LIST OF TABLES

,

Title

،در

- 1.1 Physical, chemical & mineralogical features of NaNO₃ & CaCO₃.
- 1.2 Conversion tables for indices of planes and directions.
- 1.3 Standard forms/family of planes of Holosymmetric trigonal crystal (calcite) in Miller-Bravais and Miller notation.
- 1.4 Table of transformation of Miller indices (MI) to Miller-Bravais indices (MBI) of some prominent/major planes in rhombohedral crystals.
- 2.1 Table for magnifications of optical microscope.
- 2.2 Table for chemical assay and impurities of NaNO₃.
- 3.1 Table for types of indenters.
- 4.1 Table of logarithms of longer diagonal length of Knoop indentation mark corresponding to logarithms of load at various orientations of the Knoop indenter and quenching temperature
 (A) for NaNO₃, (B) CaCO₃.
- 4.2 Table consisting load P, diagonal length d, log P, log d, d^2 , d^n , (P-W), log (P-W); for orientation 0° of Knoop indenter with direction [100]; (A) for NaNO₃ at 298°K, (B) for CaCO₃ at 303°K.
- 4.3(A) Table consisting angle A, slopes n_{obs} , n_{mod} , W, b, a, of the plots log d Vs. log P for NaNO₃ at various quenching temperatures.
- 4.3(B) Table consisting angle A, slopes n₁ obs, n₁ mod, W₁, b₁, a₁, load at kink P_K, n₂ obs, n₂ mod, W₂, b₂, a₂ of the plots log d Vs. log P for CaCO₃ at various quenching temperatures for LLR & HLR.

Title

- 5.1 Knoop hardness numbers corresponding to different loads for various orientations of Knoop indenter with the direction [100] at various quenching temperatures for NaNO₃.
- 5.2 Knoop hardness number corresponding to different loads for various orientations of Knoop indenter with the direction [100] at various quenching temperatures for CaCO₂.
- 5.3(a) Mean hardness values \overline{H} from the plots of H Vs. P for NaNO₃ for different orientations of Knoop indenter and various quenching temperatures.
- 5.3(b) Calculation of H by using relation H = $14230.a^{2/n}.P^{(n-2)/n}$ for NaNO₃ for different orientations and quenching temperatures.
- 5.3(c) Calculation of H by using relation H = 14230.b for NaNO₃ for different orientations and quenching temperatures.
- 5.3(d) Percentage deviation of calculated H with respect to mean H for NaNO₃.
- 5.4(a) Mean hardness values \tilde{H} from the plots of H Vs. P for CaCO₃ for different orientations of Knoop indenter and various quenching temperatures.
- 5.4(b) Calculation of H by using relation H = $14230.a^{2/n_2}.P^{(n_2-2)/n_2}$ for CaCO₃ for different orientations and quenching temperatures.
- 5.4(c) Calculation of H by using relation H = 14230.b for CaCO₃ for different orientations and quenching temperatures.
- 5.4(d) Percentage deviation of calculated H with respect to mean H for CaCO₃.

Title

- 5.5 Table consisting load P, diagonal length d, (P-W), hardness H, H by using relation H = $14230.(P-W)/d^2$ for NaNO₃at 0° orientation and 298°K.
- 5.6 Knoop & Vickers hardness values from the graph of H Vs. P, and calculated values of H by using formulae $H = C.a_2^{2/n}$. $P^{(n_z^2)/n}$; $H = C.b_2$ for NaNO₃ at various quenching temperatures.
- 5.7 Table consisting log \overline{HT}_q , log T_q , slope m, c, K for NaNO₃ at various orientations and quenching temperatures.
- 5.8 Table consisting log $\overline{H}T_q$, log T_q , slope m C, K for CaCO₃ at various orientations and quenching temperatures.
- 5.9 Values of load P, slope $m_{Ar}^{}$, $C_{Ar}^{}/\sqrt{P_{r}}$ and % variation from the plot of log $T_{q}^{}$ d Vs. log $T_{q}^{}$ for NaNO₃ at 0°.
- 5.10 Values of load P, d, C_A , K_A for NaNO₃ at different A & T_a's.
- 6.1 Values of \sqrt{HA} for different A's and T_q's (A) for NaNO₃. (B) for CaCO₃.
- 6.2 Values of slope m (calculated by formula, statistical, observed), intercept C (calculated by formula, statistical, observed) of the plot \sqrt{HA} Vs. A (a) for NaNO₂, (b) for CaCO₃.
- 6.3 Tables consisting A, H, \sqrt{HA} for different crystals.
- 6.4 Values of log T $\sqrt{\overline{HA}}$, log T , slope m₁, C₁, P, K, C, $(C_1^2 A)/C$, T q^{p-k} (a) for NaNO₃, (b) for CaCO₃.
- 7.1 Values of A, ϕ , λ , \forall , for different slip systems.
- 7.2 Values of orientation A and ERSS (mean).

iv

Title

- 9.1 Etch-pit shape with different concentration at 50°C for L(+) tartaric acid on calcite with photomicrograph.
- 9.2 Table of length L, breadth B of etch-pit and weight loss per cm^2 for different etching times at various etching temperatures for L(+) tartaric acid of concentration 0.075 M.
- 9.3(A) Table of rate of tangential dissolution V_{tL} , V_{tB} and surface dissolution rate V_s along with ratios V_{tL}/V_s , V_{tB}/V_s at different etching temperatures for various etchant concentrations.
- 9.3(B) Table consisting the ratio $V_{tL}^{}/V_{tB}^{}$ for different etchant concentrations and etching temperatures.
- 9.3(C) Table consisting 1/T, log V_{tL}, log V_{tB}, log V_s, log σ .
- 9.3(D) Table consisting log μ for different concentrations and temperature.
- 9.4 Different activation energies E_{tL} , E_{tB} , E_s , E_{o} , E_{μ} and ratios E_{tL}/E_s , E_{tB}/E_s , E_{tL}/E_{tB} for L(+) tartaric acid.
- 9.5 Values of electrical conductivity of aqueous solution of L(+) tartaric acid at different etching temperatures for different etchant concentrations.
- 9.6 Values of viscosity μ of L(+) tartaric acid solution of varying concentrations at different etching temperatures.

250