LIST OF FIGURES

Figure 2.1 Density of different metals (g/cc) [29]	18
Figure 2.2 B-36 Bomber [34]	19
Figure 2.3 Titan I rocket [34]	20
Figure 2.4 Atomic properties of magnesium [38]	21
Figure 2.5 Some physical, electrical, and mechanical properties of magnesium [26, 28]	21
Figure 2.6 Actual Mg consumption and the supply-demand balance in China (in 10,000 tonn	es)
[39]	22
Figure 2.7 Worldwide Mg production (in kmetric tons) [40, 41]	22
Figure 2.8 Mg Alloy Market, volume % by End-user Industry, Global 2019 [42]	23
Figure 2.9 AZ91E magnesium alloy designation	25
Figure 2.10 Overview of Magnesium Alloy Development [49]	28
Figure 2.11 Mechanical properties of various Mg alloys [48]	30
Figure 2.12 (a) Use of Mg alloys in various automobile parts (b) GM Chevrolet Corvette Z	206
[52, 54]	31
Figure 2.13 Boeing 747 (wing and seat) [51]	32
Figure 2.14 Various parts made by Mg alloys in aeroplane [51]	32
Figure 2.15 Use of magnesium in sports equipment [56]	33
Figure 2.16 Use of Mg alloys in electronics [58–60]	34
Figure 2.17 MAGNEZIX® magnesium bioabsorbable implant (developed by syntel	llix
company, Germany) [57]	34
Figure 2.18 Effect of Mn on the mechanical properties of magnesium [34]	35
Figure 2.19 Mg-Mn binary phase diagram [10, 34, 66]	36
Figure 2.20 SEM-EDS analysis 4.07 wt. %Mn and 0.061wt. %Fe [76]	38
Figure 2.21 Compared to their alloy matrix, the cathodic activity of precipitated phases of N	Mg
alloys in salt water [95]	44
Figure 2.22 SEM-EDS analysis of Mg-3%Ni-3.0%Cu alloy [112]	46
Figure 2.23 Fluxes/Gases used during magnesium melting	48
Figure 3.1 Overall flowchart of experimental work	51
Figure 3.2 Schematic diagram of experimental setup	52
Figure 3.3 Metallic die	53
Figure 3.4 Chemicals, Equipments and apparatus used in flux preparation	55
Figure 3.5 Steps for surface layer of flus on magnesium	56

Figure 3.6 Experimental setup and final casting	. 56
Figure 3.7 Experimental steps of Mg-Mn flakes system	. 58
Figure 3.8 Materials used to develop Mg-Cu and Mg-Cu-Mn alloys	. 60
Figure 3.9 Materials used to develop Mg-Ni and Mg-Ni-Mn alloys	. 62
Figure 3.10 Thermal analyser	. 63
Figure 3.11 Grinding and Polishing steps	. 64
Figure 3.12 Specimen and Olympus optical microscope GX51	. 65
Figure 3.13 Scanning Electron Microscope (JEOL JSM-5610LV) with EDS	. 65
Figure 3.14 X-ray diffraction system	. 66
Figure 3.15 Micro-Hardness test machine	. 67
Figure 3.16 Line diagram of tensile test specimen	. 68
Figure 3.17 Monsanto-20 tensile testing equipment & its related accessories	. 68
Figure 3.18 Density measurements by water displacement method	. 69
Figure 3.19 Immersion test samples and materials	. 70
Figure 4.1 XRD Pattern of pure magnesium	. 73
Figure 4.2 TG/DT analyses of all fluxes	. 83
Figure 4.3 Macro Photographs of fused fluxes (10X)	. 86
Figure 4.4 SEM analyses of all fused fluxes at 100X magnification	. 86
Figure 4.5 Flux v/s weight losses (%)	. 88
Figure 4.6 Mechanical properties of all cast products	. 89
Figure 4.7 SEM images of manganese forms (a) Manganese coarse powder (b) $MnCl_2$ pow	'der
(c) MnO_2 powder (d) Manganese fine powder (e) Electrolytic Manganese flakes and (f) cam	iera
image of electrolytic Manganese flakes	. 90
Figure 4.8 Recovery of Manganese from its different sources at 850°C in Pure Mg metal	. 92
Figure 4.9: Optical Micrograph of magnesium & all systems (a) Pure Mg (b) Mg- Mn coa	arse
powder system (c) Mg-MnCl ₂ powder system (d) Mg-MnO ₂ powder system (e) Mg-Mn f	fine
powder system (f) Mg-Mn flakes system at 100 X and (g) Mg-Mn flakes system at 400X	. 93
Figure 4.10 XRD pattern of (a) Pure magnesium (b) Mg-MnCl ₂ powder system (c) M	∕lg-
MnssO2 powder system (d) Mg-Mn flakes system	. 94
Figure 4.11 Hardness and tensile properties of all Mg-Mn systems	. 95
Figure 4.12 Density of all Mg-Mn systems	. 95
Figure 4.13 Corrosion rate of all Mg-Mn systems	. 96

Figure 4.14 Photographs of the (a) Pure magnesium (b) Mg-Mn coarse powder system (c) Mg-
$MnCl_2$ system (d) Mg-MnO ₂ system (e) Mg-Mn fine powder system (f) Mg-Mn flakes system
after 24 hrs and 48 hrs immersion in 3.5 wt. % NaCl
Figure 4.15 Recovery of manganese in pure magnesium at different temperature
Figure 4.16 Optical Micrograph of all Mg-Mn systems at (a) 750 °C (b) 800 °C (c) 850 °C (d)
900 °C (e) 950 °C (at 200 X)
Figure 4.17 XRD Pattern of (a) Pure magnesium (b) Mg-Mn flakes at 750°C (c) Mg-Mn flakes
at 800°C (d) Mg-Mn flakes at 850°C (e) Mg-Mn flakes at 900°C (f) Mg-Mn flakes alloy at
950°C
Figure 4.18 Hardness and tensile properties of all systems
Figure 4.19 Photographs of the (a) Mg-Mn flakes at 750° C (b) Mg-Mn flakes at 800° C (c)
Mg-Mn flakes at 850°C (d) Mg-Mn flakes at 900°C (e) Mg-Mn flakes at 950°C system after
24 hrs and 48 hrs immersion in 3.5 wt. % NaCl after cleaning (f) Mg-Mn flakes at $950^\circ C$
system before cleaning
Figure 4.20 Optical Micrographs of the as cast alloys at 200 X (a) CM10 (b) CM20 (c) CM30
(d) CM11 (e) CM22 (f) CM32102
Figure 4.21 SEM Micrographs of the as cast alloys at 270 X (a) CM10 (b) CM20 (c) CM30
(d) CM11 (e) CM22 (f) CM32103
Figure 4.22 XRD patterns of (a) pure magnesium (b) CM10 (c) CM20 (d) CM30 (e) CM11 (f)
CM22 (g) CM32 alloys
Figure 4.23 Room temperature mechanical properties of as cast Mg-xCu and Mg-xCu-yMn
alloys (x = 1, 2, 3) and (y = 1, 2)
Figure 4.24 Density of all Mg-Cu and Mg-Cu-Mn alloys
Figure 4.25 Corrosion rates (mpy) after 6 hrs and 12 hrs immersion in 3.5 wt. % NaCl (a) Mg-
xCu alloys (b) Mg-xCu-yMn alloys ($x = 1, 2, 3$) and ($y = 1, 2$)
Figure 4.26 CM10 alloy (a) original sample (b) after 6 hrs immersion (c) after 12 hrs
immersion in 3.5 wt.% NaCl 106
Figure 4.27 EDS analysis of CM32 alloy corrosion product
Figure 4.28 Optical Micrographs of the as cast alloys at 200 X (a) Mg-0.7Ni (b) Mg-1.4Ni (c)
Mg-1.7Ni (d) Mg-0.7Ni-2.33Mn (e) Mg-1.7Ni-3.15Mn (f) Mg-2.3Ni-1.96Mn 109
Figure 4.29 SEM Micrographs of the as cast alloys at 550 X (a) Mg-0.7Ni (b) Mg-1.4Ni (c)
Mg-1.7Ni (d) Mg-0.7Ni-2.33Mn (e) Mg-1.7Ni-3.15Mn (f) Mg-2.3Ni-1.96Mn 110

Figure 4.30 XRD patterns of (a) Mg-0.7Ni (b) Mg-1.4Ni (c) Mg-1.7Ni (d) Mg-0.7Ni-2.33Mn
(e) Mg-1.7Ni-3.15Mn (f) Mg-2.3Ni-1.96Mn alloy 111
Figure 4.31 Room temperature mechanical properties of as-cast Mg-Ni and Mg-Ni-Mn alloys
Figure 4.32 Density of Mg-Ni and Mg-Ni-Mn alloys
Figure 4.33 Photographs of the (a) Mg-0.7Ni (b) Mg-1.4Ni (c) Mg-1.7Ni (d) Mg-0.7Ni-
2.33Mn (e) Mg-1.7Ni-3.15Mn (f) Mg-2.3Ni-1.96Mn alloy before and after corrosion test 113
Figure 4.34 Corrosion rates of Mg-0.7Ni, Mg-0.7Ni-2.33Mn, Mg-1.7Ni and Mg-1.7Ni-
2.15Mn alloy
Figure 4.35 Photographs of the (a) Mg-0.7Ni (b) Mg-1.4Ni (c) Mg-1.7Ni (d) Mg-0.7Ni-
2.33 Mn~(e)~Mg-1.7 Ni-3.15 Mn~(f)~Mg-2.3 Ni-1.96 Mn~after~1.5~hrs~and~2~hrs~immersion~in~3.5 wt.
% NaCl after cleaning 114
Figure 4.36 Mg-1.4Ni alloy (a) before (b) after 2 hrs immersion in 3.5wt. % NaCl (without
cleaning) 115
Figure 4.37 EDS analysis of (a) Mg-1.4Ni (b) Mg-1.7Ni-3.15Mn alloy corrosion product 115

