2.02 120.00 186.86 217.22 13.96 180.81 -3.35 140.00 191.76 230.65 16.86 190.72 -0.55 160.00 196.66 242.95 19.05 198.08 0.72	17.50	93.84 \	113.88	17.60 \	90.09	-4.16
20.00 96.29 118.15 18.50 93.10 -3.43 25.00 97.92 117.98 17.00 98.99 1.08 30.00 106.89 126.68 15.61 104.73 -2.06 40.00 116.69 141.66 17.63 115.73 -0.83 50.00 126.48 154.51 18.14 126.09 -0.31 60.00 133.82 165.87 19.32 135.82 1.47 70.00 143.62 176.12 18.45 144.90 0.88 80.00 151.78 185.52 18.19 153.35 1.02 100.00 167.28 202.34 17.33 168.35 0.64 110.00 171.36 209.99 18.40 174.89 2.02 120.00 186.86 217.22 13.98 180.81 -3.35 140.00 191.76 230.65 16.86 190.72 -0.55 160.00 196.66 242.95 19.05 198.08 0.72	18.75	93.84	116.06	19.15 ;	91,60	-2.45
25.00 97.92 117.98 17.00 98.99 1.08 30.00 106.89 126.68 15.61 104.73 -2.06 40.00 116.69 141.66 17.63 115.73 -0.83 50.00 126.48 154.51 18.14 126.09 -0.31 60.00 133.82 165.87 19.32 135.82 1.47 70.00 143.62 176.12 18.45 144.90 0.88 80.00 151.78 185.52 18.19 153.35 1.02 100.00 167.28 202.34 17.33 168.35 0.64 110.00 171.36 209.99 18.40 174.89 2.02 120.00 136.86 217.22 13.96 180.81 -3.35 140.00 191.76 230.65 16.86 190.72 -0.55 160.00 196.66 242.95 19.05 198.08 0.72	20.00 ;	96.29 /	118.15	18.50 \$	93.10	-3,43
30.00 106.89 126.66 15.61 104.73 -2.06 40.00 116.69 141.66 17.63 115.73 -0.63 50.00 126.48 154.51 18.14 126.09 -0.31 60.00 133.82 165.87 19.32 135.62 1.47 70.00 143.62 176.12 18.45 144.90 0.88 80.00 151.78 185.52 18.19 153.35 1.02 100.00 167.28 202.34 17.33 168.35 0.64 110.00 171.36 209.99 18.40 174.89 2.02 120.00 136.86 217.22 13.98 180.81 -3.35 140.00 191.76 230.65 16.66 190.72 -0.55 160.00 196.66 242.95 19.05 198.08 0.72	25.00	97.92	117,98	17.00 :	98.99	1.08
40.00 116.69 141.66 17.63 115.73 -0.83 50.00 126.48 154.51 18.14 126.09 -0.31 60.00 133.82 165.87 19.32 135.82 1.47 70.00 143.62 176.12 18.45 144.90 0.88 80.00 151.78 185.52 18.19 153.35 1.02 110.00 167.28 202.34 17.33 168.35 0.64 110.00 171.36 209.99 18.40 174.69 2.02 120.00 186.86 217.22 13.98 180.81 -3.35 140.00 191.76 230.65 16.86 190.72 -0.55 160.00 196.66 242.95 19.05 198.08 0.72	30.00 1	106.89	126,66	15.61	104.73	-2.06
1 50.00 126.48 154.51 18.14 126.09 -0.31 1 60.00 133.82 165.87 19.32 135.82 1.47 1 70.00 143.62 176.12 18.45 144.90 0.88 1 60.00 151.78 185.52 18.19 153.35 1.02 1 100.00 167.28 202.34 17.33 168.35 0.64 1 10.00 171.36 209.99 18.40 174.69 2.02 1 20.00 186.86 217.22 13.98 180.81 -3.35 1 40.00 191.76 230.65 16.86 190.72 -0.55 1 196.66 242.95 19.05 198.08 0.72	40.00	116.69 :	141.66	17.63	115.73	-0.83
60.00 133.82 165.87 19.32 135.82 1.47 70.00 143.62 176.12 16.45 144.90 0.88 80.00 151.78 185.52 18.19 153.35 1.02 100.00 167.28 202.34 17.33 168.35 0.64 110.00 171.36 209.99 18.40 174.69 2.02 120.00 186.86 217.22 13.98 180.81 -3.35 140.00 191.76 230.65 16.86 190.72 -0.55 160.00 196.66 242.95 19.05 198.08 0.72	1 50.00 1	126.48	154.51	18.14	126.09	-0.31
1 70.00 143.62 176.12 16.45 144.90 0.88 1 80.00 151.78 185.52 18.19 153.35 1.02 100.00 167.28 202.34 17.33 168.35 0.64 110.00 171.36 209.99 18.40 174.89 2.02 120.00 186.86 217.22 13.96 180.81 -3.35 140.00 191.76 230.65 16.86 190.72 -0.55 160.00 196.66 242.95 19.05 198.08 0.72	: 60.00 ¦	133.82	165.87	19.32	135.82	1.47
80.00 151.78 185.52 18.19 153.35 1.02 100.00 167.28 202.34 17.33 168.35 0.64 110.00 171.36 209.99 18.40 174.89 2.02 120.00 186.86 217.22 13.96 180.81 -3.35 140.00 191.76 230.65 16.66 190.72 -0.55 160.00 196.66 242.95 19.05 198.08 0.72	1 70.00 1	143.62	176.12	18.45	144.90	0.88
1100.00 167.28 202.34 17.33 168.35 0.64 110.00 171.36 209.99 18.40 174.89 2.02 120.00 186.86 217.22 13.96 180.81 -3.35 140.00 191.76 230.65 16.66 190.72 -0.55 160.00 196.66 242.95 19.05 198.08 0.72	; 80.00 ;	151.78 ;	185.52	18.19	153.35	1.02
110.00 171.36 209.99 18.40 174.69 2.02 120.00 186.86 217.22 13.98 180.81 -3.35 140.00 191.76 230.65 16.86 190.72 -0.55 160.00 196.66 242.95 19.05 198.08 0.72	100.00	167.28	202,34	17.33	168.35	0.64
120.00 186.86 217.22 13.98 180.81 -3.35 140.00 191.76 230.65 16.86 190.72 -0.55 160.00 196.66 242.95 19.05 198.08 0.72	110.00	171.36	209.99	18.40	174.89	2.02
140.00 191.76 230.65 16.86 190.72 -0.55 160.00 196.66 242.95 19.05 198.08 0.72	120.00	186.86	217.22	13.98	180.81	-3.35
160.00 196.66 242.95 19.05 198.08 0.72	140.00	191.76	230,65	16.86	190.72	-0.55
	:160.00	196.66 ;	242.95	19.05	198.08	0.72

TABLE 7.4 (f)

Percentage deviation of the observed diagonal length from the diagonal length calculated from the equations (a) $P = ad^n$ (b) $D = AP^2 + BP + C$ for d-AHT

Room Temp : 30° C ; Angle = 20° ; d-AHT :- z (111)

		P = a.d	n :	$D = AP^{2}$	2 + BP + C1
1 5	D .	D	% }	D	%
	obs	cale	deviation	calc	deviation
1.25	56.30	55.44	-1.55	59,01	4,59
1 2,50	60.38	60.15	-0.38	60.34	-0.07 1
3.75	61.20	63.09	3.00	61,68	0.78 1
: 5.00	1 62.83	65.27	3.74	63,00	0.27
1 6.25	63.65	67.00	5.00	64.32	1.04
: 7.50	64.46	88.45	5.83	65,63	1,78 1.
1 8.75	66.09	69.71	5.19	66.93	1.26
10.00	: 66.91	70.81	5.51	68,23	1,93
: 11.25	88.54	71.80	4.54	69.52	1.41
12.50	70.18	72.69	3.45	70.81	0,89 1
13.75	1 71.81	: 73.51	2.31	72.08	0.37
: 15.00	1 73.44	1 74.27	1.12	73.35	-0.12
16.25	74.86	; 74.97	0.41	; 74.61	-0.07 }
17.50	: 75.29	1 75.63	-0.87	75.87	-0.55
18.75	1 79.97	1 76.25	-4.88	77,11	-3.71
: 20.00	82.82	1 76.83	-7.80	1 78.36	-5.69
1 25.00	84.05	82.70	-1,63	83.26	-0.95
: 30.00	89.76	88.96	-0,90	88.04	-1,95
: 40.00	94.66	: 99.81	5,16	97.28	2.69
: 50.00	108.49	: 109.13	2.42	106.07	-0.40
: 60,00	118.73	117.39	-1.14	114.42	-3,77
; 70.00	124.85	: 124.85	0,00	122.32	-2.07
1 80.00	133.82	131.70	-1.61	129.78	-3.11
;100.00	137.09	144.00	4.80	143.37	4.38
;110.00	: 146.06	149,59	2.36	149.49	2.29
:120.00	: 149.33	154.89	3,59	155.17	3.76
;140.00	; 167.28	164.74	-1.54	165.20	-1.26
160.00	177.07	: 173.78	-1.89	173.45	-2.09
ł	5 5			t 1	
1					• • • • • • • • • •

	(0	u (11		d-AHT							Kg/m²	H in	rdness	Ha					
		30°C	'emp.	Room 1							.5 (a)	rable 7	,-						
0/C.46	42.448	42.245	1c0.c4	59.364	64.920	65.777	71.295	79.416	76.080	71.295	69.069	53.589	59.117	51.369	47.607	43.304	36.280	33.184	160.000
31.745	37.623	40.440	46.375	55.587	60.708	70.505	74.426	78.281	78.281	62.956	71.894	53.492	59.364	53.719	44.775	39.135	35.332	34.148	000.011
31.463	34.919	37.647	51.110	55.479	58.710	71.039	74.528	79.593	78.280	76.998	67.790	55.479	54.211	61.024	39.907	40.706	38.527	30.284	120.000
28.780	34.194	43.955	47.327	56.202	60.789	72.238	73.515	74.385	17.090	75.719	67.450	69.386	57.077	58.581	38.209	34.747	41.842	79.978	100 000
26.710	35,005	42.318	52.334	52.186	61.303	70.253	83.025	76.495	78.053	80.206	59.861	64.349	53,359	52.476	43.831	34.847	33.771	74.906	80 000
26.080	37.776	39.748	44.988	57.713	59.548	64.325	79.704	76.873	78.553	71.152	70.181	64.749	51.160	52.689	39.342	40.581	37.587	34.57R	70.000
31.581	38.289	39.140	45.977	52.021	60.155	65.421	71.947	73.037	73.592	71.947	61.837	56.989	45.977	53.718	39.797	36.279	77.040	10 054	
29.138	33.349	36.974	42.002	54.518	56.932	56.932	62.266	74.827	63.228	66.775	58.199	51.531	51,175	54.518	38.258	35.703	10 488	100 76	40°00
24.577	34.243	36.518	40.940	44.888	48.326	57.433	52.175	71.295	62.447	56.047	58.872	55.596	46.559	45.545	15 817	011-10 TA 007	011°07	01/ 77	30.000
23.837	28.878	36.796	43.075	43.075	50.657	59.276	42.724	61.623	61.623	64.113	57.602	57.036	48.479	111-10	701 OC	7/017 82	CEQ. 17	24.052	25.000
22.823	28.466	32.106	37.729	43.363	45.805	53.427	51.353	13.427	53.427	57.973	50.361	571 122 87 122	111 1	110"70	770 42	774.07	/84.02	21.807	20.000
24.163	74.531	77.798	30.497	37332	38.040	20.77	40.418	20.07	50 A00	112 240	10.J07	24.777 TE 075	21.400	50.835	26.486	26.272	25.852	23.350	18.750
100 07	12,027	79. ALA	44/"//	8/0°40	14.02	591.CH	CIZ. /4	46-1/2	48. 294	48.294	46.172	35.947	35.252	29.289	25.127	26.633	24.720	22.130	117.500
792.62	26.722	27.934	27.934	32.734	34.044	42.874	45.882	44.845	46.955	45.882	43.843	34.728	34.044	29.445	23.917	25.369	23.332	21.196	14.250
24.239	25.105	27.231	27.231	31.116	33.040	40.470	43.343	43.343	45.432	43.343	41.395	33.378	32,379	29.076	24.239	24.239	22.077	17.589	15,000
22.611	23.426	25.908	25.666	29.982	32.560	37.946	41.646	40.671	43.702	41.646	38.823	31.885	32.560	27.168	23.218	23.013	20.751	17 075	11.300
21.296	22.903	24.001	23.775	28.687	30.233	36.119	38.777	37.860	40.716	38.777	36.543	29.914	32.259	25.180	23.333	21.296	19.853	11.077	003 01
19.513	21.398	22.646	22.229	28.405	27.798	34.074	37.566	36.644	37.101	38.523	37.566	24.531	29.682	23.337	22.229	19.690	12 179	140°41	10.000
17.662	19.384	20.541	20.144	26.384	26.980	31.022	36.045	33.392	34.680	35.127	34.243	26.980	26.980	22.027	20.541	19.070	10. US	12. 130	8./30
15.739	18, 151	18.331	21.621	24.147	24.147	28.501	32.375	29.963	32.375	33.244	31.539	24.424	24.147	20.503	18.331	17.626	222 71	011.21	0021 U
13.742	17.574	17.035	18.937	21.176	22.716	25.682	28.495	26.686	28.495	29.270	28.878	22.716	21.176	18.532	14.190	17.035	100,01	717 11	002.9
11.938	15.116	14.800	16.490	18.060	20.870	22.528	24.392	23.746	24.392	25.766	25.064	19.864	18.060	14.490	577.71	14 445	11.013	812°8	000°C
11.840	12.355	13.192	13.798	14.965	17.121	18.996	21.197	19.780	20.052	21.197	20.612	16.696	16.907	13.490	14.281	177 61	0,0,0	0.1.0	vc/.v
9,117	9.678	10.588	10.836	12.367	13.172	15.039	16.833	16.124	16.592	16.833	15.898	13.343	13.172	12.215	107.11	170.0	107 D	250.00	00C-Z
6.244	6.596	7.395	7.755	8.561	9.498	10.306	12.082	11.726	11.386	12.265	11.222	10.145	9.179	0 470	141 0	120.0	700 3	0.0.0	002.1
3.373	3.741	3.878	4.122	5.299	5.452	5.225	6.421	6.277	6.041	6.421	6.041	5.338	4.813	5, 255	A 504	1 5.20	7 570		P(gas) (
A01	A/1	100	ne i	747	0C1	N7 I	110	100	90 · intracie	98 	70	90	20	9	30	20	10	0	Angle->
1001	170	071	150	110	721	00.		~~	ġ										

ı

Angle .	0	10	20	30	9	8	99	70	80	96 -/	100 1	110	120	130	140	150	160	170	08
P(gas) <		7 670	7 200	7 080	X. 973	3.786	4.625	4.625	-naroness 5.951	5.777	6.133	3.450	4.280	4.391	3.973	3.786	3.697	3.529	2.839
1.250	7.877	176°0	201 2	5.478	7.572	7.224	8.561	8.782	11.222	10.904	11.554	6.596	7.755	8,348	7.572	7.224	7.059	6.899	5.237
7.900	0.00	71571	245 0	R 177	10.836	10.588	12.522	12.522	15.898	15.898	16.833	9.678	10.588	12.215	11.092	10.349	9.894	10.118	7.269
00/.2	6 010 10 070	10 255	10.485	10.685	13.798	13.490	15.511	15.892	20.052	20.612	21.197	12.625	12.904	15.511	14.117	13.490	12.355	12.904	9.161
000°C	777 11	268 FI	13.094	13.094	16.863	16.490	18.487	19.389	23.746	25.064	25.064	15.443	15.781	18.930	17.248	16.490	14.800	14.800	11.242
042 C	10 778	17.035	15.406	15.108	19.788	18.937	21.671	22.716	27.034	28.495	28.495	17.760	18.532	22.184	20.235	19.355	17.035	16.354	13.009
0.000	11 445	424.71	17.626	16.643	21.621	21.163	24.706	25.283	30.736	32.375	31.539	19.874	20.720	25.283	23.086	22.093	18.700	17.626	14.645
8°/30	14.044	10 759	19.739	17.988	23.680	23.680	26.384	26.980	34.243	36.045	35.127	22.252	23.189	28.235	25.807	24.709	20.144	18.322	16.160
10.040	111101	101.61	21.807	19,870	25.553	25.553	27.798	28.405	37.566	37.566	37.566	24.531	24.531	30.353	27.210	26.640	21.807	20.236	17.867
AC7-11	10.1/7	100.11	77.775	20.921	26.714	27.256	28.986	29.600	38.777	37.860	39.729	26.714	25.676	32.259	28.392	28.392	23.333	22.077	19.515
000.21	17-040	77.476	74.285	22.611	28.806	29.385	30.597	30.597	38.823	38.823	41.646	28.806	26.653	33.975	28.806	29.385	24.733	23.426	21.104
00/ 21	L11 17	74.666	24.666	23.022	30.812	30.812	32.056	32.056	39.576	39.576	43.343	30,812	26.981	35.520	29.076	29.638	26.018	24.666	22.261
000° /	of 074	061 76	25,808	22.954	32.108	32.108	32.108	33.379	41.030	11.937	43.843	32.734	28.701	35.433	29.774	30.333	27.197	24.941	21.874
AC7 '91	10. 11 101 Tr	881 1C	74.840	73.936	33.922	33.285	32.064	34.578	42.326	44.186	42.326	34.578	30.354	35.252	29.814	30.354	28.279	24.720	21.143
NUC. /1	23.100	74 457	77.827	75.240	34.354	34.354	33.116	36.345	44.400	46.330	42.588	36.345	31.944	34.354	29.779	30.833	29.272	24.457	20.739
16./30	/n	100 10	28.757	75. 485	34.074	35.324	34.074	38.040	45.427	47.360	42.742	37.332	32.889	33.473	29.682	30.697	30.183	24.163	20.052
20.000	97 759	10.055	37.610	30.663	39.029	35.315	41.111	44.969	53.427	52.375	44.969	42.592	38.371	39.029	34.747	35.315	35.315	28.466	23.125
000 02	101 100	11 151	X7.748	30.494	41.032	37.937	43.075	50.210	59.276	46.045	47.646	46.835	43.075	43.790	38.527	38.527	39.527	32.711	25.360
000 v	11 - 300	11 399	34.045	32.174	44.888	49.061	49.813	59.364	51.369	59.364	59.364	52.175	50.582	52.175	44.888	42.998	44.888	39.559	29.234
	101 01	21 547	79.749	377-775	48.783	48.783	59.509	65.219	57.772	63.228	57.772	54.518	53.747	53.747	48.131	46.864	46.250	39.729	30.887
000 0	30 755	11 11	XX.X78	33.378	49.468	50.088	66.366	61.837	60.155	70.357	65.421	55.499	55.499	54.067	50.088	48.859	46.533	39.140	31.738
00.000	39.666	29.032	36.662	35.947	49.411	53.640	60.691	59.174	61.471	72.144	69.229	54.948	55.621	53.640	50.567	49.984	46.172	38.159	32.064
	111 55	79.682	38.768	39.900	53.960	47.360	62.798	53.359	65.957	78.053	68.486	53,359	53.359	52.768	49.954	50.499	44.962	36.986	32.040
000 000	11 977	29.978	41.842	38.698	54.512	52.375	61.773	63.815	61.773	82.447	77.555	57.373	56.783	55.067	52.897	50.853	39.705	38.698	33.38/
110 000	TK 157	THC. 02	42.208	41.155	58.187	54.863	62.119	66.512	65.119	86.347	82.308	58.770	56.488	55.938	53.818	50.856	40.475	39.164	33.729
000 0C+	101 12	10.494	43.430	40.706	57,060	50.210	51.570	67.443	66.757	81.858	79.152	59.850	55.999	55.999	54.461	50.210	41.032	39.439	33.911
AUU-021	200 62	171 62	17.971	40.440	57.053	53.719	53.719	64.128	69.825	76.317	78.683	61.259	55.111	56.070	54.641	49.041	41.347	39.277	33.691
140.000	30.451	33.392	39,830	42.998	59.364	55.596	59.364	71.295	71.950	82.976	67.543	61.917	55.150	54.710	53.845	47.607	41.225	39.027	32.979

Table 7.5 (b) Hardness H in Kg/mm²

•

Room Temp. 30°C d-Atr C (010)

algas	0	10	20	30	04	50	60	70	80 Usrdage	90 in hmerien	100	110	120	130	140	150	160	170	180
P(gas) (010	7 772	7 419	1. 475	5.611	5.452	6.323	6.522	6.323	5.951	5.611	3.450	4.878	4.280	4.878	3.529	3.973	3.450	3.697
1.250	0.6/ 9 7 0ED	7057	1.059	8.561	10.904	10.599	11.902	12.646	11.902	11.222	10.599	6.745	9.250	8.348	9.250	6.745	7.572	6.745	7.059
2.500	75V.1	017.0	10.749	11.919	15.898	15.039	16.833	18.398	17.332	16.355	15.459	9.894	13.172	11.919	13.172	9.468	11.092	9.894	10.118
0C/ 'S	1. 010	1.010	13.490	15.144	20.052	19.513	21.197	23.804	21.807	21.197	19.513	12.904	16.696	15.511	16.696	11.840	14.117	12.625	13.192
3.000		11 114	15 781	18.487	73.125	22.528	25.766	28.055	25.064	25.766	23.125	15.781	19.864	18.930	19.864	14.493	16.863	15.116	15.781
062.9	14.170	602 CI	17.760	21.176	25.682	24.430	30.077	31.796	27.750	29.270	26.345	18.532	23.266	21.671	22.716	17.035	19.355	17.035	18.140
MC./	10.01	11.070	10, 874	74.147	26.502	26.502	34,148	35.090	30,736	33.244	29.218	21.163	25.882	24.147	25.283	19.471	21.621	19.079	20.290
0c/ .8	100.01	TAN IT	21.805	24.980	28.235	28.235	37.000	37.993	33.392	36.045	31.022	23.680	28.235	26.384	26.980	21.805	23.680	20.541	21.805
10.000	10 102 1C	PCC CC	23.569	28.405	31.046	31.046	40.550	40.550	36.644	38.523	34.074	26.088	31.046	28.405	29.033	24.042	24.531	22.229	23.569
NC7.11	100.12	U26 V6	25.676	79.600	32.980	32.980	43.908	42.804	38.777	40.716	36.119	28.392	33.725	30.233	30.233	26.187	25.180	23.775	25.180
12.300	22.000	24 153	77. 698	31.231	35.485	35.485	47.084	44.788	41.646	42.655	37.946	30.597	36.278	31.885	31.231	27.698	25.666	25.193	27.168
00/.01	24.133	000 16	24.076	37.707	37.874	37.874	48.859	47.675	43.343	44.369	39.576	32.056	38.711	33.378	32.056	29.638	25.555	26.493	28.530
000°CI	010-07	16 186	VLL DC	X4.778	39.303	39.303	51.648	49.217	44.845	46.955	41.030	33.379	39.303	34.728	32.734	30.908	27.197	27.685	28.701
16, 230	47/ 47	75 077	78.779	35.252	38.941	39.748	50.567	48.294	45.163	48.294	40.581	33.922	35.947	34.578	31.478	30.908	27.794	26.860	26.860
NUC./1		71.02	17.04	77.770	41.773	42.588	54.179	51.744	48.389	51.744	43.479	36.345	38.515	37.048	33.727	33.116	29.779	28.778	28.778
18. /20	201 100 705 12	170117	107 02	34.748	41.082	44.504	55.194	52.768	50.499	52.768	44.504	37.332	38.040	38.040	34.074	34.074	31.224	29.193	28.252
20.000	21.170	21 614	21.107	79.079	46.666	52.375	60.466	63.123	61.773	55.630	51.353	42.592	39.705	41.111	32.610	36.492	34.747	30.663	28.055
000 CZ	10.02	177 82	141-12	43.075	50.210	55,999	62.850	68.140	64.113	58.152	52.036	44.523	39.131	43.075	35.706	37.937	33.666	32.248	31.796
30°00	104 75	70.505	A1 803	45.545	52.175	61.393	61.393	73.289	68.147	62.447	53.845	53.000	49.813	44.888	40.658	44.244	38.505	37.491	36.045
40,000		061 01	44.477	50.873	57.772	62.266	66.250	83.683	71.792	66.250	804-09	59.509	50.823	48.783	45.056	46.250	42.804	40.716	37.860
000.00	014°10	AT 851	47.475	49.468	63.592	60.987	71.411	79.500	76.617	73.592	67.331	60.155	52.690	50.720	45.432	47.099	44.369	43.343	40.929
50°00	3/ 1 00	100.04	APC . PA	50.547	43.078	64.749	71.152	76.325	76.325	71.152	68.297	62.267	56.305	51.764	48.848	46.956	41.879	44.670	44.186
/0.000	100-14	VC/-/#	49.418	51.052	61.303	69.361	72.090	71.162	75.986	75.986	59.861	61.303	55.194	52.768	52.186	47.360	42.742	45.427	44.962
80.000	110°10	50 JUJ	50.853	A1.114	63.815	70.587	75.719	84.534	82.447	77.555	69.783	63.815	63.815	56.202	57.973	48.460	46.233	47.105	46.233
1000.000	41.114	47 208	23.306	58.770	59.963	68.687	75.891	87.404	85.310	76.761	69.436	64.439	65.119	57.046	53.306	48.570	43.676	47.699	44.828
110.000	10 750	44.190	48.903	57.602	59.276	62.850	79.152	82.790	80.039	78.280	62.850	66.757	61.024	55.479	51.110	48.479	42.035	47.646	41.697
000 000	47 785	45. A53	54.177	61.259	64.128	66:570	76.317	85.560	84.652	76.317	69.155	66.570	57.555	56.558	54.177	47.490	43.586	4/.440	C97.74
000 071	44.71R	47.965	58.872	60.366	70.648	67.543	74.665	81.365	80.577	79.035	73.972	64.638	56.966	59.364	55.596	47.254	45.880	46.559	45.215
700.001	214101																		
						76	able 7.	5 (c)								Room T	emo.	30.0	• •
					Hazd	t the set of the	H in h	ta/m ²								d-AHT		(111) Z	
								þ											

	(111) 2	AHT ,	4							kg/mm²	H in	ineas	Hard					
	30°C	°.	om Tent	Ro							.5 (d)	able 7.	F						
																			na siya kasa ka
Z/8.8C	60.8/6	61.395	49.061	36.12	28.895	23.556	22.481	50.388	54.448	47.786	53.293	51.770	51.972	71.785	75.191	72:615	78.280	86.693	160.000
61.259	61.817	60.165	49.845	38.714	28.326	22.335	21.737	53.719	49.440	53.719	51.943	55.349	58.838	65.638	74.798	71.194	87.894	78.683	140.000
63.477	62.232	58.152	50.210	40.384	27.210	20.816	20.698	53.963	48.903	54.461	54.967	49.768	55,222	66.081	72.559	76.578	83.263	81.858	120.000
64.439	62.462	57.046	50, 386	41,155	26.472	19.866	19.982	55.938	57.612	56.212	58.187	51.815	63.770	65.119	70.970	73.369	80.394	83.291	110-000
64.518	61.773	55.067	49.875	41.474	25.411	18.818	19.157	55.067	54.512	55.067	62.443	55.348	60.145	60.789	73.515	75.719	76, 997	84.534	100.000
64.349	59.861	50.499	+B. 373	41.900	22.940	16.387	17.121	52.768	51,615	52.768	53.658	45.899	51.052	64.349	61.672	63.566	74.983	B1.880	
63.078	59.925	52.378	49.984	41.879	23.745	17.666	17.307	48.294	53,640	47.750	49.128	44.186	57.356	67.383	57.002	63.906	74.715	79,764	70.000
60.155	59.339	54.067	51.364	40.929	24.239	18.968	17.205	50.088	50.088	50.088	45.432	46.533	55.136	59.339	64.042	60.569	73.597	011.00	
56.110	56.932	55.305	51.531	39.249	24.463	20.199	16.826	44.477	45.647	43.908	40.716	45.056	48.783	53.747	55.305	62.744	000.10 707	107.01	40.000
50.582	53.000	55,596	50.582	36.518	24.186	21.371	16.020	45.545	38.505	46.218	46.218	45.880	53.845	45.545	59.862	47.528	101.10	101.00	000 00
46.045	48.479	48.479	43.075	34.663	22.448	17.212	14.678	39.750	39.750	39.131	37.937	36.245	41.697	46,835	54.461	100.00	170 YS	C11-1C	000 CZ
42.592	44.969	44.155	38.371	32.610	20.870	14.957	13.628	34.747	33,922	34.194	33.653	37.102	264.42	44.949	44 444	172 05	JU-177	40,0/0 57 077	20.000
37.332	39.517	38.768	32,889	29.682	18.746	12.355	12.23	29.682	30.697	29.682	77.798	31.764	ACC. 17	ALC OF	017 11	67/1L	11-11-	40.000	18./20
38.515	38.515	38.515	33.116	28.778	20.444	12.097	12.097	28.778	29.779	28.778	29.779	30.833	990 - 07	145 145	10 500	10/174	414°44	44.186	17.500
38.941	37.399	38.159	32.666	27.794	22.130	11.804	11.938	27.321	28.777	77.371	777.86	10.354	20 780	37.047 35.959	11 140		40.733	6/9-76	16.250
39.303	35.433	36.909	32.108	26.722	24.117	11.470	11.739	25.808	27.685	26.259	27.934	79.730	70 701	14 044	10 157	016.110	44 JOY	0/8-04	15.000
39.576	33.378	35.520	31.425	25.555	26.493	11.092	11.358	25.105	26.493	25.105	26.981	284.77	28.530	70 056	0/7°27	31.710 20 571	009.74	37.946	13.750
37.946	32.560	33.256	30.597	24.285	25.193	197	12.075	23. B50	25.466	404 FC	75 444	777 777	41/*07	70 507	07/ .00	56.117	40./16	39.729	12.500
35.294	31.547	TAL 887	20 400	210 001	77 775	F7C 11	10 001	NOV	177.77	710.02	171-67	100.12	+cn-c7	941.12	51./64	34.0/4	37.566	37.566	11.250
33.277	30.353	29,053	100-C1	102.14	DCC 66	11 274	140'41	17.304	20°C CC	40/ 41	21.5/1	716.12	22.713	25.249	28.895	31.783	35,127	33.814	10.000
1018.12	2/.810	Z4.14/	23.608	11.973	18.700	10.897	14.140	17.626	18.331	17.626	174.91	23.086	20.290	22.581	25.882	28.501	32.375	31.134	8.750
24.430	26.315	21.176	21.176	16.354	16.689	10.424	13.246	15.712	16.028	15.406	17.760	20.235	19.355	19.788	23.837	25.682	28.495	78.495	7 500
20.870	23.746	18.060	18.060	14.196	14.493	9.757	12.115	13.628	13.908	13.628	15.443	17.647	16.490	17.248	20.870	21.954	25.064	270 VZ	1.000
17.121	20.612	15.144	15.144	11.840	12.093	8.831	10.685	11.126	11.595	11.126	12.904	14.448	13.643	14.448	18.022	18.022	77.444	217 VC	00/°C
13.172	15.898	11.919	11.633	9.468	9.468	7.554	8.880	8.696	8.880	8.696	9.894	11.358	10.588	11.092	13.875	TAC. A1	120 11	11.507	7=00
9.011	10.904	8.143	8.143	6.596	6.596	5.797	6.177	5.920	6.177	5.920	6.745	7.755	8.044	7.755	0.890	0 757	0.037 17 646	276 61	002.1
4.625	5.777	4.280	4.174	3.450	3.373	3.298	3,298	3.373	3.226	3.298	3.450	4.174	4.749	4.813	5, 225	5 411	010 1	1 175	P(gms) <
<								50 86 , 4111	s inkas/	vo Hardnee	2	2	8	04	92	20	10	0	Angle->
180	170	160	150	140	130	120	91	100	69	Va	92	V7	2		ļ				

Knoop Hardness values obtained from plot of

H vs P (mean hardness H) from equations

(7.31) & (7.30) respectively for d-AHT

Room Temp : 30°C ;

,

f T	1	н	$H = cb_{2}$	$H = C * a_2 * F$
·	 	1 30 34		· 30 67 '
·		1 81 27		
		/ 01.2/	0.05	· 00,10 /
· · · · · · · · · · · · · · · · · · ·		1 40.63		
(12)		· 40.00		
				· 20,70 ·
1 2 (11)		1 70.00		
i = (111)				
		1 40,49	20,40	
		: 37.80	49,50	· 39.90 ·
; z (11)	.) ; 20	1 68.38	i 65.79	00.04
) c (010)) 20	39.53	25.30	
; z (11)) 20	49,78	39.49	34.86
m (11()) 1 30	40.84	\$ 50.50	42.84
ł z (11)) 1 30	66,49	100.36	71,45
(c (01()) 30	37.91	31,00	29.63
; z (11)) 30	54.66	39,46	37.50
: m (<u>1</u> 1(2) 40	53.74	61.93	55.06
z (11)	() (40	61.98	81,60	63.68
) c (01()) 40	53.27	54.34	35.44
1 1 m (116	1) 1) 1 50	52.65	70.38	54.93
	i 1 50	1 55 61	80.54	42.84
1 2 (11	D) 1 50	51 57	40.23	13.06
-1	1 50	85.49	44.82	43.17
· · · · · · · · · · · · · · · · · · ·	D) 1 50	58.35	54,16	134.80
+ $ (11)$	1) + 60	49.16	52.14	48,54
+ c (01)		59.07	32.99	111.07
$\frac{1}{2} = \frac{1}{2}$	1) 1 60	72.40	54.33	49,99
: (11	ר, ג'יין רוב לכו	\$ 65.02	75.56	67.69
· · · · · · · · · · · · · · · · · · ·	1 + 70	51.59	55.92	51.94
: c (01	n : 70	63.21	42,90	41,74
$\frac{1}{2} = \frac{1}{2}$	1) 1 70	80.56	54.64	56.27
· _ · 11	0) 1 80	70.34	72.93	115.60
	0/ 1 00 1) ! 80	50.79	55.07	46.15
1 0 (01	0 $1 $ 0	63.21	43.26	43.47
		1 78 23	59.25	; 52.30
· Z (11	1) (00	· 73 96	83.33	76.09
, m (11		· 50.00	57.67	50,12
; z (11	T) 1 20	1 00.44 1 7E 91	Δ7.12	44.19
, c (01		1 79.01	5. 5.2.48	49.57
; z (11	T) 1 20	1 76 AD	33.81	74.77
; m (11			- 54 63	50.66
2 (11	1) : 100	, 51.04	, 54,00	y 200000
; ; z (11	1) ; 100	65.49	53.00	45.79

Percentage deviation of calculated H by using equations (7.31) & (7.30) from the observed graphical value (mean Hardness, H) Room Temp : 30°C ; • Face Angle % / % / 1 deviation (a) {deviation (b) { 1

 1
 m (110)
 1
 0
 1
 -13.91
 -0.92
 1

 1
 z (111)
 1
 0
 1
 -18.19
 -2.25
 1

 1
 c (010)
 1
 0
 30.08
 33.66
 1

 1
 c (010)
 1
 0
 30.08
 33.66
 1

 m (110)
 0
 -13.91

 z (111)
 0
 -18.19

 c (010)
 0
 30.08

 z (111)
 0
 38.62

 m (110)
 10
 12.40

 z (111)
 10
 -32.76

 c (010)
 10
 37.57

 c (010)
 10
 37.57

 m (110)
 20
 -31.11

 z (111)
 10
 37.57

 m (110)
 20
 -31.65

 c (010)
 20
 36.00

 z (111)
 20
 -23.65

 z (111)
 30
 -50.94

 c (010)
 30
 18.23

 z (111)
 30
 27.81

 m (110)
 40
 -15.24

 z (111)
 40
 -23.06
 36,48 : 18.63 1 -1.53 | 37.03 1 36.49 \ -5.71 -0.38 : 34.81 : 29.97 (-4.90) -7.46 | 21.84 | 31.39 -2.46 -2.74 31.59

 a 1 1 1 1 1 1 1 ! 1 1 1 1 1 1 -64.34 | 9.14 | 31.23 | ł 1 ļ 33.15 : 24.26 | -12.67 | -14.33 | 37.43 | 28.83 | -10.25 | -7.08 | 24,26 | : 80 | z (111) 1 -2.88 90 1 0.63 : 41.32 : 32.78 \ 1.64 | 0.71 : 1 1 5 19.07 | 30.08 | z (111) ¦ 100 ¦ (a) = % deviation from H of $H = cb_2 \frac{2}{n_2} (n_2 - 2)/n_2$ (b) = % deviation from H of $H = c*a_2 P$ ($n_2 - 2)/n_2$

Hardness H in Kg/sqmm

5 1 Faces 1 :cleavage ! Prism ! sphenoidal 1 Angle $c (010) \mid m (110) \mid z (\overline{111}) \mid z (111) \mid$ 0 : 31.917 : 30.344 : 80.475 : 40.630 \ 10 | 31.106 | 36,608 | 76,655 | 45.491 1 39.533 | 37.800 | 68.379 | 49.778 20 1 1 30 : 37.912 : 40.844 ; 66.491 ¦ 54,657 : 53,738 : 40 1 53,268 1 61,978 1 61.575 ł 50 : 51.569 53.111 | 55.612 | 65.499 ÷ ł 1 49.160 1 72.404 ÷ 60 i 59.072 58.351 1 ł 80.561 70 1 63,214 51.598 | 1 ł 65.017 ł 1 50.798 1 80 1 63,215 } 78,232 ł 70.344 ł 75.309 50.441 ; 73.737 ł ł 90 1 ł 73.956 : 51,024 1 65.494 1 ł 100 1 70.550 1 76.023 ; 18.853 | 62.245 : ł 110 ; 56.967 : 71.431 ; 56,930 120 } 54.834 1 65.991 1 19.990 1 ł ł 22.699 ; 53.357 ÷ ł 130 | 54.418 ; 59.043 : ł 140 1 46.272 54.217 1 39.895 1 50.434 1 48.777 : 45,948 50.121 ; 47.242 150 ; 1 ł 1 55.967 : 43.259 1 39.887 43.171 1 160 \ 1 170 : 38.918 ¦ 36.488 1 59.822 1 44.815 ; 1 29.405 | 60.683 | 40.424 | 180 | 32.367 | 1 ***** ______

د

;	Ηĸ	:	н	:	X	1	H _K I	Н	ł	%
;		1	calc	de	eviation	i i		cale	ld	eviati
i 1	3.370	;- ;	10.147	i	-201.09	i	2.89	10.914		-277.6
1	5.036	1	10.688	-	-112.22	1	5.56 1	11.542	1	-107.6
1	7.133	1	11.222	;	-57.32	:	8.01	12.164	1	-51.1
ł	8.518	1	11.750	ł	-37.94	ţ	10.07 :	12.780	Į	-26.9
:	11.242	;	12.272	:	-9.16	1	11.67 :	13,389	ł	-14.
1	12.778	;	12.788	:	-0.07	1	12.78 1	13,993	:	-9.4
:	13.430	:	13.297	:	0.99	ţ	14.65 :	14.589	:	0.4
ł	14.840	1	13.800	:	7.01	ł	18,44 ;	15.180	:	7.6
1	14.670	ł	14.297	;	2.54	ł	18.18	15,764	ł	13.3
ŧ	14.660	ţ	14.788	;	-0.87	ł	19.85 ;	16.343	1	17.0
;	17.940	ť	15,272	:	14.87	1	21.10 ;	16.914	1	19.
:	17.590	1	15.750	1	10.46	ł	22.64 1	17.480	1	22.
;	21,190	1	16.222	1	23.45	ł	21.87 :	18.039	Į	17.
ŧ	22,130	1	16.688	Ι,	24.59	;	23.19 ;	18.593	ł	· 19.
:	23,350	;	17.147	1	26.57	÷	24.46	19.139	ł	21.
;	21.810	1	17.600	ł	19.30	ŧ	22.44 ;	19.680	1	12.
:	24,060	ĩ	19.350	1	19.58	:	27.26	21,780	1	20.
:	22.720	t	21.000	ł	7.57	ł	27.39 1	23.780	1	13.
:	26,980	;	24.000	1	11.05	ţ	28.56	27.480	:	з.
:	26,980	1	26.600	1	1.41	1	28.10	30.780	ł	-9.
:	32.060	t	28.800	1	10.17	ł	29.36	33.680	1	-14.
1	34,580	1	30.600	1	11.51	;	32.67 1	36.180	ł	-10.
;	24,910	;	32.000	:	-28,46	1	33.77	38.280	1	-13.
ł	29,980	;	33.600	1	-12.07	ł	33.92	41.280	-	-21.
ł	30.280	1	33.600	1	-10.96		33.18	42.680	1	-20.
E E	34.150	ł	32.000	1	6.30	-	32.81	42.480	i	-29.
;	33,180	ł	28.800	1	13.20	1	30.65	40.000	i •	-3Z.
ł		ł				ł	· ·		i	

-

,

-

1

Anisotropic co-efficients for different faces of d-AHT single crystals

.

,

Values of anisotropic coefficients	prism m (110)	cleavage c (010)	z - face { z (111) }
	+ 30, 40	+31.74	+40.68
; ; ∋,	+ 3.90	+ 1.05	; + 0.09 ;
^a 2	- 0.50	- 2.33	+ 0.06
a3	+ 0.03	+ 1.90 x 10	$+4.00 \times 10^{-3}$
	- 1.00 x 10	- 7.00 x 10	- 9.52 x 10 ⁵
, , ,	+ 2.35 x 10	+ 1.60 x 10 ⁵	- 9.12 x 10 ⁷
ə 6	-7 - 2.70 x 10	-2.04×10^{-7}	-3.27×10^{-9}
a7	-9 ¹ + 2.04 x 10	+ 1,59 x 10	+ 1.41 x 10^{10}
, ³ 8	-9.29×10^{-12}	-7.45×10^{-12}	-1.17×10^{12}
a 9	$+2.35 \times 10^{-14}$	+ 1.92 x 10 ¹⁴	$+4.32 \times 10^{15}$
; ; ; ; ;	- 2.55 x 10	- 2.29 x 10 ¹⁷	-6.00×10^{18}
•	1		

.

TABLE 7.11

Hardness number ${
m H_K}$ of different crystals for different orientations ****

lane lef direc	tion [100]	Plane Ref direc	tion [100]	Plane Ref direct	(110) (110) (110]	Plane Ref direc	tion [200]	[Plane Ref direc	tion [100]	Plane Ref direc	tion [100
Orient- tation in deg A	(Knoop (Hardness (No H _K	Drient- tation in deg A	Knoop Hardness No H _K	Drient-	Knoop Hardness No H _k	Urient- tation tin deg A	Knoop Hardness No H _K	Drient- tation in deg A	l Knoop Hardness No H _K	Crient- tation	Knoop Hardness No H _k
0.00	23.30	: 0.00	176.25	0.00	401.00	0.00	1845.81	.00	29.24	13.00	16.49
10.00	; 22.60	10.00	173.75	8.00	406.00	10.00	1593.73	14.00	42.64	26,00	21.59
18.33	: 21.30	19.44	167.50	18.00	405.00	20.00	1572.90	21.00	50.26	39.00	26.04
27.47	19.30	29.16	161.25	27.00	410.00	30.00	1510.42	28.00	57.74	52,00	30.13
37.47	18.00	38.88	157.50	38,00	403.00	40.00	1489.58	35.00	59.59	65.00	35.02
45.00	17.00	48.86	157.50	48.00	400.00	45.00	1468.76	42.00	65.19	78.00	41.67
54.98	18.00	58.32	160.00	56.00	407.00	50.00	1541.66	49.00	69.28		
63, 32	1 19.30	68.04	162.50	62.00	423.00	60.00	1531.25	56.00	83.95	·	
71.66	21.30	77.76	170.00	20.00	444.00	: 70.00	1583.32	63.00	92.01		
80.00	22.60	87.48	180.00	81.00	470.00	80.00	1624.98	70.00	96.46	·	
90.00	23.30	97.20	182.50	00-00	480.00	90.00	; 1639.39	78.00	101.79		

-

•

*1

Hardness anisotropic coefficients for different crystals

rdness isotropic efficients	Aluminium	Calcium Flouride	Tungaten	Tantalium Carbide	Calcite	Sodium nitrate
	24.45	178.84	409.69	1645	29.24	16.49
	- 0.26	- 0.89	- 0.95	- 6.25	1.03	0.28
o R	0.0029	0.0098	0.019	0.07	- 0.0004	0.001

-

.

·

.

- Isnogsid

FIG.7.8

REFERENCES

- 01. Westbrook, J.H & Conrad, H Quoted in "The Science of Hardness Testing & Its Research Applications", American Society for Metals, Metal Park, Ohio, 1973.
- 02. Joshi, D.R Ph.D Thesis, M S Uni., Baroda, 1989.

LIST OF TABLES

- 7.1 (a,b,c,d) Table of logarithms of longer diagonal length of Knoop indentor mark corresponding to logarithms of load,slopes,n1 and n2 and intercepts a1 and a2 for various orientations of the Knoop indenter on d-AHT prism face,cleavage face and sphenoidal faces respectively at room temperature
- 7.2 (a,b,c,d) Table of Angle,A,slopes n2 obs,n3 mod,W2,b2 and a2 of the plots log d Vs log P,for d-AHT prism face (m-110),cleavage face (c-010), sphenoidal faces (z-111) and (z-111) respectively at room temperature.

,

7.3 (a,b,c,d) Values of constants A,B,C derived from the quadratic equation for various orientations on d-AHT,prism,cleavage and sphenoidal faces,. respectively at room temperature.

7.4 (a to f) Percentage deviation of the observed diagonal length calculated from the equations :i) $P = ad^n$ ii) $D = AP^2 + BP + C$ for various faces and orientations of d-AHT at room temperature.

- 7.5 (a,b,c,d) Knoop hardness numbers corresponding to different loads for various orientations of Knoop indenter,on d-AHT prism,cleavage and sphenoidal faces respectively at room temperature.
- 7.6 Knoop hardness values obtained from plot of H Vs P (mean hardness,H) and from equations 7.33 & 7.32 respectively for different faces and various orientations of d-AHT, at room temperature.
- 7.7 Percentage deviation of calculated H by using equation 7.33 & 7.32 from the observed mean hardness,H, for different faces and various orientations of d-AHT, at room temperature.
- 7.8 Mean hardness number H, for various orientations on d-AHT,prism,cleavage and sphenoidal faces at room temperature.
- 7.9 Percentage deviation of Hardness calculated from the quadratic equation from the observed mean hardness value for d-AHT prism and cleavage face when the longer diagonal of Knoop indenter is along [001]
- 7.10 Anisotropic coefficients for different faces of d-AHT single crystals.
- 7.11 Hardness number H_K of different crystals for different orientations.
- 7.12 Hardness anisotropic coefficients for different crystals.

CAPTION TO FIGURES

•

-

.

- .

7.1	Plot of log P Vs log d for d-AHT faces at room
	temperature for various orientations
	a) m(110) face
	b) c(010) face
	c) z(111) face
	d) z(111) face .
7.2	Plot of d^2 Vs d^n for different d-AHT faces for
	various orientations at room temperature.
7.3	Plot of log d Vs log (P-W) for different d-AHT
	faces for various orientations at room
ì	temperature.
7.4	A graphical plot of load Vs diagonal length,d.
7.5	Plot of (P1 + P2) Vs (D1-D2)/(P1-P2) for differ-
	ent d-AHT faces for various orientations.
7.6	Plot of load Vs Hardness for different d-AHT
	faces for various orientations.
7.7 (a,b)	Plot of Angle Vs Hardness for d-AHT prism and
	sphenoidal faces respectively.
7.8	stress - strain diagram.