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8.1 INTRODUCTION
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y\ 1;sek,'f V ^ ^
- cv ^

It is clear from the discussion of the p^/^i©u|^^r 

Chapter that 1 Standard hardness .* * a * is a function of

quenching temperature y 11 and 'a^* in general vary with 

quenching temperature (TQ). However, the variation of ax with 

quenching temperature is more noticeable than that of a2« In 

particular, a^ in case of knoop Indentation is more susceptible 

to quenching temperature than that of Vickers indentation.

It is now interesting and useful to study in detail how 

hardness' changes with quenching temperature.

The Knoop and Vickers hardness numbers (H^ and H^) are 

defined by equations# (Mott, 1956)

KHN, H. - ^23Q- P   ................... (8.1)
1c d2

VHN, H » 185^^— .................... (8,2)
V Od2

where load P is measured in grams and the diagonal length 

d, of the indentation mark in microns. The hardness number 

is not an ordinary number, but a constant having dimensions 

and a deep, but less understood, physical meaning. The 

combination of these equations with

P =* ad11 (8.3)
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yields#

H = adn ~ 2 .................. (8.4)

or,
n - 2

H ss aP n ••••*••• (8.5)

In case of Vickers microhardness, the value of 

exponent *n' equals 2 (Kick's law 1885) for all indenters 

that give impressions geometrically similar to one another, 

Thus, n = 2 implies that hardness for a given shape of 

pyramidal indenter is constant and independent of load. In 

order to appreciate the detailed physical meaning of the 

above equations it will be instructive to consider the 

example of a solid subjected to a uniaxial compression.

For such a sinple case, the modulus of elasticity (Young's 

modulus) is given by

<rE * .................. (8.6)
t

where is the compressive stress defined as load per

unit area

{ * JL- .................. (8.7)A

and the compressive strain £ is defined as the decrease 

in length per unit length. Now the area of cross-section,

A, increases with compression. Hence for a constant volume
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of a solid, length is inversely proportional to the area 

of cross-section. If AQ represents initial area of cross- 

section with a normal length lo , and A the final area 

with normal length l after small compression, one obtains.

i. A Ao

or Ao
A" (8.8)

Therefore]-:

L- L Ao~ A 
= ~r*‘ (8.9)

substitution of (f and £ from equations (8.7) and (8.9) 

gives

E <r
r (8.10)

Hence for a simple uniaxial compressive stress when 

the area is a geometrical function of the deformation, 

determined, here by constant volume, the resistance to 

permanent deformation can be expressed simply in terms of 

load and corresponding area. In indentation hardness work 

the volume change is very very small. Hence the indentation 

hardness can be measured by using above formula (Eq. 8.10). 

Indenters are made in various geometrical shapes such as
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spheres, pyramids etc., The area over which the force due 

to load on indenter acts increases with the depth of 

penetration* The resistance to permanent deformation or 

hardness can be expressed in terras of force or load and area 

alone (and/or depth of penetration)• These remarks are true 

for solids which are amorphous or highly homogeneous and 

isotropic.

The above analysis presents a highly simplified picture

of the process involved because there is a great difference 

between deforming a solid in a simple uniaxial compression 

and deforming a surface of a solid by pressing a small 

indenter into it* Around the indentation mark, the stress 

distribution is exceedingly complex and the stressed material 

is under the influence of multiaxial stresses. The sharp 

corners of a pyramidal indenter produces a sizable amount 

of plastic deformation which may reach 30% or more at the 

top of the indenter. Further the surface of contact is 

inclined by varying amounts to the directions of applied 

force. In view of these complications a sirrple expression 

corresponding to that for the modulus of elasticity can^not 

be derived for hardness* In the absence of any formula based 

on sound theory, an arbitary expression is used which includes 

both known variables - load and area - in the present case.

Hence the hardness number, H, is defined as the ratio of the 

load to the area of impression.
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H = ~ .... ... <8.11)A

For pyramidal indenters the load (P) varies as the square of 
the diagonal, d. Thus for.a given shape of pyramid,

P « bd2 ..... (8.12)

where b is constant which depends on the material and 
shape of pyramid. The area of the impression, A, is also 
^(proportional to the square of the diagonal,

A * cd2 .......  (8.13)

where c depends upon the shape of the pyramid. Combination 
of equations 8.5, 8.6 and 8.7 gives

H = Constant ... (8.14) c

Hence for a given shape of pyramidal indenter hardness is 
independent of load and size of indentation. This statement 
represents Kick's law. In view of defining equation (8.5) 
for hardness, hardness number can also be considered as 
hardening modulus.

Due to complicated behaviour of indented isotropic 
single crystals of various materials and as a result of 
the development of arbitrary expression for hardness, it is
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clear that the theoretical treatment of the problem is 
extremely difficult. Hence it is desirable to approach 
this problem via experimental observations, interpretations 
and with a probable development of empirical relation(s).
The present work is taken up from this phenomenological 
point of view and is an extension of the work carried out 
by Saraf (1971), Mehta (1972), Shah (1976) and Acharya (1978) 
in this laboratory.

8.2 OBSERVATIONS i

The observations which were recorded for studying 
the equation P * adn are used in the present 
investigation (Table 8.1 and 8.2). The Knoop and Vickers 
hardness numbers are calculated using equation (8.1) and 
(8.2) for thermally treated and untreated sarrples. The 
observations are graphically studied by plotting the graphs 
of hardness number versus load P (Pig. 8.1, 8.2, 8.3, 8.4 
and 8.5). In what follows the hardness and hardness number 
will be used to indicate same meaning.

8.3 RESULTS AND DISCUSSION :

It is clear from the graphs of hardness number (H) 
versus load (P) that contrary to theoretical expectations, 
the hardness varies with load. The hardness at first 
increases with load, reaches a maximum value then gradually



TABLE - 8.1 (KNOOP IMDENTER)

LOAD P
in gm.

Hk ( Kg. mm"2 )

303°k 573°k 623°k 673°k 77,3°k

2.5 62.04 56.02 62.07 34.01 44.92

3.75 67.19 65.00 69.94 80.16 63.10

5.0 68.01 80.01 71.70 68.02 82.30

7.5 99.47 92.21 96.94 94.53 105.74

8.75 . 103.58 103.05 107,10 102,16 123.90

10 89.36 99.59 104.17 114.32 132.59

12.5 111.70 1 3l 3. 3^ 124.48 133.22 124.48

15 120.95 131.29 131.29 134.07 121.00

20 115.83 113.26 124.25 113.26 92.59

30 116.68 92.21 107.55 118.34 84.73

40 101.74 92.27 109.76 95,31 106.57

50 91.46 95.61 99.83 106.0? 96.92

60 95.62 106.74 v 102.78 105.68 100.91

70 93.31 94,07 99.61 106.74 112.50

80 90.52 90.52 99.25 110.19 99.24

100 89.04 92.54 99.32 102.17 99.36

120 89.93 91.64 91.64 97.54 107.55

140 88.50 92.66 93.79 106.29 98.85

160 90.33 80.66 101.32 104.07 105.36



TABLE -8.2 ( VICKERS INDENTER )

LOAD P
in gm.

Hv ( Kg. mm"2)

303°k 573°k 623°k 673°k 773°k

2.5 49.68 55.73 64.00 72.01 64.00

3.75 78.85 66.05 69.52 97.02 69.52

5.0 72.08 76.61 82.50 84.12 84.08

7.5 87,64 84.21 84.21 82.01 84.73

8.75 88.75 80.91 87.32 91.84 92.96

10.0 85.84 89.41 94.45 96.51 94.59

12.5 95.96 90.53 100.17 105.94 102.86

15 .93.78 88.67 102.15 110.69 103.39

20 91.23 101.64 102.71 106.95 103.69

30 104.23 101.58 96.48 93.73 96.48

40 88.^0 94.59 100.98 .99.50 101.73

50 88.31 91.67 92.77 93.42 92.83

60 78.60 88.27 90.29 91.53 90.81

70 85.35 90.83 90.78 90.82 90.87

80 79.29 87.04 91.78 93.16 92.24

19© 78.05 83.43 85.71 86,86 85.85

120 79.35 78.02 - ' 87.06 -

140 77.27 84.75 85.80 - 85.77

160 70.91 81.47 82.10 85.79 82.37
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Fig. 8.1 Plot of Hardness number(H) versus load P 
for temperature 303°K.

Fig, 8.2 Plot of Hardness number(H) versus load P 
for quenching temperature 573°K.
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Pig. 8.3 Plot of Hardness nurnber(H) versus load P 
for quenching temperature 623°K

Pig. 8*4 Plot of Hardness number(H) versus load P 
for quenching temperature 673°K



Fig, 8,5 Plot of Hardness number(H) versus
load P for quenching temperature 773°K.
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decreases, and. attains a constant value for all loads.
This behaviour is found for both types of hardness numbers 
viz, Knoop hardness number (H^) and Vickers hardness 
number (H^)• Further, Knoop hardness number (1^) has higher 
values than Vickers hardness number (H^) for all loads and 
for all samples irrespective of heat treatment. The 
theoretical conclusion that hardness is independent of 
load thus appears to be true only at hitter loads. The 
maximum value of hardness corresponds with a load which is 
nearer the value of the load at which kink in the graph of 
log P versus log d is observed (cf, Chapter-7) . The graph 
of H versus P can be conveniently divided into three parts 
OA, AB and BC where the first part represents linear 
relation between hardness and load, the second part, the 
non-linear relation and the thrfcd part the linear one. It
should be noted that there is a fundamental difference

\ '

between linear portions OA and BC of the graph OABC. This 
possibly reflects varied reactions of the cleavage surface 
to loads belonging to different regions. Besides it 
supports, to a certain extent, the earlier view about the 
splitting of the graph of log P versus log d into two 
recognizable lines (cf* Chapter-7),

The qualitatively complex behaviour of microhardness 
with load can be explained on the basis of the depth of 
penetration of the indenter, At small loads the indenter
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penetrates only surface layers, hence the effect is 
shown more sharply at' these loads. However, as the depth 
of the impression increases, the effect of surface layers 
becomes less dominant and after a certain depth of 
penetration, the effect of inner layers becomes more and 
more prominent than those of surface layers and ultimately 
there is practically no change in value of hardness with 
load. It is also^from the graphs that the Knoqp hardness 
number at lower loads increases rapidly with load as,

Icompared with the change in Vickers hardness number with 
load in identical,load region. Since the Knoop hardness 
number, H^, in general measures the hardness of surface 
layers, the above explanation based on,the depth of 
penetration is quite logical.

8.3.1 Relation between hardness and quenching temperature :

It is clear from the observations of hardness of 
quenched and unquenched samples (Tables 8.1 and 8.2) that 
hardness depends upon the quenching temperature (TQ),
Hardness in high load region (HLR) is independent of load. 
Hence average values of hardness (H) in hi^i load region 
are computed and are recorded in Table 8.3. Fig..8.6 shows 
the plot of log (H TQ) versus log TQ, The plot is a straight 
line for Knoop as well as Vickers hardness numbers. Further, 
both the straight lines are parallel to each other having a



Fig. 8.6 Plot of log (HT^) versus log (HLR)
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constant slope and different intercepts on log (H T^) 
axis. The straight line graph follows the equation,

log H tq * m log TQ + log c ......(8.15)

where m is the slope and C is a constant. Therefore,

H Tg1 “ m m C ........ (8.16)

or,

H TQk = C ........  (8.17)

where k = 1 - m. The value of k is - 0.12 for calcite.

It is clear from table 8.3 that quantitatively knoop 
hardness number is 1.13 times the vickers hardness number 
of calcite cleavage faces in the HLR region. Further for 
both indenters, the hardness number increases with quenching 
temperature. However the percentage increase in hardness 
with respect to hardness at room temperature (303°K) is 
quite small. This percentage changes for Knoop hardness 
and vickers hardness are respectively 12.6% and 11.4% and 
their ratio iis 1.1 which corresponds approximately to the 
ratio Hk i (Table 8.3).

It is desirable to ascertain how far the relation
— kH Tq as constant is true for individual observations on 
quench hardness. This constant is designated by C and the
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subscript K and V indicates respectively the use of Knoop 
and Vickers indenters for obtaining the Hardness values 
(Table 8.4). The percentage changes in hardness values 
from its mean value are small. Further the comparision 
indicates that the percentage changes for Knoop hardness 
number are greater than those of Vickers hardness number.
The author had consistently tried to find the reason for 
these large deviations by repeating the work several times. 
However the results were not significantly different 
from the present ones. She reasons are unknown for such a 
large deviation. Since Knoop indenter is normally used for 
studying crystalline anisotropy, the relatively large 
deviation is likely to be associated with the inherent 
utility of the indenter* At present there is no experimental 
evidence to support it. Fran the empirical formulae for 
Knoop and Vickers hardness numbers it is obvious that 
hardness number is inversely proportional to square of 
the diagonal of the indentation mark for a constant load. 
Since hardness depends on temperature of quenching, the 
diagonal length of the indentation mark would also depend 
on the quenching temperature* Thus for both the indenters

PH a R . —........ (8.18)
a

where R is a constant depending upon the geometry of the

I
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indenter. Further#

HTQk = C ......................... (8.19)

Combination of above equations gives#

PT k
---- - * * Constant a S .... (8.20)

2 R
d

or PT k * 1—3. x * S ......... (8.21)
d2

T l-U
-9- *-------2. Tn   (8.21)
a2 - p a

To s
or log —— a log (-«-) + (l - k) log Tq

d2

m*A

or log —« (1 - k) log TQ + log S - log P
d

............. (8.22)

T_
or log —» m, log T + log A ...... (8.23)

a6 a u

On simplifying it one gets (using eg. 8.20)

ml* SI.
-2- .* A a -f~ a -SL- ....(8.24a)
a2



or C
RP

A (8.24b)
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It is obvious from the above equation that for a given 
applied load if a graph of log (T^/d ) is plotted against 
log Tq, the slope of the graph will be (1 - k). However 
if this is repeated for Several applied loads# it is 
evident from above equation that graph of log (TQ/d ) 
versus log should consist of straight lines parallel 
to f. one another having slope (1 - k) and different 
intercepts,

/
It is possible to find out the spacing between two 

parallel .lines. Thus for the applied loads and P2

Tlog —»2|- = (1 - k) log

T__log —» (1 - k) log TQ2
<*2

The difference in above two equations is 

T Tlog -21- - log ---22. a (i - k) log
a 2 j 2% *2

+ log S - log P^

+ log s - log P2

log
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or

T- -vlog —— m (1 - k) log —--- + log —-■TQ2 dl2 T°2 P1

In terns of and Ag the above equation becomes

log TQ1 V
TQ2 di: ml 109 Q1 log

*2

Q2

These equations are fully reflected by the graphical 
2plotts of log (Tg/d^ ) versus log (Fig. 8.7, Table 8.5)

2and log (TQ/dv ) versus log TQ (Fig. 8.8, Table 8.6). They 

provide results which are in agreement with above conclusions. 
Further, the slope of any one plot (Fig* 8.7 and 8.8) is 

1.12.
i.e. 1 - k a = 1.12

Hence the value of k is - 0.12 which is identical with 
the value of the exponent k in the equation 8.19 connecting 
hardness number and quenching temperature.

In Chapter - 7 the variation of applied load with 
diagonal of an indentation mark was studied by critically 
examining enpirical formula, known as Kick's law.

P = adn (8.25)

o



TABLE - 8.5 (KNOQP INDENTER)

LOAD P Log ( Tq/ dk2 )

in gm. 303°k 573°k 623°k 673°k 773°k

30 2.9180 1.0927 1.1956 1.2709
i

1.1856

. 40 2.7340 2.9680 1.0795 1.0519 1.1606

50 2.5904 2.8075 2.9415 1.0013 1.0224

60 2.5302 2.7882 1.8751 2.9206 2.9605

70 2.4533 2.7332 1.7731 2.8579 1.9410

80 2.3820 2.6590 1.7348 1.8136 2.8287

100 2.2765 2.5694 2.6385 2.6839 2.7316

120 2.2014 2.4871 1.5237 2.5843 2.6875

140 2.1271 2.4232 2.4669 2.5551 1.5832

160 2.0792 2.3075 1.4425 2.4871 1.5539

I



TABLE - 8.6 (VICKERS INBENTER)

LOAD P
In gm»

Log ( V V >
303°k 57 3°k 623°k 673°k 773°k

30 1.7542 0.0197 0.0337 1.9557 0.1274

40 1.5578 1.8638 1.9286 1.8309 0.0254

50 1.4620 1.7533 1.7948 1.7433 1.8888

60 1.3265 1.6577 1.7038 1.6728 1.8000

70 1.2980 1.6031 1.6393 1.6258 1.7334

80 1.2092 1.5266 1.5861 1.4986 1.6818

100 1.1059 1.4113 1.4594 1.3536 *1.5538

120 1.0342 1.3029 Ml 1.2887 mm

140 2.9552 1.2720 1.3137 - 1.4072

160 2.8597 1.1970 1.2365 1.2697 1.3316
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TABLE - 8.7 (KNOOP INDENTER)

LOAD P
Log ^ a2 \ / TQ )

in gm. 303°k 573°k 623°k 673°k 773°k

30 1.3296 1.1552 1.0640 1.02 5 4 1.0733

40 1.5136 1.2800 1.1801 1.2444 1.0986

50 1.6572 1.4406 1.3182 1.2949 1.2367

60 1.7172 1.4596 1.3847 1.3756 1,2984

70 1.7947 1.5146 1.4866 1.4382 l.Bl'S'o

80 1.8659 1.5892 1.5248 1.4824 1.4305

100 1.9700 1.6788 1.6215 1.6122 1.5272

120 0.0446 1.7600 1.7356 1.7114 1.5718

140 0.1182 1.8244 1.7924 1.7412 1.6753

160 0.1678 1.9404 1.8169 1.8083 1.7056



TABLE - 8.8 (VICKERS INBENTER)

LOAD P
Log ( a2dvV Tq )

Ln gm. 303°k 57 3°k 623°k 673°k 773°k

30 1.2457 2.9789 2.9782 2.9691 2.8975

40 1.4621 1.1648 1.0833 1.1520 1.9997

50 1.5097 1.2553 1.2171 1.1930 2.1951

60 1.6735 1.3409 1.3081 1.2805 1.2247

70 1.7019 1.3955 1.3726 1.3511 1.2914

80 1.7907 1.4719 1.4259 1.3980 1.3420

100 1.8939 1.5873 1.5525 1.5253 1.4711

120 1.9657 1.6955 - 1.6702 -

140 0.0447 1.7265 1.6981 - 1.6175

160 0.1400 1.8017 1.7753 1.7347 1.6931



1 6-1

It was shown that a and n are constants and the
; P -straight line represented by the plot of log $ versus 

log d consists of two straight lines with slopes n^ and n2 
and intercepts a^ and a2 respectively. The slope n2 and 
the intercept a2 approximately correspond to HLR region 
of the graph of hardness versus load. (Fig. 8.1# 8*2, 8.3,

equations 8.20 and 8.25

S ........ (8.26)

8*4 and 8.55 • The combination of 
yields,

“2 ka„d t 2

Substituting

0 n0 - 2d* - P / a,d *

2
* A .....  (8.27)

Since n2 is not having an integral value# it is necessary 
to have a different approach. If graphs of log (a2dk /TQ) 
versus log TQ and log (®2^v /^q) versus lo9 tq are plotted, 
they consist of a series of parallel lines corresponding to 
different intercepts (Fig. 8.9 and 8.10). Thus each straight

ifline follows the general equation* I
!

, I

in e«j^K\.8.24a# one gets

ml” ni. Q 1 n« -
x a2a



Fig. 8 9 Plot-of log (a2dk2/TQ) versus log T 
for various loads <HLR) 0

Fig. 8.10 Plot of log (a^2/^) versus log T 
for various loads (HLR)
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a_ '
log —---- = nig log Tq + log B ........ (8.28)

tq

Slope of each straight line is mg = * 1*°9. Simplification
of tiie above equation yields

a2d T 0.09 B (8.29)

Combining above equation with e^h.8.25 one obtains

2_n 0.09P d2 2 Tq B (8.30)

Comparision of Kick's law (Eq. 8.25) with formulae for 
hardness numbers (Eq. 8.1 and 8.2) clearly suggest that 

the constant a and hardness numbers are related. Inspection 
of the variation of various functions involving H, a

4
and Tq has disclosed that the graph of log (HT^ / a2) versus 
log Tq would be a straight line, (Pig. 8.11, Table 8*9) 
following the equation.

HTlog —-Q—
a2

m3 log Tq + log E (8.31)

where slope is given by m3 * 1.09 and E is a constant.
These plots for Knoop and Vickers hardness numbers are 
presented in Fig. 8*11 (Table 8*9)
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p a2 ~ n2

substituting a0 = —-- and
z 6T

H - -5__in eq. 8.31,
a2

one gets

1 - ra, n~ - 2E « RTq j a z ....... (8.32)

Simplifying eq. 8.31 gets

_ 1 - m,H T J
■--- =- * E ......... (8.33)
a2

-0.09H Ti.e. ——•———— * E (8.34)
a2

Multiplication of eq. (8.27) with eq. (8.30) gives

v n„ - 2 2 - n- 0.09T ^ * a d ^ _ p J * T =» ABQ * a2 * f* • Q -

(v j. O OQior a2TQ * = AB « Constant .... (8.35)

Thus the intercepts a2 could be associated with the 
quenching temperature. This can also be understood from 
a graphical plot of log (a2T^) versus log TQ which follows 
the equation

log (a2T£j) m^ log Tq + log n (8.36)
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The graphs of log versus log for Knoop and Vickers
indenters are shown in figure 8.12. (Table 7.3 and 7.*2).
Thus,

i - ma2TQ - D ....... (8.37)

where is the slope of fig* 8.12 and equals 1.03.
Hence the above equation becomes

- 0.03
a2TQ = B ......  (8.38)

substituting

P 2 — n2a2 = —• d in eq. (8.37)

one gets

p 2 - n 1 - m.—d T » D ..... (8.39)
dr u

Slight dependence of a2 on quenching temperature can be 
expected because value of a2 is (Tables 7.3 and 7.2) quite 
small. It is suggested from the form of equations 8*25 
and 8.18 that there must be some relation between hardness 
number and a2. After considering several functions 
containing H and a2 it was found that the plots of log (a-^H^) 
versus log Hk and log (a2 H^) versus log H give a better 
straight line, obeying the general equation
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log (a2H) « ra5 log H + log F (8.40)

on Simplification one gets

F (8.41)

Slope of the above plot (fig. 8.13 and 8.14) is given by 

mg = 1.25. Hence the above equation becomes

This shows very, clearly that hardness number and the 

intercept of the straight line (of,fig. 8.13 and 8.14) 

corresponding to HLR are intimately connected.

It is thus clear from above eqjxations that Kick's law

and formulae for hardness numbers are intimately connected 

in the HLR region of the graph of hardness member versus 

applied load.

It is interesting to examine the accuracy of each 

observation in the above plots by considering the coefficient 

of variation for different constants associated with 

different equations mentioned above.

The values of A, B, E. and D are computed for each

- -0.25
F (8.42)

observation using equations 8.27. 8.29. 8.32 and 8.39





ISO
respectively and are presented in Tables 8.10.1 to 8.10.10. 

For these tables the above equations are collected here and 
are given in sequence with new equation numbers.

*v

m 1 - m. 
Q

P
nj - 2• a2}A

m„
n„ - 2

a~ d 2v v

(8.43)

(8.43a)

(8.43b)

B
2

P d

2
P \

n2 0.09 
Q

' n2 „ 0.09 
Q

(8.44) 

(8.44 b)

B s V
2 - n„

P d 0.09
Q .. (8.44b)

_P_
B

P«■*«■» MB'

a, - 2 d ^
”J“o7o9“"tq

a, - 2a*2

Tq0.09

n0 - 2<v2
"I"5759 ’
Q

.......... (8.45)

•«*•««*.«« (8.45a)

(8.45b)
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AB a

Vv -

PT. k + 0.09

d*

k 4* 0.09
TQ

*
PT k 4* 0.09

(8.46)

•*•••*• (8.46a)

•••«... (8.46a)

AP

v -
A^P =

D »

°k *

Q
1 - m n0 - 2a2 d

1 - HI. n2 " 2
Q 2k

1 - m n2 " 2
T_ A d
Q 2v v

P o „ X - ID--r <a " 2 tq *

2“ ^
2 " ”2 TQ1 “ ra4

P 2 - n0 1 - m.—- d 2 T 42 v XQ

....... (8.47)

....... (8.47a)

7

....... (8.47b)

....... (8.48)

....... (8.48a)

•««.... (8.48b)
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E

E,

DE

DA

D E V V

1 m “ 2
R " m3 d ^

1 - m_ n2 
14230 Tq \

1 - m_ n_ - 2 
1854.4 Tq \

(8.49)

(8.49a)

(8.49b)

HP - 2 - m3 - m4
7” Q

T 2 ~ m3 ~ m4
T”5~ Q
°k

1854.4 P m2 ~ m3 ~ m4 
- TQ

%

(8.50)

(8.50a)

(8.50b)

The means values of constants are summarized in Tables 
8.11 and 8.12.

A careful study of mean values of 'constants' and 
their deviations from the corresponding individual 
observation clearly indicates that the deviations are within 
experimental errors. A glance at Tables 8.11 and 8.12 
shows that.

D s* AB (8.51)
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AP

£ =

DEIT
c_
D

from tables 8.3 and 8.4

(8.52)

(8.53)

for all temperatures

HLR and for Knoop and Vickers 
indenters, the variation of hardness number H and the 
variation of hardness constant a2 with quenching temperature 
and also with each other follow the equations.

H

Thus for all loads in

HTQk * C = Constant ....... (8.55)

a2^QC ~ D ss Constant ••••••. (8.56)

a2Hs = F as Constant (8.57)

where k, r and s are numbers numerically less than unity.
The sigm for these^decide the nature of $the crystal. For 
calcite they are negative as shown above. The constants 
in above equations have different values. Further quenching 
can also be carried out by bringing a crystal from very low
temperature to room temperature. Thus for Tq = 1°K,

H ss constant ••••••.. (8.58)
a2 * constant •••...•• (8.59)
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These values can be considered to characterize a crystalline 
material. Thus for calcite, the quench hardness number and 
quench hardness constant are given by

m 46.57 Kg - mm”2   (8.60)

and Hv « 41.44 Kg - mm*'2   (8.61)

ak ■ 1.47 x 10”2 Kg - mm”2 *.... (8.62)

and av « - 1.84 x 10"2 Kg - mm"2   (8.63)

8.3.2 Relation between hardness and electrical conductivity

There are several temperature dependent crystal 
properties. One such property is electrical conductivity 
which varies in an exponential fashion with temperature. The 
conparision of electrical conductivity measured at temperature 
T to the microhardness value determined for the same quenching 
temperature could provide a clue about the possible relation 
between two quantities,hardness and electrical conductivity.

The values of electrical conductivity, , are given
in table 8,13 (values are taken from Ph.D. thesis of 
R.T. Shah, 1976, M.S. University). Pig. 8.15 represents a 
graph of log /CT versus 1/T. The plot consists of three 
straight lines with different scopes and intercepts on the 

axes of log 6CT and 1/T.



TABLE - 8.13

T Log <^T 103/T.

453 4.395 x 10”12 9.2991 2.208

463 4.923 x 10“12 9.3f79 2.160

473 5.603 x 10"12 9.4227 2.114

483 5.404 x 10"11 9.7327 2.070

493 1.213 x lO”11 8.0840 2.028

503 1.547 x 10“1;L 8.1897 1.988

513 ' 1.804 x 10"11 8.2562 1.949

523 2.151 x lO*-11 8.3326 1.912

533
4.686 x lO"11 8.6798 1.876

543 6.668 x 10 8.8240 1.842

553
, , , -10 
1.014 x 10 7.0200 1.803

563
-10

1.386 x 10 7.1417 1.776

573
-10

1.660 xlO 7.2200 1.745

583 3.787 x 10"10 7.3440 1.715

593 6.715 x 10”10 7.6000 1.886

603 9.326 x 10"10 7.7500 1.658

613 2.051 x 10-9 6.0995 1.631

633 3.152 x 10"9 6.3000 1.580

648 4.879 x 10”9 6.5000 1.540

* Taken from Ph.D thesis of R.T. Shah (1976)
contd



contd.)T&BLE - 8#13* (....

T 4 Log £t io3/t.

663 1.408 x 10~8 6.9701 1.508

678 1.484 x 10~8 5.0025 1.475

693 3.234 x 10”8 5.3505 1.443

708 5.441 x 10"8 5.5856 1.412

723 5.984 x 10”8 5.6361 1.383

738 1.087 x 10-7 5.9047 1.355

753 1.368 x 10~7 4.0128 1.328

768 1.995 x 10~7 4.1852 1.302

783 2.601 x 10~7 4.3090 1.277

798 3.324 x 10~7 4.4237 1.2 £3

813
4.986 x 10"7 4.607=! 1.230

828
5.567 x 10‘7 4.6636 1.208

-7 „ ,

843 6.469 x 10 , 4.7366 1.186

858
7.252 x 10“7 4.7940 1.166

873
8.399 x 10"7 4.8652 1.145

888 9.768 x 10"7 4.9382 1.126

903 1.041 x 10“6 4.9730 1.107

918 1.140 x 10”6 3.0196 1.089

933 1.260 x 10 3.0702 1.072

* Taken from Ph.D, thesis of R.T. Shah (1976)



Fig. 8.15 Plot log ( JT) versus 1/T



It is clear from the general study of electrical 
conductivity of ionic crystals that the activation energies 
calculated for I, II and III parts of the graph are 0.90 ev 
for room temperature to 30Q°C# 1*3 ev for the region 310°C 
to 540°C and 0.6 ev for temperatures beyond 540°C. It is 
well known that calcite (CaC03) starts decomposing at a 
temperature of 500°C. The rate of decomposition increases 
with temperature.The thermal etching of calcite cleavage 
faces (Mehta# 1972) has shown very clearly that it could 
be effected and studied under controlled conditions only 
within a restricted range of temperature viz. 520°C to 
560°c» Hence the third part of the graph indicating 
temperatures above 500°C shows the effect and onset of 

thermal etching. As a result of etching the slope of this 
line is comparatively less than those of lines belonging 
to II and III. In accordance with the general understanding 
of ionic crystals the jump energy is 0.90 ev while the 
formation energy for schottky defect is 0.8 ev.

It is known that the point defects which exists in 
crystal in thermal equilibrium, in contrast to thermocjysva— 
mically unstable defects like dislocations and grain boundries, 
may contribute to mechanical properties through diffusion# 
e.g* creep at high temperatures. Hence it is desirable to 
review briefly the part played by point defects in 'hardening* 
crystalline materials* It is found that more direct effects
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on mechanical properties -ofcpoiJS±-41e#g^6s-, e.g. an increase 
in the y^fild stress, are caused by non-equillibrium 
concentrations of point defects, and on formation of their 
aggregates. In the present case non-equillibrium 
concentrations of point defects in calcite are produced 
by rapid cooling from high temperatures,the resulting 
hardening is called 'quench hardening' as distinct from 
radiation hardening produced by irradiation. The 'quench 
hardening is simpler amongst tie two. The quenching 
experiments introduce the following few or all effects in 
a crystal s-

(i) Excess vacancies (equilibrium concentration of 
vacancies at higher temperature),

(ii) Possible aggregation of some vacancies.

(iii) Annihilation of vacancies.

(iv) Quenching strains.

(v) Pinning of vacancies at dislocations, grain boundries 

and impurities.

(vi) Effect of interstitials and their snail aggregates.

The concentration and formation of energy of excess 
vacancies can be studied at low temperatures by measuring
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electrical resistivity. The main disadvantage in this 
procedure is possible aggregation or annihilation of some 
of the vacancies during quenching. Implicit in this method 
is the correction or avoidance of loss of vacancies 
together with any production of them e.g. by quenching 
strains and the effect of impurity and the formation of 
the more mobile vacancies. The quenching strains are 
associated with the production of vacancies. This will be 
clear from the following consideration.

During the quenching of the specimen, the surface is 
cooler than the inside and hence it is in tension while 
the inside is in compression. If the stress due to thermal 
gradient is large enough, the specimen will be deformed 
plastically. Since the yield stress is usually lower at 
higher temperature, the inside section of material will then 
undergo plastic deformation. When the quenching is completed 
and the temperature is again uniform, the plastically 
deformed inside material compresses the surface layers and 
vice versa. The thermal stresses thus set up are both
axial and radial. Hence the deformation of the specimen is

\thus complex. Usually point defects are produced by 
deformation. Hence the production of vacancies by quenching 
strain must be taken into account in any assessment of the 
number of vacancies quenched into a crystal. Further the
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mechanical properties of a crystal are largely determined 
by the number, geometrical configurations,,interactions and 
mobility of dislocations contained in it, The mobility of 
dislocations is mainly determined by their interactions with 
other defectsf Structural and/or otherwise. It is this 
interaction which produces 'hardening*. This production 
will now be reviewed briefly,'

Non-conservative motion of jogs on dislocation and 
annihilation of two parallel edge dislocations of opposite 
sign?, one atomic plane apart>are the main mechanism 
suggested for point defect formation during deformation 
by mechanical means or by quenching. The non-conservative 
motion of jogs is possible both on edge dislocations and 
screw dislocations. For deformation, however, jogs on screw 
dislocations are more important. Jogs on screw dislocation 
are geometrically short segments of edge dislocations. The 
slip plane of these jogs is not the slip plane of the 
parent screw dislocation. Hence as the screw dislocation 
moves, jogs should move in a non-conservative manner along 
the screw. These fundamental mechanisms of point defect 
formation are well established geometrically, but the theory 
cannot predict as yet how many of particular species of 
defect are produced under certain conditions. This is a 
very difficult problem because the number and behaviour of 
moving dislocations are very complicated functions of the
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deformation temperature, the strain rate as well as other 
conditions of the specimen. A complete understanding of 
work hardening is required to solve this problem. Thus 
quenching produces dislocations, grain boundries segregation 
of Impurities as well as point defects. It is also observed 
that a physical property suitable to detect the excess 
vacancies is also affected by plane and volume defects.
Hence it is necessary to separate the effect of particular 
kind of defect from the effect of others. The procedure 
for effecting this discrimination varies in a finer way from 
specimen to specimen;materials to materials. This is not 
yet perfected for all types of materials. The interstitials 
act in somewhat similar fashion as mentioned for vacancies.

The above presents briefly the possible effects of 
quenching processes on the materials. It is now interesting 
to consider the effect of these processes on crystals. It 
is observed that no noticeable increase or change in 
hardness is found for quenched and aged metallic crystals. 
This is in marked contrast with the pronounced change in 
yield stress. The reason for this apparent contradiction 
is found in the observed stress-strain curve of the quenched 
hardened crystal i.e. the effect of quenching on hardening 
disappears after a moderate amount of deformation. Since 
hardness is a measure of resistance to deformation.

/



microhardness measurements using very small loads might 
detect quench hardening. However use of small loads would 
determine the hardness of only the surface layers probably 
few microns deep. It may be remarked that even in the low 
load region# local deformation will be severe. Since the 
vacancies escape to the surface during quenching# no 
hardening is to be expected in the thin surface layers.
It is therefore imperative to remove the surface layers 
in order to detest hardening using small load microhardness 
measurements. It is from this view that Aust et al# (1966) 
quenched zone-refined lead from near 300°C into water. 
Hardness was measured using a load of 1 gm# -this resulted 
in a depth of indentation of about 3 M- . The specimen 
showed no hardening when tested without removing surface 
layers. Further hardening was observed when surface layers 
of 50 M. thickness were removed. They also found that the 
region near the grain boundry showed no hardening. This is 
most likely to be^the escape of vacancies to grain boundries 
during quenching. Since the vacancies anneal out of the 
surface during quenching, the first few layers will not 
exhibit quenching effect. As calcite has a perfect cleavage# 
the quenched samples were cleaved and the hardness studies 
were carried out on these freshly cleaved specimens.

The graphs of log T^ versus 1/Tq and log 6^ T versus 
1/T for calcite crystals have close resemblance with one
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another (Fig, 8.16, 8.17, Tables 8.14, 8.15). Hence it 

appears that similar mechanisms are likely to operate in 

the crystal. Further, the plots of log TQfJ versus 1/tq 

are parallel to one another except for the loads where 

maximum hardness is observed. Hence it can be conjectured 

that the point defects are mainly responsible for increased 

hardness of calcite crystals due to quenching. This is 

supported by the empirical relation between hardness and 

schottky defects in alkali halides at room temperature 

(Shukla and Bansigir, 1976). With the increase of applied 

load dislocations which are produced on cleavage face by 

indentation would start interacting with quenched-in point 

defects. As a result the effect of load on indenter is 

reflected in the lost parallelism of graphs near the loads 

where kink in log P vs log d graphs is observed. For 

higher loads, the graphs of log T.d «s 1/3&are again 

parallel to one other. It is thus clear why the graph 

of hardness against load is divided into three regions.

In the first region (oA of plot) the quenched-in point 

defects operate through grown and aged dislocations ignoring 

to a greater extent the contribution of fresh dislocations 

introduced by indentations ; at higher loads (BC portion 

of the graph) the freshly introduced dislocations are more 

active than grown and aged dislocations in ‘hardening’ the 

crystals. For intermediate loads (associated with portion



TABLE - 8.14 (KNQ'OP INDENTBR)

p
in gm.

Log TA
303 K 573 K 623 K 673 K 773 K

2.5 3.8605 4.1595 4.1736 4.3377 4.3375

3.75 3.9313 4.2153 4.2368 4.2396 4.3516

5.00 3.9911 4.2326 4.2928 4.3377 4.3505

7.50 3.9967 4.2898 4.3153 4.3543 4.3902

8.75 4.0213 4.2992 4.3269 4.3709 4.3892

10.00 4.0824 4.3356 4.3622 4.3755 4.4035

12.50 4.0824 4.3545 4.3719 4.3908 4.4656

15.0 4.1027 4.3636 4.4000 4.4289 4.5114

20 4.1765 4.4581 4.4744 4.5279 4.6320

30 4.2630 4.5909 4.5938 4.6066 4.7393

40 4.3551 4.6532 4.6518 4.7161 4.7519

50 4.4269 4.7336 4.7209 4.7412 4.8210

60 4.4568 4.7431 4.7541 4.7186 4.8518

70 4.4956 4.7705 4.8051 4.8129 4.8616

80 i.5312 4.8079 4.8243 4.8350 4.9179

100 4.5832 4.8527 4.8725 4.8999 4.9663

120 4.6205 4.8933 4.9296 4.9495 4.9885

140 4.6573 4.9254 4.9580 4.9644 5.0403

160 4.6821 4.9834 4.9703 4.9980 5.0555



TABLE - 8.15 (DICKERS INDENTER)

P __________________________L°g TQdv
in gm. 303°K 573flK 623^ 673°K 773°*

2.50

3.75

5.00

7.50

8.75

10.00

12.50

15.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

100.0

120.0

140.0

160.0

3.4664

3.4541

3.5360

3.5818

3.6124

3.6487

3.6729

3.7175

3.7323

3.9435

3.9912

4.0589

4.0732

4.1175

4.1691

4.2050

4.2445

4.2922

3a7181

3^7693

3.7995

3.8670

3.9092

3.9165

3.9622

4.0063

4.0395

4.1273

4.2053

4.2605

4.3083

4.3356

4.3739

4.4315

4,4857

4.5012

4.5387

3.7244

3.7945

3.8198

3.9034

3.9289

3.9409

3.9766

4.0112

4.0732

4.1748

4.2274

4.2943

4.3398

4.3721

4.3982

4.4620

4.5348

4.5734

3.7300

3.8002

3.8492

3.9426

3.9485

3.9698

3.9979

4.0280

4.0979

4.2147

4.2642

4.3266

4.3703

4.4056

4.4290

4.4927

4.5652

4.5974

3.8181

3.8882

3.9093

3.9957

4.0090

4.0343

4.0645

4.1030

4.1648

4.2685

4.3195

4.3878

4.4322

4.4655

4.4913

4.5553

4.6286

4.6664
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Pig. 8.16 Plot of log T^d^ versus l/T^ for 
various loads.

h 8-

Fig. 8.17 Plot of log TQdv versus 1/tq for 
various loads.



AB of idle graph) there appears to be a complicated 
interaction between quenched-in point defects# aged 
dislocations and freshly introduced dislocations# resulting 
in the non-linear behaviour of hardness versus load. It 
should be remarked here that the line of demarcation between 
low loads and intermediate loads# between intermediate loads 
and high loads is not wefcb defined.

The value of load at which hardness acquires a 
maximum value is not constant tfcut changes with the 
quenching temperature. It shifts towards the lower load 
value with higher quenching temperature. This is more 
clear from the graph of log P vs log d and can be inferred 
to a certain extent, from the graphs of hardness ys load.

It is clear from the above discussions that the 
behaviour of hardness is similar to that of conductivity 
for various quenching temperatures. Further the low load 
hardness values in the first region are governed by nature# 
distribution and concentration of quenched-in point defects, 
and their interactions with grown and aged dislocations. 
Further the thrid region BC of the plot of hardness vs 
load is governed mainly by freshly introduced dislocations. 
Hence it is desirable to discuss the comparative behaviour 
of these two quantities with respect to temperature. Out 
several combinations of these quantities to form different



functions,' the function (log ^./HJ/log T has almost a 
constant value (Table 8©16) in high load region. Hence 
the graph of log /5 versus log T are plotted for high 
load region (Fig. 8.18). The graph is a straight line for 
knoop as well as vickers hardness numbers. Thus, it is 
clear that for a given crystal <£/H has a constant value 
at a constant temperature for high load region. Since 
electrical conductivity is proportional to the diffusion 
constant. (Nemst-Einstein equation) it can be concluded 
that for a given ionic crystal, the ratio of diffusion 
constant to hardness (number) at a constant temperature 
is constant in high load region. This also indicates that 
defect structure of the material in general and in particular 
equilibrium concentration of point defects at the 
quenching temperature for the same material for which two 
quantities are determined is more or less identical.

To verify the results obtained from hardness studies, 
the data on hardness is combined with the data on electrical 
conductivity© The electrical conductivity of calcite is 
basically ionic in character. At temperature T°K it is 
given by

** exp (- E/kT) ........ (8.64)

where (foc is a constant independant of temperature and 
]< is Boltzmann's constant.
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Pig„ 8.18 Plot of log ( 4/**> vs 109 TQ
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Combination of eq. (8.64) with HT^ t= constant yields,

- E l°910e + D (8.65)

where log D is a constant given by log (foc - log1QA. It 
is obvious that if the value of 'k* calculated from hardness
studies is substituted in eq, (8.65). a plot of log —

s fj
vs. 1/T (Pig. 8*1©, table 8.17) should be similar in all 
respects to that of conductivity plot except for the 
intercept. The value of activation energy calculated 
using eq. (8.65) is 1.3 ev. in accordance with the value 
of activation energy calculated using conductivity data 
alone in the temperature range of 300°C to 500°C.

8.4 CONCLUSIONS :

(i) The comparative study of hardness and electrical
conductivity of the cleavaged specimens at different 
temperatures indicate that the plot between hardness 
and load can be qualitatively divided into three 
portions viz. low- load region corresponding to linear 
part, intermediate load region corresponding to non­
linear part and high load region corresponding to 
linear portion of the graph. It is also shown 
qualitatively that (a) in low load region the quenched- 
in point defects operate through their interactions



Pig. 8.19 Plot of-log ( ^T1 ” k/H ) vs 1/T
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with grown and aged dislocations, (b) the 
complicated interactions between quenched-in point 
defects, grown, aged and freshly introduced 
dislocations give rise to non-linear portion and 
(c) the freshly introduced dislocations by 
indentations at high loads control the linear portion 
of title graph,

(ii) Hardness depends upon quenching temperature, A
relation between hardness and quenching temperature 
is given by

(a) tjrri ^ _
* Jt constant where k =-0,12 for calcite.

(b) a T r — a2 Q constant where r = - 0.03 ” ’7

(c) TjSa2H constant where s a* - 0.25 for calcite

(iii) The ratio of electrical conductivity to hardness 
(number) of calcite crystal is constant at a 
constant temperature in high load region.

(iv) Knoop hardness number has higher value^ than Vickers 
hardness number at any given temperature.


