LIST OF SYMBOLS

PART I

A : area of conductor

C : concentration of electrolyte

c : intercept of line on Y-axis

K : Specific conductivity

M : molarity

m : molality

m.f. : mole fraction

 \mathbf{m}_1 : regression co-efficient of y on \mathbf{X}

 m_2 : regression co-efficient of x on Y

N : normality

 γ : co-efficient of viscosity; dynes-sec-cm⁻² or poise

r : correlation co-efficient

 $R_{_{\mathbf{X}}}$: unknown resistance

L : Average ion velocity

V : velocity of positive ions

V : velocity of negative; ions

W : molecular weight

x : mean (average) value

mean (average) value

 \int_{m} : co-efficient of cubical expansion of liquid

e : temperature in °C

d0 : temperature difference

PART II

A : Area of cross section; angle of orientation of the longer

diagonal of the Knoop indentation mark measured from [100]

direction.

 $A_{\hat{}}$: Initial area of cross section

a : standard hardness (constant)

a : minimum value of A in the parabolic curve of H Vs. A

AR : axis of rotation

b : constant

C : constant; constant of Indenter geometry; intercept of

the plot of \sqrt{HA} Vs. A

 C_1 : constant

 C_{C} : calculated value of intercept using formula $C = \frac{1}{2} \int_{0}^{\infty} h_{O} \cdot a_{O}$

for straight line plot of $\int HA$ Vs. A

C : Statistically determined value of the intercept of the

straight line plot of $\sqrt{\text{HA}}$ Vs. A

CAr : constant for different applied loads and orientations

CRSS : critical resolved shear stress

d : diagonal length of Knoop indentation mark

 \textbf{d}_{Ar} : length of the longer diagonal of Knoop indentation mark

corresponding to different applied loads P_{r} and orientation A

E : Young's modulus of elasticity

e,f : constant

ERSS : effective resolved shear stress

F : force; facet

 $F_{_{\mathrm{T}}}$: tensile stress axis

 $\boldsymbol{F}_{\boldsymbol{C}}$: compressive stress axis

Ħ average hardness in high load region

high load region HLR

minimum value of hardness in the parabola of H Vs. A ho

line parallel to indenter face Н

intermediate load region ILR

constant K

length after small compression 1

initial length

low load region LLR

Slope of the plot of $\log \ \bar{\text{HT}}_q$ Vs. $\log \ \text{T}_q$; Slope of the plot of $\sqrt{\bar{\text{H}}} A$ Vs. Am

Slope of the plot of log $T_{\alpha}\sqrt{\overline{H}A}$ Vs. log T_{α} m₁

Slope of the plot of log T_qd Vs. log T_q

calculated value of slope by using formula $m = \frac{1}{2} \int h_0/a_0$

for straight line plot of $\sqrt{\bar{H}A}$ Vs. A

statistically determined value of the slope of the straight

line plot of JHA Vs. A

slope of the plot of log d Vs. log P

P load in gm; constant

different applied loads

constant of indenter geometry

S.d. slip direction

S.P.N. slip plane normal

 T_{q}, T_{0} quenching temperature °K

Newtonian resistance pressure

compressive stress

6 compressive strain λ : angle between tensile stress axis (F $_{\! T})$ and slip direc-

tion (s.d.)

 ϕ : angle between tensile stress axis (F $_{\mathrm{T}}$) and slip plane

normal (S.P.N.)

 Ψ : angle between an axis parallel to the indenter face (H)

and the axis of rotation (AR)(normal to slip direction)

of the slip system during deformation

 $\sqrt{}$: angle between the axis H (normal to F and parallel

to the indenter face) and the slip direction (s.d.)

PART III

A : pre-exponential factor

B : breadth of an etch-pit along $[1\overline{1}0]$

C : concentration of an etchant

C_a : acid concentration

 ${\tt C}_{\tt p}$: concentration at which maxima, minima or kink occurs in

various plots

D : diffusion rate; amount of reaction

E : Activation energy

 $\mathbf{E}_{\mathbf{t}}$: Activation energy for tangential dissolution

 $\mathbf{E}_{\mathbf{S}}$: Activation energy for surface dissolution

E, : Activation energy for viscosity of the material

E : Activation energy for electrolytic conductivity of an

etchant

 \mathbf{E}_{tI} : Activation energy for tangential dissolution along length

direction [110]

 $^{\mathrm{E}}\mathrm{_{t_{\mathrm{B}}}}$: Activation energy for tangential dissolution along breadth

direction [110]

K : Boltzmann constant, constant

K_a : constant

L : length of an etch-pit along [110]

n : concentration of charge carriers

R : universal gas constant

S : carrier charge

T : temperature °K

V : rate of dissolution

 $\mathbf{V_{t}},\ \mathbf{V_{I.}}$: lateral/tangential or ledge dissolution velocity parallel to

surface

 $\mathbf{V}_{\mathbf{n}}$: dissolution velocity normal to surface

 V_{s} : rate of surface dissolution

 $V_{\mbox{\scriptsize nd}}$: normal dissolution velocity at a dislocation

V : normal dissolution velocity of a dislocation-free portion

of the surface

 $\boldsymbol{V}_{\text{tl.}}$: rate of tangential dissolution along length direction [110]

 ${
m V}_{
m tB}$: rate of tangential dissolution along breadth direction[1 $ar{1}$ 0]

 ${
m V}_{
m SP}$: maximum surface dissolution rate

 ${
m V}_{
m tLP}$: maximum tangential dissolution rate along length direction

[110]

 $\boldsymbol{V}_{\text{tBP}}$: maximum tangential dissolution rate along breadth direction

 $[1\bar{1}0]$

 $\boldsymbol{\mu}$: co-efficient of viscosity of the solution

μ_s : carrier mobility

o : electrolytic conductivity of etchant

electrolytic conductivity at kink of the plot of of Vs. C

 δ : desorption rate

 $\delta_{...}$: desorption rate for weak reaction

 $\delta_{\rm s}$: desorption rate for strong reaction.