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8.1 INTRODUCTION it N
’&
It is clear from the discussion of the p ViQHS“’ G
WV IVERSWY

Chapter that ' Standard Hardness;f 'a' 4is a function of -
quenching temperature ; 'al’ and 'az' in general vary with
quenching temperature (Tg) . waever, the variation of a, with
quenching temperature is more noticeable than that of Age In
particular, ay in case of knogp indentation is more susceptible
to quenching temperature than that of Vickers indentation.

It is now interesting and useful to study in detail how

hardness' changes with quenching temperature.

The Knoop and Vickers hardness numbers (Hk and H ) are
defined by equations, (Mott, 1956) '

. =!L‘23O P L N X N N N 2 (8.1)
B = 220

VHN, H = ‘85‘1'& P
v d2

TETosovsoe (802)

. where load P is measured in grams and the diagonal length

d, of the indentation mark in microns. The hardness number
is not an ordinary number, but a constant having dimensions
and a deep, but less understood, physical ﬁeaning. The

combination of these equations with

- P = adn ] Secnsncse (803)
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vields,

LE X X B X N R (804)

or,

LR N KR N KN ] (8.5)
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In case of Vickers microhardness, the value of
exponent 'n' equals 2 (Kick's law 1885) for all indenters
that give impressions geometrically similar tc one another,
Thus{ n = 2 implies that hardness for a given shape of
pyramidal indenter is constant and independent of.ioad. In
order to appreciate the detailed physical meaning of the
above equations it will be instructive to consider the
example of a solid subjected to a uniaxial compression.

For such a simple case, the modulus of elasticity (Young's

modulus) is given by

§

- s

E

[ X R R NN N X (8.6)

~

where ¢ is the compressive stress defined as load per

unit area

= 2 cesssase (8e7)
§ = _

and the compressive strain € is defined as the decrease
in length per unit length, Now the area of cross-section,

A, increases with compression. Hence for a constant volume
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of a so0lid, length is inversely proportional to the area
"of cross~section, If A, represents initial area of cross-
section with a normal length 20 » and A the final area

with normal length L after small compression{ one obtains,

L A = X—o A,
or -—1;-— = ) -g-a'- (AR ENE NN ] (808)
Lo
Therefore-
L- L A= A :
é = mmeemee = -....:.....:-. seeccccee (809)
L A
substitution of ¢ and € from equations (8.7) and (8.9)
gives
§ P
E = —— = hntenbebsdetentend ®sscsceee (8 +10)
€ A, = A

Hence for a simple uniaxial compressive stress when
the area is a geometrical function of the deformation,
determined here by constant volume, the resistance to
permanent deformation can be expressed simply in terms of
load and corresponding area, In indentation hardness work
" the volume change is very very small. Hence the indentation
hardness can be measured by using above formula (Eq, 8,10).

Indenters are made in various geometrical shapes such as



spheres, pyramids etc, The area over which the force due

to load on indenter acts increases with the depth of
penetration. The resistance to permanent deformation or
"haraness‘can be expressed in terms of force or load and area
- alone (and/or depth of penetration)., These remarks are true
for solids which are amorphous or highly homogeneous and

isotrepic,

The above analysis presents a highly simplified picture

of the process involved because there is a gréét difference
betweeﬁ deforming a solid in a simple uniaxial compression
and deforming a surface of a solid by pressing a small
indenter into it, Around the indentation mark, the stress
distribution is exceedingly complex and the stressed material
is under the influence of multiaxial stresses, The sharp
cornérs of a pyramidal indgnter produces a sizable émount

of plastic deformation which may reach 30% or more at the
top of the indenter, Further the surface of contact is
rinclined by varying amounts to the directions of applied
force, ' In view of these complications a simple expression
corresponding to that for the modulus of elasticity can not
be derived for hardness. In the absence of any formula based
dn sound theory, an arbitary expression is used which includes
both known §ariables - load and area - in the present case.

Bence the hardness number,. H{ is defined as the ratio of the

load to the area of impression,



H = - - [ X RE XN {8011)

For pyramidal indenters the load (P) varies as the square of

the diagonal, d. Thus for a given shape of pyramid,

P = bd2 Sssvenece (8‘12)

where b is constant which depends on the material and
shape of pyramid. The area of the impression, A, is also

gproportional to the square of the diagonal,

A = Cdz eseorcne (8013)

where ¢ depends uﬁon the shape of the pyramid, Combination

of equations 8.5, 8.6 and 8,7 gives

2
H - --Eg . - = -9. = Constant P (8 o14)
cd: c

Hence for a given shape of pyramidal indenter hardness is
independent of load and s;Ze of indentation, This statement
represents Kick's law. In view of defining equation (8.5)
for hardness, hardness number can alsoc be considered as

hardening modulus,

Due to complicated behaviour of indented isotropilc
single crystéls of various materials and as a result of

the development of arbitrary expression for hardness, it is



clear that the theoretical treatment of the problem is
extremely difficult., Hence it is desirable to approach

this problem via experimental observations, interpretations
and with a probable development of empirical relation(s).
The presént wérk is taken up from this phenomenological
point of view and is an extension of the work carried out

by Saraf (1971), Mehta (1972), Shah (1976) and Acharya (1978)
in this laboratory. '

8.2 OBSERVATIONS :

~The observations which were recorded for studying

the equation P = ad® are used in the present
investigation (Table 8.1 and 8.,2). The Knoop and Vickers
hardness numbe¥s are calculated using equation (8.1) and
(8.2) for thermally treated and untreated samples, The
observations are graphically studied by plotting the graphs
of hardness number versus load P (Fig. 8.1, 8.2, 8.3, 8.4
and 8.,5). In what follows the hardness and hardness number

will be used to indicate same meaning.

8.3 RESULTS AND DISCUSSION ‘s

It is clear from the graphs of hardness number (H)
versus load (P) that contrary to theoretical expectations,
the hardness varies with load, The hardness at first

increases with load, reaches a maximum value then gradually



TABLE - 8,1 (KNOOP INDENTER)

Hk ( Kg. w2 )

LOAD P
in gm. 303% 573% 623% 673% 77.3%
2.5 62.04 56,02 62,07 34,01 44,92
3,75 67.19 65,00 69,94 80.16 63.10
5,0 68,01 80,01 71.70 68.02 82,30
7.5 99,47 92.21 96.94 94,53  105.74
8,75 . 103,58 103,05 107,20 102,16 123,90
10 89,36 99,59 104.17 114,32 132,59
12,5 111,70 114,11 124,48 133,22 124,48
15 120,95 131,29 131,29 134,07  121.00
20 115,83 113,26 124,25 113,26 92,59
30 116,68 92,21 167,55 118,34 84.73
40 101,74 92,27 109.76 95,31 106,57
50 91.46 95,61 99.83 106.0% 96.92
60 95,62 106,74 ' 102,78 105,68 100,91
70 93,31 94,07 99,61 106,74 112,50
80 90,52 90,52 99,25 110,19 99,24
100 89,04 92,54 99,32 102,17 99.36
120 89.93 91.64 91.64 97.54  107.55
140 88,50 92,66 93,79 106.29 98.85
160 90,33 80,66 101,32 104,07  105.36




TABLE = 8,2 ( VICKERS INDENTER )

He ( Kg. mm~2)

LoaD P
in gm. 303% 573% 623% 673%% 773%
2.5 49,68 55,73 64.00 72,01 64.00
3,75 78.85 66.05 69.52 97,02 69.52
540 72,08 76.61 82.50 84.12 84,08
7.5 87.64 84.21 84,21 82,01 84,73
8475 88.75 80,91 87.32 91.84 92.96
10.0 85.84 '89.41 94,45 96,51 94,59
12.5 95,96 90.53 100,17 105.94  102.86
15 93,78 88,67 102.15 110,69  103.39
20 91.23 101,64  102.71 °  106.95  103.69
30 104,23 101.58 196,48 93.73  96.48
40 88,30 94,59 100.98 99,50 101,73
50 88,31 91,67 92,77 93,42 92.83
60 78.60 88,27 90,29 91.53 90.81
70 85,35 90,83 90,78 '90.82 90,87
80 79.20  87.04 91,78 93.16 92,24
100 78,05 83,43 85,71 86.86 85,85
120 79.35 78.02 - 87.06 -
140 77.27 84,75 '85.80 - 85.77
160 70.91 81.47 85,79 82,37

82,10
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decreases, and attains a constant valug ﬁsr all loads,
This behaviour is found for both types of hardness numbers
. viz., Knoop hardness number (H) and Vickers hardness
number (H,). Further, Knoop ‘hardness‘number (Hk) has higher
values than Vickers hardness number (H,) for all loads and
for all samples irrespective of heat treatment, The
theoretical conclusion ;hat hardness is independent of
load thus appears to be true only at higher loads, The
‘maximum value of hardness corresponds with a load which is
nearer the value of the load at which kink in the graph of
loé P versus log 4 is(observedV(Sf, Chapter-7). The graph
of H versus P can be éon&enientiy divided into three parts
CA, AB and EC where the first pért\represents linear
relation between hardness and load, the second part, the
,non-linear relation and the thifd part the linear oﬁe. It
should be noted thét there is a fundamental difference
between linear portions OA and BC oé the graph OABC, This
poss;blﬁ rgflects varied reactions of the cleavage surface
to loads 5elonging to different regions. Besides it
supports, to avcertain extent, the earlier view about the
"splitéing of the graph of log P versus log d into two

recognizable lines (¢f, Chapter~7),

The qualitatively complex behaviour of microhardness
with load can be explained on the bas{s bf the depth of’

penetration of the indenter. At small loads the indenter
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penetrates only surface layers, hence the effect is

shown more sharply at these loads. However, as the depth
of the impression increases, the effect of surface layers
becomes less dominant and after a certain depth of
penetration, the effect of inner layers becomes more and
more prominent than those of surface layers and ultimately
there is practically no change in value of hardness with
load, It is alsoi%;;m the graphg that the Knoop hardness
number at lower loads increases rabidly with load as,
comparéd with the change in Vickers hardness number with
load in identical ,load region. Since the Knoop hardness
number, Hy in general measures the hardness of surface
layers, the above explanation based on, the depth of

penetration is quite logical.

8.3.1 Relation between hardness and quenching temperature :

IF is élear froﬁ the.ébserVatioﬁs of hardness of
quenchéd and gnquenched sampleé (Tables 8.1 and 8.,2) that
hardness depends upon the quenchihg temperature (TQ).
Hardness in high load region (HLR) is independent of load.
Hencé average values of hardness (H) in hicgh load region
are computed and are recorded in Table 8.3. Fige. 8.6 shows
the plot of iog (2 Tb) versus log T.. The plot is a straight
line for Knoop as well as Vickers hardness numbers, Further,

both the straight lines are parallel to each other having a
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constant slope and different intercepts on log (B Tb)

axis, The straight line graph follows the equation,

1ogi§'.rQ = mlog T, * logC ceceesse (Bel15)

where m is the slope and C is a constant. Therefore,

}"-I]Tol - m = C essseses (8016)
or,
H TQk 3 C [ AR RN R NN ] (8.17)

where X = 1 - m, The value of k is - 0,12 for calcite.

It is clear from table 8.3 that quantitatively knoop
hardness number is 1,13 times the vickers hardness number
of calcite cleavage faces in the HLR region. Farther for
béth indenters, the hardness number increases with guenching
temperature, However the percentage increase in hardness
with respect to hardness at room temperature (303°K) is
quite small, This percentage changes for Knoop hardness
and vickers hardness are respectively 12,6% and 11,4% and
their ratio is 1.1 which corresponds approximately to the

ratio H * H_ (Table 8.3).

It is desirable to ascertain how far the relation

ﬁ Tbk = constant‘is true for individual observations on

quench hardness, This constant is designated by C and the
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subscript K and V indicates respectively the use of Knoog
and Vickers indenters for obtaining the‘Hardness values
(Table 8.4). The péféentage changes in hardness values
from its mean value are small, Further the comparision
indicates that the pércentage changes for Knoop hardness
number are greater than those of Vickers hardness number,
The author had consistently tried to find the reason for
these large deviationsby repeating the work several times.
However the results were not significantly different

from the present ones., The reasons are unknown for such a
large deviation. Since Knéop indenter is normally used for
studying crystalline anisotr0§y;-the relatively large
deviation is likely éo be associated with the inherent
utility of the indenter., At present there is no experimental
evidence to support it. From the empirical formulae for
Knoop and Vickers hardness numbers it is obvious that
hardness number is inverseiy proportional to square of
the diagonal of the indentation mark for a constant load,
Since hardness depends on temperature of quenching, the
diagonal length of the indentation mark would also depend
on the gquenching temperature, Thus for both the indenters

H = R . —Ezﬂ R s6s00000 (8018)
d i

where R is a constant depending upon the geometry of the
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indenter, Further,

HTQk = c Sssasesverae (8.19)

Combination of above equations gives,

k
PTQ c
- o ——— - E— - — = COnStant = S s (8 ’20)
2 R
a
XK -1
or T -PT
---Qn- X "4"“‘*9&*::'"“:”‘* = S 600ecsse - (8021)
d2
T -k
—-Q_ o] -.S... T ®ecsesasces (8021)
a’
T
Q s
or log ——sm = log (-5-) + (1 = k) log Ty
a“ . - .
Tg
or log ==2= = (1 «k) logT, + 1log S - log P
dZ Q
desoee (8.22)
'I'Q .
or 1°g “"""2“" = ml 109 TQ + 1°g A ®csecocee (8.23)

On simplifying it one gets (using eg. 8,20)

1 -m
T 1 ‘
-..-g- - A = -§-— = -'-9—" seee (8 .2 43)

P RP
d2
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¢ K ‘
Q C

or - - o - = e s - = - A ’ esesvseves (8024b)
d? R

It is obvious from thé above equation that for a given
applied load if a graph of log (Tb/az) is plotted against
log T,, the slope of the graph will be (1 - k). However
if this is repeated for feveral applied loads, it is
evident from above equation that graph of log {TQ/EZ)
versus log TQ should consist of straight lines parallel
to # one another having slope (1 - k) and different

~ intercepts,

/
It is possible to find out the spacing between two

parallel lines, Thus for the applied loads Py and P2

T
log -»Q%- = (1 - k) log TQl + log S = log P

1
4 |

T .
log ~A9§-

4

+ log S - logP

Q2

(1 - k) log T 2

The difference in above two equations is

T T T

4 ot 02
P
l10g ===



163

A

or
. g2 ' 7 P
log ~-9£-§2—- = (1 - k) log -—23- + log =2
r P

2 T
T2 4 Q2
In terms of a, and Ay the above equation becomes

2

T . T
TbZ'dl Q2 1

These equations are fully reflgctedﬁby the graphical
plotts of log (TQ/akz) vérsus log T, (Fig. 8,7, Table 8,5)
and log (Td/avz) versus log Ty (Fig. 8.8, Table 8,6)., They
provide results which are in agreement with above conclusions,
\Further, the slope of any one plot (Fig. 8,7 and 8,8) is
1l.12,

i.e. 1 - k = ml = 1012

Hence the value of k is = 0,12 which is idéntical with

the value of the exponent k in the equation 8.19 connecting

hardness number and quenching temperature,

In Chapter - 7 the variation of applied load with
diagonal of an indentation mark was studied by critically

examining empirical formula, known as Kick's law.

n

P = ad oocoq.ooo.' (8025)



- TABLE - 8,5 (KNOOP INDENTER)

Log ( T,/ ax® )

LOAL P
in gm. 303% 573% 623% 673% 773%
30 2,9180 1.0927 T1.1956 1.2709  1.1856
40 2.7340 2.9680 1.0795 1.0519  1.1606
50 2.,5904 2.8075 2.9415 1.0013  1.0224
60 25302 2,7882 2.8751- 2.9206  2,9605
70 2.4533 2,7332 2,7731 2.8579  2,9410
80 2.3820 2,6590 2,7348 2.8136  2,.8287
100 2,2765 2.5694 2.6385 2.6839  2,7316
120 2,2014 2.,4871 7.5237 2.5843  2.6875
140 2.1271 2,4232 2,4669 2.5551  2.5832
160 2.0;192 2,3075 2.4425 2.4871  2.5539




TABLE = 8.6 (VICKERS INDENTER)

Log('l‘g!d‘;z)

ggﬁm? 303% 573% " 623% 673% 773%

. .
30 1.7542 0.0197  0,0337 1,9557 0.1274
40 1.5578 1.8638 ;i;9286 1.8309 0.0254
50 1.4620 i;7533 1.7948 . T1.7433 1.8888
60 1.3265 1.6577 11,7038 1.6728 71.8000
70 1.2980 1.6031 1.6393 1.6258 1.7334
80 1.2092 1.5266 1.5861 1.4986 1.6818
100 '1"'.1059 T1.4113 1.4594 1.3536 ;}?.55‘38‘
120 1.0342 1.3029 - . 1.2887 -
140 - 2.9552 T.2720 1.3137 - 'i.(4072

160 2.8597 1.1970 1.2365 T1.2697 1.3316
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TABLE -~ 8,7 (KNOOP INDENTER)

Log ( a, dkz/ Ty )

LOAD P
in gm. 303% 573% 623% 673% 773%
30 1.3296 1.1552 71,0640 71,0254 1.0733
40 1.5136 71,2800 1.1801 1.2444 31.0986
50 1.6572 1.4406 1.3182 1.2949 1.2367
60 1,7172 71,4596 1.3847 1.3756 1.2984
70 1.7947 1.5146 1.4866 1.4382 1.3180
80 1.8659 1.5892 1.5248 1.4824 1.4305
100 1.9700 1.6788 1.6215 1.6122 1.5272
120 0.0446 1.7600 1.7356 T.7114 1.5718
140 0.1182 1.8244 1.7924 7.,7412 5.6753

160 0.1678 1.9404 1.8169 1.8083 31,7056




TABLE - 8.8 (VICKERS INDENTER)

Log ( azdvz/ TQ )

LOAD P
in gm. 303% 573% 623% 673% 773%
30 1,2457 2.9789 2.9782 2.9691 2.8975
40 1.4621 1.1648 1.0833 1.1520 2.9997
50 1.5097 1.2553 1.2171 1.1930 2,1951
60 1.6735 1.3409 1,3081 11,2805 1.2247
70 71,7019 11,2955 1.3726 1.3511 1.2914
80 1.7907 1.4719 1.4259 1.3980 1.3420
100 1.8939 11,5873 1.5525 1.5253 1.4711
120 1.9657 1.6955 - 1.6702 -
140 0.0447 1.7265 1.6981 - 1.6175

160 0.1400 1.8017 1.7753 1.7347 1.6931




- It was shown that a and n are constants and the
straight line representeé by the plot of log d’versus
log 4@ consists of two straight lineg with slopes n, and n,
and intercgpts a, and a, respectiveiy. The slope n, and
the intercept a, approximately correspond to HLR region

of the graph of hardness versus load. (Fig. 8.1, 8.2, 8.3,
8.4 and 8,5), The combination of equations 8,20 and 8,25

yields,
azdnz Tﬁk ;
= S eecsscese (8026)
dz
Substituting
n, -2
in e.q’n .B.24a, one gets
1 -m
TQ 1 n, - 2
""" —mee- Xy T = A eeeees (8027
P

Since n, is not having an integral value, it is necessary
to have a different approach. If graphs of log (azdkz/T
versus log T, and log (azdv /T ) versus log T, are plotted,

they consist of a series of parallel lines corresponding to

different intercepts (Fig. 8,9 and 8.10), Thus each straight

i

line follows the general equation.

+
i
!
1
|
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2 \
a,d
log e=Reew = m2 ~log TQ + log B crssvecne (8.28)
T
Q .
Slope of each straight line ism, = = 1,09. Simplification

of the above equation yields

d? P 0,09 _ B

a2 Q - b ) Sassatoeds (8‘29)

Combining above equation with eéquS.ZS one obtains

7

- 0,09
P dz nZ TQ ' = B esosnens (8.30)

Comparision of Kick's law (Eq., 8.25) with formulae for
hardness numbers (Eq. 8.1 and 8,2) clearly suégest that
the constant a and hardness numbers are related, Inspection
of the variation of various functions involving H, a,
and T, has disclosed that the gfaph of log (ﬁTQ / az) versus
log T, would be a straight line, (Fig. 8,11, Table 8,9)
following the equation,
k HT - ‘
ng L ] I log T + log E esssvene (8031)
a 3 Q
2

where slope is given by my = 1,09 and E is a constant,
These plots for Knoop and Vickers hardness numbers are

presented in Fig. 8,11 (Table 8,9)
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‘ p dz - R,
substituting a, = ==5= and
s}
H = ..E'.....I:- in eqo 8.319
d?
one gets
l - my n, - 2
B = RT’Q d ' [ X R RN RN (8032)
Simplifying eq. 8,31 gets
- 1 =m
H T 3
- = E esoessvesne (8033)
)
— -0,00
HT
i.e' - S " o g o = E [ X W R W (8.34)
)

Multiplication of eq. (8.27) with eq. (8.30) gives

0.09

-2 2 =-n
k Ny 2 -
Tb . a, d . P% . Tb = AB
or aZTQ (k * 0.09) == AB = Constant sece (8.35)

Thus the intercepts a, could be associated with the
quenching temperature, This can also be understood from

a graphical plot of log (asz) versus log TQ which follows

the equation

log (asz) = m, log T, + log D eescces (8.36)
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The graphs of log (a,T,) versus log T, for Knoop and Vickers
indenters are shown in figure 8.12., (Table 7.3 and 7.2).

Thus,

= D senroeoee (8337)

where m, is the slope of figs. 8.12 and equals 1.03,

Hence the above equation becomes

- 0@03
aZTQ t—3 D Ses eed (8038)
substituting
. 2 -n
P
a, = ——p== . d 2 in eq. (8.37)
d
one gets
2 -n 1 -m
-..P...- d 2 T 4 = D Gseves (8039)
a2 Q

Slight dependence of a, on quenching temperature éan be
expected because value of a, is (Tables 7.3 and 7.2) quite
small, It is suggested from the form of equations 8.25

and 8,18 that there must be some relation between hardness
number and age After considering several functions
containing H and a, it was found that the plots of log (asz)

versus log Hy and log (a2 Hv) versus log Hv‘give a better

straight line, cbeying the general eguation
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log (32;{) = ms lOg I:I. + log F 00..0-’. (8040)

on Simplification one gets

/ -] -
. a,H 5 F

2 ccccceses (Be41)

f

Slope of the above plot (fig. 8.13 and 8.14) is given by
mg = l.25, Hence the above equation becomes

5 -0,25

32 = . F oeseconecs @ (8042)

This- shows very clearly that hardness number and the
intercept of the straight line (¢f,fig. 8.13 and 8.14)

corresponding to HLR are intimately connectéd.

It is thus clear from above éqyations that Kick's law
and formulae for hardness numbers are intimately connected
in the HLR region of the graph of hardness member versus

applied load.

It is interesting to examine the accuracy of each
observation in the above plots by considering the coefficient
of variation for different constants associated with

different equations mentioned above,

The values of 4, B, E, and D are computed for each

observation using equations 8,27, 8.29, 8.32 and 8,39
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e G

respectively and are presented in Tables 8.10.,1 to 8.1C,10,

For these tables the above equations are collected here and

are given in sequence with new equation numbers,

A = - . azd ceasen
& = TpC o anG
1 -m
TQ 1 nz -2
Av = P"‘ . andV asesse
2 =n
B = P d 2 TQO.OQ LE NI 3 W W )
2 -n
2 0.0
Bk = P dk TQ ° 6scoesses s
2 -n
~ 2 ., 0,09
BV = P dv TQ sosssasces
‘n, =2
o~ o—— - dili LR NN NN N
7 0.09
n, - 2
2
= e esscevcene
B T,,0.09 Teee
n, - 2
~€w- - O i TS P s D T A e T L 2K 2K N 2 B BK BN BN Y J
p 0,09

(8.,43)

(80433)

(8.43b)

(8.44)

(8.44b)

(8.44b)

(8.45)

(8.45a)

(8.45b)
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(8,46)

(8 0463)

(8.46a)

(8.47)

(8 .4-7a)

(8.47b)

(8.48)

(8.48a)

(8.48b)



171

n, - 2
E = RrRTY"™ g 2 ceenees (8.49)
1 - m né -2
- 3 ceccess (8.49a)
Ek = 14230 TQ dk
1 -nm n, =2
— 3 2 IR R NN N E J (8’49b)
Ev = 1854.4 Tb dv
2 - m, - m
DE == -'-IE?'—— T 3 4 [ X WX (8050)
dz Q
nE = A4230p 27" (8.508)
Kk dkz 0 sssesce U8
2 «=m, = m
DE - -?-;ééﬁ:é-g- T 3 4 ®evsessse (805013)

vwv 2 Q

a,

The means values of constants are summarized in Tables

8.11 and 8.12,

A careful study of mean values of 'constants' and
their deviations from the corresponding individual
observation clearly indicates that the deviations are within
experimental errors., A glance at Tables 8,11 and 8,12

shows that,

D = AB L AR 3 O O 3 3 (8051)
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DE

AP = . L 2 A (8052)
R

BE = ...(.:.- ssescse (8053)
D

from tables 8,3 and 8.4

C
K. = .EE- for all temperatures
c H :

v v

Thus for all loads in HLR and for Knoop and Vickers
indenters, the variation of hardness number H and the
variation of hardness constant a, with quenching temperature

and also with each other follow the equations,

HTQk = C = Constant ecceces (8055)
azTQr = D = Constant sesvses (8056)
asz = F = Constant esececce (8057)

where k, r and s are numbers numerically less than unity.

The signs for theseiﬁgifze the nature of HKthe crystal. For
calcite they are negative as shown above, The constants

in above equations have different values, Further quenching
can also be carried out by bringing a crystal from very low

o
temperature to room temperature. Thus for T, = 17K,

’

H = constant esconses (8058)

]

32 constant esevssoce (8'59)
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These values can be considered'to characterize a crystalline
material, Thus for calcite, the quench hardness number and

quench hardness constant are given by

-2

Hk = 46,57 Kg - Tm Y EX R (8060)
and HV = 41,44 Kg - m-‘z ' sesese (8061)
= 1.47 x 1072 =2 ,
ak - . X Kg « mm doscee (8062)
-2 -2
and av = 1l.84 x 10 Kg - mm XXXrx’ (8 «63)

83,2 Relation between hardness and electrical conductivity s

There are several temperature dependent crystal
properties. One such property is electrical conductivity
which wvaries in an exponential fashion with temperature, The
comparision of electrical conductivity measured at temperature
T to the microhardness value determined for the same quenching
temperature could provide a clue about the possible relation

between two quantities, hardness and electrical conductivity.

-

The values of electrical conductivity, 6;, are given
in table 8,13 (values are taken from Ph.D, thesis of
R.T., Shah, 1976, M.,S, University). Fig. 8.15 represents a
graph of log &.T versus 1/T, The plot consists of three
straight lines with different séopes and intercepts on the
axes of log 6.T and 1/T. N



TABLE - 8.13

it & Log §,T 103 /7.
453 4,395 x 10712 $.2991 2,208
. 463 4,923 x 10712 3,3579 2,160
473 5.603 x 10712 5.4227 2,114
483 5.404 x 10711 5.7327 2.070
493 1,213 x 10742 §.0840 2.028
503 1.547 x 10731 8.1897 1.988
513 1.804 x 10711 8.2562 1.949
523 2,151 x 10711 8.3326 1.912
533 4.686 x 1011 8.6798 1.876
543 6.668 x 101t 8.8240 1.842
553 1.014 x 10°2° 7 .0200 1.803
563 1.386 x 10°° F.1417 1.776
573 1.660 x 1071° 7 2200 1.745
583 3,787 x 10710 7.3440 1,715
593 6,715 x 1071C 7 .6000 1.886
603 9.326 x 1071° 7 .7500 1.658
613 2,051 x 10 6.0995 1.631
633 3,152 x 1077 643000 1.580
648 4,879 x 107 6.5000 1.540

* Taken from Ph.D thesis of R.T. Shah (1976)

ceessosCOntd,
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TABLE = 8,13 (.... contd.)

T 6. Log {T 103 /1,
663 1.408 x 1078 6.9701 1.508
678 ‘1.484 x 1078 5,0025 1.475
693 3.234 x 1078 5,3505 1.443
708 5,441 x 1070 5,5856 1.412
723 5.984 x 1072 5,6361 1.383
738 1.087 x 1077 5,9047 1.355
753 1.368 x 1077 3.0128 1.328
768 1.995 x 107/ 71,1852 1.302
783 2,601 x 1077 2.3090 1.277
798 3,324 x 1077 7,4237 1.263
813 4.986 x 10~7 1.6079 1.230
828 5,567 x 107 7.6636 1.208
843 6,469 x 107 4.7366 1.186
858 7.252 x 10~/ 2.7940 1.166
873 8,399 x 1077 7.8652 1.145
888 9,768 x 1077 7.9382 1,126
903 1.041 x 107° 2.9730 1,107
918 1.140 x 1076 3,0196 1.089
933 1.260 x 107° 3,0702 1,072

%*

Taken from Ph,D. thesis of R,T. Shah

(1976)
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It 1s clear from the>general study of electrical
conductivity of ionic crystals that the activation energies
calculated for I, II and III parts of the graph are 0,90 ev
for rc&ﬁ temperature to 3009C, 1.3 ev for the region 310°C
to 540°C and 0,6 ev for temperatures beyond 540°C, It is
well known that calcite (Cacoé) starts decomposing at a
temperature of 500°C, The rate of decomposition increases
with temperature.The thermal etching of calcite cleavage
faces (Mehta, 1972) has shown very clearly that it could
be effected and studied under contrdiled conditions only
within a restricted range of temperature viz, 520°C to
550°b. Hence the third part of the graph indicating
temperatures above 50090 shows the effect and onset of
thermal etching., As a result of etching the slope of this
line is comparatively less than those of lines belonging
to II and III. In accordance with the general understanding
of ionic crystals the jump energy is 0,90 ev while the

formation energy for schottky defect is 0,8 ev,

It is known that the point defects which exists in
crystal in thermal equilibrium, in contrast to thermodynaf»
mically unstable defects like dislocations and grain boundries,
may contribute to mechanical properties through diffusion,
e.ge creep at high temperatures., Hence it is desirable to
review briefly tﬁe part played by point defects in *hardening’

crystalline materials. It is found that more direct effects

& potant cLeJre_eJZ



~J
A1

on mechanical properties ef—polnt defee€s, e.g. an increase
in the y%eld stress, are caused by nonw-equillibrium
concentrations of point defects, and on formation of their
aggregates. In the present case non~equillibrium
concentrations of point defects in calcite are produced

by rapid cooling from high temperatures,the resulting
hardening is called 'quench hardening' as distinct from
radiation hardening produced by irradiation. The 'quench
hardening is simpler amongst the two. The quenching
experiments introduce ﬁhe'follcwing few or all effects in

a crystal s~

(i) Excess vacancies (eéuiuiﬁrium concentration of
vacancies at higher temperature),

(1i) Possible aggregation of some vacancies.,

(iii) Annighilation of vacancies.

(iv)  Quenching strains,

(v) Pinning of vacancies at dislodations, grain boundries

and impurities,

(vi) Effect of interstitials and their small aggregates,

The concentration and formation of energy of excess

vacancies can be studled at low temperatures by measuring
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electrical resistivity. The main disadvantage in this
procedure is possible aggregation or ann;&bilation of some
of the vacancies during quenching. Implicit in this method
is the correction or avoidance of loss of wvacancies
together with any production of them e.ge. by quenching
strains and the effect of impurity and the formation of
the more mobille vacancies. The quenching strains are
associated with the production of vacancies, This will be

clear from the following consideratione.

During the quenching of the specimen, the surface is
cooler than the inside and hence it is in tension while
the inside is in compression., If the stress due to thermal
gradient is large enough, the specimen will be deformed
plastically. Since the yield stress is usually lower at
higher temperature, the inside section of material will then
undergo plastic deformation. When the gquenching is completed
and the temperature is again uniform, the plastically
deformed inside material compresses the surface layers and
vice versa, The thermal stresses thus set up are both
axial and radial. Hence the deformation of the specimen is
thus coﬁplex. Usually point defects are produced by
deformation, Hence the production of vacancies by quenching
strain must be taken into account in any assessment of the

number of vacancies quenched into a crystal, Further the
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mechanical properties of a crystal are largely determined
by the number, geometrical configurations,interactions and
mobility of dislocations contained in it., The mobility of

dislocations is mainly determined by their interactions with

other defects, Structural and/or otherwise, It is this
interaction which produces ‘hardening'. This production

will now be reviewed briefly,”

Non-conservative motion of jogs on dislocation and
ann;&bilation of two parallel edge dislocations of opposite
sigw”, one atomic plane apart,are the main mechanism
suggested for point defect formation during deformation
by mechanical means or by quenching. The non=conservative
motion of jogs is possible both on edge dislocations and
screw dislocations., For deformation, however, jogs on screw
dislocations are more important., Jogs on screw dislocation
are geometrically short segments of edge dislocations, The
slip plane of these jogs is not the slip plane of the
parent screw dislocation. Hence as the screw dislocation
moves, jogs should move in a non-conservative manner along
the screw, These fundamental mechanisms of point defect
formation are well established geometrically, but the theory
cannot predict as yet how many of particular species of
defect are produced under certain conditions, This is a
very difficult problem because the number and behaviour of

moving dislocations are very complicated functions of the
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deformation temperature, the strain rate as well as other
conditions of the specimen, A complete understanding of
work hardening is required to solve this problem. Thus
quenching produces dislocations, grain boundries segragation
of impurities as well as point defects. It is also observed
that a physical property sultable to detect the excess
vacancies is also affected by plane and volume defects,.
Hence it is necessary to separate the effect of particular
kind of defect from the effect of others., The procedure

for effecting this discrimination varies in a finer way from
specimen to specimen,materials to materials. This is not
vet perfected for all types 6f materials. The interstitials

act in somewhat similar fashion as mentioned for vacancies,

The above presents briefly the possible effects of
quenching processes on the materials, It is now interesting
to consider the effect of these processes on crystals. It
is observed that no notilceable increase or change in
hardness is found for quenched and aged metallic crystals,
This is in marked contrast with the pronounced change in
vield stressﬂ The reason for this apparent contradiction
is found in the observed stress-strain curve of the quenched
-hardened crystal i.e. the effect of quenching on hardening
disappears after a moderate amount of deformation. Since

hardness is a measure of resistance to deformation,
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microhardness measurements using very small loads might
detect quench hardening. However use of small loads would
determine the hardness of only the surface layers probably
few microns deep, It may be remarked that even in the low
load region, local deformation will be severe. Since the
vacancies escape to the surface during quenching, no
hardening is to be expected in the thin surface layers.

It is therefore imperative to remove the surface layers

in order to detect hardening using small load microhardness
measurements, It is from this view that Aust et al, (1966)
quenched zone-refined lead from near 300°C into water.
Hardness was measured using a load of 1 gm, thss resulted
in a depth of indentation of about 3.4 , The specimen
showéd no hardening when tested without removing surface
layers. Further hardening was observed when surface layers

of 50 4 thickness were removed, They also found that the

region near the gra;g bbundry showed no hardening., This is
most likely to bei;;e escape of vacancies to grain boundries
~ during quenching., Since the vacancies anneal out of the
surface during quenching, the first few layers will not
exhibit quenching effect. As calcite has a perfect cleavage,

the quenched samples were cleaved and the hardness studies

were carried out on these freshly cleaved specimens,

The. graphs of log Tbé versus l/TQ and log 4 T versus

1/T for calcite crystals have close resemblence with one
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another (Fig. 8.16, 8,17, Tables 8.14, 8,15), Hence it
appears that similar mechanisms are likely to operate in
the crystal. Further, the plots of log TQé versus 1/’TQ
are parallel to one another except for the loads where
maximum hardness is observed. Hence it can be conjectured
that the point defects are mainly responsible for increased
hardness of calcite crystals due to gquenching., This is
supported by the empirical relation between hardness and
schottky defects in alkali halides at room temperature
(Shukla and Bansigir, 1976)., With the increase of applied
load dislocations which are produced on cleavage face by
indentation would start interacting with guenched-in point
defects., As a result the effect of load on indenter is
reflected in the lost parallelism of graphs near the loads
where kink in log P vs 1log d graphs is observed., For
higher loads, the graphs of log Téfl ¥s 1/Igare again
parallel to one other, It is thus clear why the graph

of hardness against load is divided into three regions,

In the first region (oA of plot) the guenched-in point
defects operate through grown and aged dislocations ignoring
to a greater extent the contribution of fresh dislocations
introduced by indentations ; at higher loads (BC portion
of the graph) the freshly introduced dislocations are more
active than grown and aged dislocations in 'hardening' the

crystals, For intermediate loads (associated with portion



TABLE - 8,14 (KNOOP INDENTER)

p Log r'EQdk
in om. 303 K 573 K 623 K 673 K 773 K
2.5 3,8605 4.1595 4,1736 4,3377 4,3375
3.75 3.9313 4,2153 4,2368 4,2396 4,3516
5,00 3.9911 4,2326 4,2928 4.3377 4.3505
7450 3.9967 4,2898 4,3153 4,3543 4,3902
8.75 4,0213 4,2992 4,3269 4,3709 4,3892
10.00 4,0824 4,3356 4,3622 4,3755 4,4035
12,50 4,0824 4,3545 4.3719 4,3908 4,4656
15,0 4,1027 4,3636 4,4000 4,4289 4,5114
20 4,1765 4,4581 4,4744 4.,5279 4.6320
30 4.2630 4.5909 4.,5938 4.6066 4,7393
40 4.3551 4,6532 4.6518 4,7161 4.,7519
50 4,4269 4,7336 4.7209 4,7412 4.8210
60 4,4568 4.7431 4,7541 4,7186 4.8518
70 4,4956 4,7705 4,8051 4,8129 4.8616
80 3,5312 4,8079 4,8243 4,8350 4.9179
100 4.5832 4.8527 4,8725 4,8999 4,9663
120 4.6205 4.8933 4.9296 4,9495 4.9885
140 4,6573 4,9254 4.9580 4.9644 5,0403
160 4,6821 4.9834 4.9703 4.9980 5,0555




TABLE - 8,15 fVICKEﬂgzNDENTER)

P Log ngv
in gm, 303°K 573°K 623° 673°K 773°K
2,50 3,4664 3.7181 3.7244 3.7300 3,8181
3.75 3.4541 3,7693 3,7945 3.8002 3,8882
5,00 3,5360 3.7995 3.8198 3.8492 3.9093
7,50 3.5818 3.8670 3.9034 3.9426 3.9957
8.75 3.6124 3,9092 3,9289 3,9485 4,0090
10,00 3.6487 3,9165 3.9409 3.9698 4,0343
12.50 3.6729 3,9622 3,9766 3,9979 4.0645
15,00 3,7175 4,0063 4,0112 4,0280 4,1030
20,00 3.7323 4.0395 4,0732 4,0979 4,1648
30,00 - 4,1273 4,174 4,2147 4.2685
40,00 3.9435 4,2053 4,2274 4,2642 4,3195
50,00 3.,9912 4,2605 4,2943 4.3266 4.3878
60,00 4,0589 4,3083 4.3398 4,3703 4,4322
70,00 4,0732 4,3356 4,3721 4,4056 4.4655
80,00 4,1175 4.3739. 4.3982 4,4290 4,4913
100,0 4,1691 4.4315 4,4620 4,4927 4,5553
120.0 4,2050 4,4857 - 4.5652 -
140.0 4,2445 4.5012 4,5348 - 4,6286
160,0 4,2922 4.5387 4.5734 4,5974 4,.6664
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Fig. 8.16 Plot of log ngk versus 1/‘1‘Q for
various loads,

Fige 8.17 Plot of log dev versus 1/’1‘Q for

various loads.
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AB of the graph) there appears to be a complicated
interaction between quenched-in point defects, aged
disloéations and freshly introduced dislocations, resulting
in the non=-linear behaviour ok hardness versus load. It
should be remarked here that the line of demarcation between

low loads and intermediate loads, between intermediate loads

and high loads is not well: defined,

The value of load at which hardness acquires a
maximum value is not constant Irut changes with the
quenching temperature. It shifts towards the lower load
value with higher quenching temperature, This is more
clear from tE? graph of log P vs log 4 and can be inferred

to a certain extent, from the graphs of hardness vs load.

It is clear from the above discussions that the
behaviour of hardness is similar to that of conductivity
for various quenching temperatures, Further the low load
hardness values in the first region are governed by nature,
distribution and concentration of quenched.-in point defects,
and their interactions with grown and aged dislocations,
Further the thrid region BC of the plot of hardness vs
load is governed mainly by freshly introduced dislocations.
Hence it is desirable to discuss the comparative behaviour
of these two quantities with respect to temperature. Out ¢f

several combinations of these quentities to form different
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functions, the function (log ﬁ;/ﬁ)/log T has almost a
constant value (Table 8,16) in high load region, Hence
the graph of log 6. /H versus log T are plotted for high
load region (Fige 8.18). The graph is a straight line for
knoop as well as vickers hardness numbers, Thus, it is
clear that for a given crystal ~G’C/’FI has-a constant value
at a constant temperature for high load region. Since
electrical conductivity is p;oportional to the diffusion
constant. (Nernst-Einstein equation) it can be concluded
that for a glven ionic crystal, the ratio of diffusion
constant to hardness (number) at a constant temperature

is constant in high load region, This also indicates that
defect structure of thg material in general and in particular
equilfibrium concentration of point defects at the

quenching temperature for the same material for which two

quantities are determined is more or less identical.

To verify the results obtained -from hardness studies,
the data on hardness is combined with the data on electrical
condu.ctivit.ire The electrical conductivity of calcite is
bééically ionic in character. At temperature T°K it is

given by

‘:{Cz__‘(oc

- e e}{p (ﬂ E/}(T) enresacsere (8064)
T

where 6;C is a constant independant of temperature and
T

¥ is Boltzmann's constant,
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Combination of eg. (8.64) with HT® = constant yields,

grt ~ K - E

log =%~- -

where log D is a constant given by log ¢, = 1log, oA. It

is obvious that if the value of 'k' calculated from hardness

studies is substituted in eq. (8.65{,a plot of log =Sx-

vs. 1/T (Fig. 8.12, table 8,17) should be similar in all
respects to that of conductivity plot except for the
intercept. The value of activation energy calculated
using eqe (8465) is 1.3 ev. in accordance with the value
of activation energy calculated using conductivity data

alone in the temperature range of 300° to 500°%,

8.4 CONCLUSIONS @

(1) The comparative study of hardness and electrical
conductivity of the cleavaged specimens at different
temperatuées indicate that the plot between hardness
and load can be qualitatively divided into three
portions viz, low load region corresponding to linear
part, intermediate load region corresponding to non-
linear part and high load region corresponding to
linear portion of the graph. It is also shown
qualitatively that (a) in low load region the guenched-

in point defects operate through their interactions
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(ii)

(1ii)

(iv)

1841
with grown and aged dislocations, (b) the
complicated interactions between quenched-in point
defects, grown, aged and freshly introduced
dislocations give rise to non-linear portion and
(¢) the freshly introduced dislocations by
indentations at high loads control the linear porticn

i

of the graph.

Hardness depends upon quenching temperature, A
relation between hardness and gquenching temperature

is given by

(a) HTbk = constant where k ==0,12 for calcite,
(b) azTQr = constant where r = - 0,03 » ?7?
{(c) aZHS = constant where s = - 0,2% for calcite.

The ratio of electrical conductiviﬁy to hardness
(number) of calcite crystal is constant at a

constant temperature in high load regicn.

Knoop hardness number has higher valueg than Vickers

hardness number at any given temperature,



