******	******	******	*****	*****	*****
			1		
		•			
			1		
				۵	
	LIST	OF SYMBOLS	3	•	
,		ı			
		•			

LIST OF SYMBOLS

PART - I

M : Molarity/Molecular weight

N : Normality

P : Percentage purity of an acid

d : density of an acid

v : Volume of an acid

b : basicity of an acid

m.f. : mole fraction

R : Resistance in ohms

S : Constant

length of conductor

A : Area of conductor

C : Current in ampers

G : Conductance in mho .

6c : Conductivity

 $R_{\mathbf{x}}$: unknown Resistance

C : Cell constant

PART - II

V : Rate of dissolution

V_t : Rate of tangential dissolution

V : Rate of surface dissolution

T : Absolute temperature

C : Concentration of an etchant

L : Length of an etch pit along [110]

Ca : acid concentration

K : Constant

Ka : Constant

Ht : Concentration of acidic ions

6 : electrical conductivity of an etchant

n : order of chemical reaction

 n_{+} : order of tangential dissolution

Viscosity of an etchant

 $\mathbf{n}_{\mathbf{k}}$: order for viscosity increase

 $\mathbf{n}_{\mathbf{c}}$: order for conductivity decrease

no : absolute viscosity of water at 20°C

K₁ : Constant

K₂ : Constant

t : time

D : amount of reaction

K : Boltzmann constant

A : Pre-exponential factor (frequency factor)

A₊ : frequency factors for tangential dissolution

A_O : constant

 $\mathbf{A}_{\mathbf{S}}$: frequency factors for surface dissolution

E : Activation energy (ev)

 \mathbf{E}_{+} : Activation energy for tangential dissolution (ev)

E : Activation energy for surface dissolution

D : Rate of diffusion

 $\mathbf{E}_{\mathbf{C}}$: activation energy for conductivity (ev)

E activation energy for viscosity (ev)

E___ : Apparent activation energy

Etrue : true energy fof activation

ΔE : enthalpy of adsorption

PART - III

P : load in gms.

d : diagonal length of indentation mark

 $\mathbf{d}_{\mathbf{k}}$: diagonal length of Knoop indentation mark

 $\mathbf{d_{v}}$: diagonal length of Vickers indentation mark

 $\mathbf{T}_{\mathbf{O}}$: absolute quenching temperature

a : standard hardness (constant)

n : slope of log P - log d graphs

Hardness number (Kg. mm⁻²)

H : Average hardness in high load region.

H_k: Knoop hardness number (Kg. mm⁻²)

 H_{v} : Vickers hardness number (Kg. mm⁻²)

Compressive stress

A : Area of cross-section

Ao : Initial area of cross-section

Lo : length (initial)

length after small compression

b : Constant

c : Constant

HLR : High Load Region

 m, m_1, m_2

: Slopes of various graphs

m₃,m₄

k, r, s, : Constants

A, B, C, D, Constants

6c : electrical conductivity of calcite (crystal)