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3.1. Introduction

There are several metal ions capable of catalyzing Suzuki coupling reaction, but the palladium
catalysts remains the first choice due to its high catalytic activity for a wide range of substrates
(Dong et al., 2021; Rai et al., 2015). For the fabrication of Pd catalysts reducing agents like
NaBHs or hydrazine are required which are toxic. Further, presence of PdO is reported to
enhance the catalytic efficiency of Pd in Suzuki coupling reaction as reported by Yang et al
(Yang et al., 2015). They fabricated Pd/PdO nanoparticles decorated on carbon nanotubes
containing varying percentages of PdO (59%, 63% and 73%). Suzuki coupling reaction with
bromoanisole and phenylboronic acid using 73% gave maximum conversion.

The use of Pd and PdO clusters could greatly improve the catalytic efficiency for Suzuki coupling
reactions because of large surface area and increased proportion of surface atoms. However, the
small particle size can also lead to aggregation of particles due to which catalytic potential of Pd
catalyst decreased(Rai et al., 2015).

Apart from Pd, there are reports on the use of nano NiO for Suzuki coupling reaction (Park et
al., 2005) though with decreased efficiency. Increased attention is also being directed towards
bimetallic catalysts because of synergistic influence coming from different transition metals
(Nan et al., 2020).

Several Pd based bimetallic systems such as Pd-Au, Pd-Ag, Pd-Rh, Pd-Ru, Pd-Cu, Pd-Co or Pd-
Ni (Rai et al., 2016) are reported for Suzuki coupling reactions, out of which Pd—Ni nanoparticles
are notably efficient due to the excellent synergistic effect(Bao et al., 2019). Ni and Pd are easily
miscible because of their similar crystal structure and electronic configuration (Jang et al., 2017)
with 4d*°5s° and 3d®4s? outer electronic configuration respectively. Bimetallic nanosystem (Pd-
Ni) will be a more effective catalyst than the individual monometallic (Pd or Ni) nanoparticles
(Seth et al., 2014). Bao et. al., synthesized bimetallic Pd—Ni without ligands loaded on carbon
nanofibers and used it for Suzuki coupling reaction (Bao et al., 2019). Jang et al. synthesized
nickel doped palladium-iron oxide hybrid nanoparticles with crumpled ball-like morphology and
used it for Suzuki coupling reaction(Jang et al., 2017). Further, Ghanbari et. al. fabricated
palladium-nickel/iron oxide core-shell nano alloys via ultrasonic assisted method and applied it

for Suzuki coupling and p-Nitrophenol reduction reaction (Ghanbari et al., 2017).

Furthermore, recently surface electronic state of metal nanoparticles was modified with a layer
of metal oxides. The energy difference between the highest occupied molecular orbital (HOMO)
of the metal oxides and the Fermi level of the metal induced spontaneous electron tunneling
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through the thin dielectric barrier resulting in a change in electron density on the metal
surface(Jiao et al., 2020)

Thus, the introduction of magnetic support materials with Ni —NiO could effectively stabilize
the Pd clusters, Pd and PdO as well as augment the catalytic properties.

Biopolymers like Chitosan, cyclodextrin agarose, cellulose etc. have gained great research
attention for their use as a support for Pd catalyst due to environmental impact concerns and eco-
sustainable pathway for the demand of green chemistry (Dong et al., 2021). This low-cost
biopolymer possesses unique affinity towards most transition metals ions, making it a desirable
solid support for the stabilization of nanocatalyst (Dong et al., 2021).

Veisi et al. prepared magnetic nanoparticles comprising palladium immobilized on chitosan-
biguanidine by insitu reduction and applied for Suzuki Miyaura coupling reactions(Veisi et al.,
2018). Sedghi et al developed multi walled functionalized magnetic chitosan on N-heterocyclic
carbene-palladium (M-f-MWCNTs@chitosan-NHC-Pd) (Sedghi et al., 2019).

In the present chapter, we report an eco-friendly synthesis process for preparation of Pd nano
particles on the surface of chitosan supported magnetic iron oxide nanoparticles (IO-Chitosan)
and nickel immobilsed chitosan supported magnetic iron oxide nanoparticles (Ni@1O-Chitosan)
as a reusable heterogeneous catalyst. Initially, magnetic nanoparticles were prepared under
ambient conditions (I0-Chitosan & Ni@10-Chitosan). This was followed by in situ reduction of
palladium ions to form magnetically separable palladium nanosystem (Pd@IlO-Chitosan &
Pd@Ni@I1O-Chitosan). The catalytic efficiency of the synthesized nanocatalyst in Suzuki
coupling reaction of aryl halides with arylboronic acid in water and p-Nitrophenol reduction has

been demonstrated.

3.2. Materials and methods

3.2.1. Materials

All chemicals and solvents were purchased as analytical grade from commercial suppliers
and were used without further purification. Chitosan and palladium chloride were

purchased from Sigma Aldrich.

3.2.2. Procedure for the preparation of Chitosan capped Iron oxide nanoparticles (I0-Chitosan)

Iron oxide nanoparticles capped with chitosan were prepared by chemical co-
precipitation method in alkaline condition. FeSO4-7H20 (0.96 g) was dissolved in 5% 10

65




Chapter 3 Pd/Ni-Pd NPs Stabilized on 10 NPs Capped with Chitosan

mL HCI solution followed by the addition of 1.12 g FeCls.2H20 and stirred for 10
minutes. To this solution, 10 mL of 1% chitosan solution prepared in acetic acid was
added dropwise and stirred for 30 min. This was followed by the dropwise addition of 25
mL of 50% ammonia solution to adjust the pH to 10 and stirred for 3 h resulting in the
formation of black particles (10-Chitosan) which were collected using an external magnet
and washed with 100 mL water followed by 10 mL acetone and then dried at 100°C in
oven for 9-10 h.

3.2.3. Procedure for the immobilization of Palladium on Chitosan capped Ironoxide
nanoparticles (Pd@I1O-Chitosan)

For the preparation of Pd@10-Chitosan, 100 mg 10-Chitosan was sonicated in 20 mL ethanol
for 20 min followed by the addition of 2 mg PdClI> to the suspension with gentle stirring at RT
(30-35 °C) for 12h. The resultant Pd@10-Chitosan nanoparticles were separated with a handheld
magnet, washed with ethanol and finally dried at 100 °C for 5 h.

3.2.4. Preparation of Chitosan capped Nickel doped Iron oxide nanoparticles (Ni@10-Chitosan)

The synthesis of Ni@10-Chitosan was performed using chemical precipitation method. Firstly,
0.96g FeSO4-7H20 was taken in round bottom flask and dissolved in a mixture of 10 mL 5%
HCI solution in water and stirred for 10 min followed by the addition of 1.12 g FeClsz. 2H20 and
stirring for 10 min. After 10 minutes, 10 mL of 1% Chitosan solution prepared in acetic acid was
added drop wise and stirred for 30 min followed by addition of 25mL of 50% ammonia solution
to adjust the pH of the medium to 10 and stirring for 3 h resulting in precipitation of black
particles. After 3 h of stirring, 3 mL of 0.3M NiCl2.6H20O solution was added drop wise and
stirred for an additional 3 h(Ahmad et al., 2015). The black particles of Ni@1O-Chitosan were
collected using an external magnet and washed with 100 mL water followed by 10 mL acetone
and then dried in an oven at 100 °C for 7-8 h.

3.2.5. Procedure for the immobilization of Palladium on Chitosan capped Nickel doped Iron
oxide nanoparticles (Pd@Ni@1O-Chitosan)

Pd@Ni@I10O-Chitosan nanoparticles were prepared by sonicating a suspension containing 100
mg Ni@lO-Chitosan in 20 mL ethanol for 10 min. Subsequently, 2 mg PdCl> was added to

Ni@IlO-Chitosan suspension with gentle stirring for 12 h at room temperature. The resultant
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Pd@Ni@I10O-Chitosan nanoparticles were collected with a magnet, washed with 10 mL EtOH
followed by 5 mL water and was finally oven dried at 100 °C for 5 h.

3.2.6. General method for p-Nitrophenol reduction catalysed by Pd@I1O-Chitosan and
Pd@Ni@I10O-Chitosan

The effectiveness of Pd@I0O-Chitosan and PA@Ni@10-Chitosan as catalysts for reduction of p-
NP was evaluated by taking 50 mL of a solution of p-NP (50 ppm) and 5-10 mg NaBH4 and
stirred for 1 min. To the resulting mixture, 1 mg of nanocatalyst was added to initiate the reaction
and the concentration of the products was measured by an UV-Vis spectrophotometer at definite

time intervals at Amax 400 nm.

The reusability of the catalyst was tested by a scale-up experiment with 10 mg of catalyst
maintaining the same ratio of catalyst/p-NP. After completion of the experiment, the catalyst was
collected by magnetic separation and washed twice with 20 mL conductivity water and then
placed in a drying oven to dry at 100 °C for 12 h before proceeding to the next cycle of

nitrophenol reduction.

3.2.7. General procedure for the Suzuki coupling reaction catalysed by Pd@IO-Chitosan and
Pd@Ni@10-Chitosan

The coupling reaction was carried out by taking 1.59 mmol each of aryl halide, arylboronic acid,
K2COs3, 1 mg of catalyst and 10 mL H2O in a 25 mL round-bottomed flask and heated on an oil
bath at 90-100 °C with stirring for 4 to 15 h depending on the aryl halides used. The reaction was
monitored by thin layer chromatography (TLC). After completion of the reaction the mixture
was cooled to room temperature and the catalyst was collected by an external magnet.
Subsequently, the mixture was extracted with ethyl acetate three times (3*5 mL). The ethyl
acetate phase was then collected, dried with Na.SO4 and coupled products were obtained by
evaporation which were further analysed by GC-MS. The crude product was purified using
column chromatography packed by silica gel to afford the desired product. NMR spectra of the
purified products are given in the Appendix.

To test the recyclability of catalyst, after each cycle, catalyst was separated by using an external
magnet and washed twice with 10 mL water followed by 10 mL of ethyl acetate. The catalyst
was further dried in an oven at 100°C for 5 h. The recovered catalyst was further used for the

next cycle of reaction.
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3.2.8. Characterization of 10-Chitosan, Pd@I10-Chitosan, Ni@lO-Chitosan and Pd@Ni@I10O-
Chitosan)

The structural and morphological properties of Pd@10-Chitosan and PA@Ni@10O-Chitosan were
analyzed by using UV-Vis, IR, XRD, SEM, EDX, VSM, HRTEM, XPS, HRTEM, TG-DTA and
XANES techniques.

The X-ray diffraction patterns of the samples were identified using Bruker D8 Advance X-ray
diffractometer, Scanning Electron Microscopy measurement was performed on a HITACHI
SU1510 instrument. Energy dispersive X-ray spectroscopy (EDS) analysis was done using a
JEOL (JSM 7600F model) FEG-SEM spectrometer, X-ray photoelectron spectroscopic (XPS)
analysis was performed using PHI 5000 Versa Probe 11 spectrometer, FEI Inc, and XPS analysis
of recycled catalyst was recorded using PHI 5000 Versa Probe I1l. Thermo Gravimetric (TG)
and Differential Thermal Analysis (DTA) in Nitrogen atmosphere from 30°C to 750°C using
TG-DTA-6300, INCARP EXSTAR 6000 instrument. UV-visible spectroscopy studies were
carried out on a JASCO dual-beam spectrophotometer (model V-630) and UV-visible
spectroscopy studies of p-NP reduction were performed out on a Perkin Elemer Lamda 35
spectrophotometer. High Resolution Transmission Electron Microscopy (HRTEM) was
performed on a JEOL (JEM 2100F Model) instrument, operated at an accelerating voltage 200kV
Fourier transforms infrared (FTIR) spectroscopy measurements were performed on a BRUKER
ALPHA, IR spectrometer, using procedure described in chapter 2 section 2.2.6.

Pd and Fe k-Edge XANES analysis

Pd K-edge and Fe K-edge XANES spectra were recorded at the beamline BL12, INDUS-2 of
the RRCAT Facility, Indore. Pellets of samples were prepared by grinding in a mortar and pestle
and pressing under high pressure under vacuum Pd K-edge XANES spectra were recorded in the

transmission mode
VSM analysis

Dried magnetic nanomaterials were used to obtain the VSM spectra using Lakeshore VSM 7410

magnetometers.
ESR analysis

ESR analysis was performed on a JES-FA200 ESR Spectrometer with X band at room

temperature using dried powder samples.
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Palladium leaching study by ICP-MS

The palladium leaching study was performed by using PerkinElmer ICP-MS, NexION 2000
spectrometer. After completion of Suzuki coupling reaction at 100°C, products were isolated by
solvent extraction using ethyl acetate and aqueous phase was preserved for leaching study. These
aqueous samples were digested using 5 mL HNOs in microwave digester and the digested

samples were made up to 20 mL using Milli Q water and further used for ICP-MS analysis.

GC-MS and NMR analysis

GC-MS spectra of all the biaryl derivatives obtained from coupling reaction were recorded on
Thermo Fisher Trace GC Ultra Gas Chromatograph using TR-5MS column. Helium was used as
a carrier gas and chloroform as a solvent. Column chromatography of biphenyl derivatives was

done using silica column and Hexane:Ethayl acetate as a mobile phase.

NMR spectra were recorded on Bruker avance Ill spectrometer operating at 600 MHz after

dissolving compounds in CDClzin NMR sample tube.

3.3. Result and Discussion

3.3.1. Characterization of 10-Chitosan, Pd@IO-Chitosan Ni@lO-Chitosan and
Pd@Ni@10-Chitosan

3.3.1.1. FTIR spectroscopy

The FTIR spectra for pristine chitosan, I0-Chitosan and Pd@10-Chitosan, Ni@10O-Chitosan and
Pd@Ni@I10-Chitosan nanoparticles under study are shown in Figure 3.1. Characteristic peaks
of chitosan as well as iron oxide were present in the spectra of all the 4 nanosystems.

The bands observed at 632,557 cm™ in 10-Chitosan; 632, 561 cm™ in Pd@10-Chitosan; 629,
581 cm™ in Ni@IO-Chitosan and at 629, 583 cm™ in PdA@Ni@10-chitosan corresponded to the
Fe-O stretching vibration (MTh-O-MOh of the tetrahedral and octahedral sites). Further the band
at ~441 cm™ in 10-Chitosan and Pd@I1O-Chitosan; at ~446 cm™ in Ni@lO-Chitosan and
Pd@Ni@IlO-Chitosan may be attributed to the Fe-O stretching mode of octahedral sites of
maghemite and a shoulder at ~480 cm™ was attributed to FesO4 indicating the possible presence
of both magnetite and maghemite (Arumugam et al., 2020).

The stretching vibrations of —CH, -CH.OH; C-O stretching; C-O-C antisymmetric /C-N
stretching and OH bending vibration of chitosan were observed at 2921 cm™, 1427 cm™%, 1373

cm 1, 1152 cm tand 1060 cmtrespectively in 10-Chitosan. The broad peak of hydrogen-bonded
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hydroxyl groups and N-H groups was observed at 3440 cm ™. Further the peaks of NHz group
scissoring (amide | band) mode and glycoside linkage of saccharide structure were observed at
~1633 cmtand 804 cm™! respectively. The N-H and O-H bands at ~3400 cm™* observed in
chitosan became weak confirming the stabilization of nanosystems with NH, and OH groups of
chitosan(Zhou et al., 2013).

- Pd@Ni@|O-Chitosan

- Ni@|O-Chitosan

— Pd@I|O-Chitosan
— 1O0-Chitosan

j/’( Chitosan

%T (aw)

T T T T T T T T
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Wavenumber (cm™)

Figure 3.1 Overlay IR spectra of Chitosan, 10-Chitosan, Pd@10-Chitosan, Ni@1O-Chitosan,
Pd@Ni@10O-Chitosan

The IR band at 1310 cm™ in chitosan attributed to amide 111 band was observed at 1314, 1318,
1325, 1312 cm? in 10-Chitosan and Pd@IO-Chitosan, Ni@lO-Chitosan and Pd@Ni@I10-
Chitosan respectively. The peak at 1067 cm™ in 10-Chitosan corresponding to OH bend was
shifted to 1060 cm™ in Pd@10-Chitosan confirming the conjugation of iron oxide and Pd
nanoparticle with chitosan. Similarly, the peak at 1062 cm™ in Ni@10-Chitosan was shifted to
1065 cm™ in PdA@Ni@10-Chitosan.
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3.3.1.2. ICP-MS, SEM-EDS and TEM

The Pd and Fe content of Pd@10-Chitosan estimated by Inductively Coupled Plasma-Mass
Spectrometry (ICP-MS) were observed to be 1.065 wt% and 44.54 wt% respectively. ICP-MS
analysis revealed the presence of 1.79wt% Pd, 0.55 wt% Ni and 43.33 wt% Fe in PA@Ni@I10-
Chitosan. The elemental composition and morphology of synthesized nanosystems were

investigated by SEM and EDX mapping. (Figure 3.2)

Element Weight% Atov?\ic%
CK 6.81 16.16
NK 1.19 2.43
oK 27.14 48.33
Fe K 64.85 33.08

Totals 100.00

Element Weight% Atof\ic%
CK 1.67 4.37
NK 143 3.21
oK 27.23 53.48
FeK 68.73 38.66
PdL 0.94 0.28

Totals 100.00

4 | Element Weight% Ato:ic%

CK 6.57 14.71
NK 0.83 1.60
OK 32.61 54.81
Fe K 59.36 28.59
Ni K 0.62 0.29

Totals 100.00

Element Weight% Ator||(1ic%
CK 1.70 4.34
NK 0.91 1.98
oK 30.07 57.42
Fe K 64.44 35.25
Ni K 0.79 0.41
PdL 2.09 0.60

Totals 100.00

Figure 3.2: (A) SEM image of 10-Chitosan, (B) EDX of 10-Chitosan, (C) TEM image of lo-
Chitosan, (D) SEM image of Pd@10-Chitosan, (E) EDX of Pd@I10-Chitosan, (F) TEM image
of Pd@IO-Chitosan, (G) SEM image of Ni@10-Chitosan, (H) EDX of Ni@IO-Chitosan, (I)
TEM image of Ni@lO-Chitosan, (J) SEM image of Pd@Ni@lO-Chitosan, (K) EDX of
Pd@Ni@lO-Chitosan, (L) TEM image of PA@Ni@I10O-Chitosan

The EDX spectrum confirmed presence of C (6.81 wt%), N (1.19 wt%), O (27.14 wt%), Fe
(64.85 wt%) in 10-Chitosan (Figure 3.2B); C (1.67 wt%), N (1.43 wt%), O (27.23 wt%), Fe
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(68.73 wt%) and Pd (0.94 wt%) in Pd@1O-Chitosan (Figure 3.2E); C (6.57 wt%), N (0.83 wt%),
O (32.61 wt%), Fe (59.36 wt%) and Ni (0.62 wt%) in Ni@IlO-Chitosan (Figure 3.2H); C (1.7
wit%), N (0.91 wt%), O (30.07 wt%), Fe (64.44 wt%), Ni (0.79 wt%) and Pd (2.09 wt%) in
Pd@Ni@I10-Chitosan (Figure 3.2K).

The TEM images (Figure 3.2(C, F, I, L)) of synthesized nanocatalysts showed that Pd NPs were
dispersed on 10-Chitosan and Ni@10-Chitosan. The supported Pd NPs were spherical in shape
with size in the range of 5-20 nm. (IO-Chitosan: 5-20 nm, Pd@ 10-Chitosan: 5-15 nm, Ni@I10-
Chitosan: 5-10 nm, Pd@Ni@I1O-Chitosan: 5-18 nm). Aggregation of spheres to form nanorods
were observed in Ni@1O-Chitosan and Pd@Ni@10-Chitosan to a small extent.

3.3.1.3. HRTEM and SAED

High resolution transmission electron microscopy (HRTEM) images exhibited clear lattice
fringes for maghemite/magnetite nanoclusters indicating crystallinity of the sample. It is difficult
to distinguish magnetite and maghemite when mixed phases are present. Characteristic lattice
fringes (Figure 3.3) of magnetite/ maghemite (Iron oxide) were observed at ~0.23, ~0.25, ~0.29
and ~0.50 nm assigned to 222, 311 and 220 planes(Amendola et al., 2011).

Well dispersed Pd and PdO (at the edges in the grey region) nanoparticles on 10-Chitosan
support were observed in HRTEM images of Pd@10-Chitosan (Figure 3.3B). Lattice fringes at
0.20 nm and ~0.24 nm observed in the black areas correlated with (200) and (111) planes of fcc
Pd nanoparticles. Further the lattice fringes at ~0.29, ~0.26, ~0.218 nm were attributed to 100,
002 and 110 planes of tetragonal PdO (Su et al., 2015).

Ni@10-Chitosan showed lattice fringes (Figure 3.3D) characteristic of magnetite/ maghemite
were observed at 0.272, 0.251 and 0.498 nm attributed to 222, 311 and 111 planes. Further,
lattice fringe spacings of Pd@Ni@10-Chitosan (Figure 3.3F) at 0.203 nm and 0.241 nm that
correlated with (200) and (111) planes of fcc Pd, and lattice spacing of ~0.26, ~0.218 nm,
attributed to 002 and 110 planes of tetragonal PdO wherein the PdO (110) plane (spacing ~0.218
nm) was used to differentiate from Pd (200) and (111) planes. Moreover, lattice spacing of
~0.177 nm was attributed to Ni (200) plane while 0.203 nm was attributed to NiO (200), Ni (111)
and Pd (200).

The SAED concentric ring pattern indicated polycrystalline nature of the sample. A weak diffuse
pattern from the chitosan layer was also observed. SAED pattern of IO-Chitosan in (Figure 3.3A)
was indexed to FesO4 (JCPDS 88-0315) and y-Fe2O3 (JCPDS No. 39-1346), the diffraction rings
are assigned to the (220), (311), (222), (400), (422), (511) and (440) planes respectively. The
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SAED pattern of Pd@10-Chitosan (Figure 3.3C) corresponded to the (111) and (220) planes of

fcc Pd nanocrystallites as well as the maghemite and magnetite diffraction planes.
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Figure 3.3: (A) SAED image of 10-chitosan, (B) HRTEM image of Pd@10-chitosan, (C)SAED
image of Pd@I0O-chitosan, (D) HRTEM image of Ni@I10-chitosan, (E)SAED image of Ni@IO-
chitosan, (F) HRTEM image of PA@Ni@IO-chitosan, (G) SAED image of Pd@Ni@10-chitosan

The diffraction rings in SAED pattern of Ni@lO-Chitosan (Figue 3.3E) were attributed to 10
(220), 10 (311), Ni (111), 10 (400) & Ni (200), 10 (422) and 10 (511) planes. The SAED
diffraction pattern of Pd@Ni@10O-Chitosan (Figure 3.3G) exhibited rings corresponding to (111)
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and (220) planes of fcc Pd in addition to FesO4 and y-Fe Oz diffraction planes. The ring pattern
also exhibited (100), (101) and (112) diffraction planes of PdO and (200) diffraction plane of Ni.
The ring at 9.43 nm attributed to PdNi (111).

3.3.1.4. HAADF-STEM and EDX

The morphology of PA@Ni@10-Chitosan was further investigated by High Angle Annular Dark
Field Scanning Transmission Electron Microscope (HAADF-STEM) and Energy dispersive X-
ray (EDX) spectrometry. As shown in Figure 3.4, it is evident that the metal atoms are
homogeneously distributed except for aggregation of few palladium nanoclusters (Figure 3.4 (E
and F)) uniformly over the Ni@IO-Chitosan.

B

Element Weight%  Atomic%

CK 31.67 53.82
N K 1.94 2.83
oK 21.33 27.22
PdL 1.90 0.36
FeK 42.74 15.62

NiK 0.43 0.15

98

2%

Figure 3.4.: HAADF-STEM images of PA@Ni@10O-Chitosan
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3.3.1.5. PXRD analysis
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X-ray powder diffraction (XRD) analysis was used to further examine the crystallinity and phase

purity. As shown in Figure 3.5A, the XRD pattern of the 10-Chitosan catalyst displayed typical
maghemite and magnetite peaks, primarily at 20 30.2°, 35.6°, 43.3°, 53.8°, 62.8°, and 74.5°,
which correspond to the diffraction planes of (220), (311), (400), (422), (511), (440) and (533)

crystal faces of maghemite or magnetite spinel structures respectively. A broad peak at 26 =21.4°

indicated the presence of weakly crystalline chitosan in 10-chitosan.

10 : . . :
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Figure 3.5: (A) XRD pattern of IO-Chitosan, (B) XRD pattern of Pd@10-Chitosan, (C) (B) XRD
pattern of Ni@10-Chitosan, (D) (B) XRD pattern of Pd@Ni@I1O-Chitosan

The XRD spectra of PA@10-chitosan in Figure 3.5B, showed XRD peaks at 26 30.1°, 35.6°,
43.3°, 53.7°, 57.3°, 62.9° and 74.4° attributed to (220), (311), (400), (422), (511), (440) and

(533) diffraction planes of maghemite or magnetite spinel structure respectively. Due to very

weak diffraction and a very disordered iron oxide structure, the powder diffraction pattern did

not exhibit a (110) diffraction peak. The presence of maghemite was confirmed by the low
intensity diffractions at 26 23.9° (210) and 26.5° (211), which suggested the presence of both
magnetite and maghemite. (Jie et al., 2008; Kim et al., 2012). Furthermore, due to the high
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dispersion, small crystallite size and low loading of Pd, modest distinctive diffraction peaks at
20 = 48.7° and 71.06° revealed (200) and (220) diffraction planes of palladium (0). In addition,
PdO diffraction peaks corresponding to the (112), (200), and (101) planes were seen, which
supports our findings from HRTEM and SAED experiments.

As shown in Figure 3.5B, the XRD pattern of the Ni@lO-Chitosan showed the characteristic
peaks of magnetite and maghemite at 30.2°, 35.6°, 43.3°, 53.8°, 57.3°, 62.8° and 74.5° which
correlated to the diffractions of (220), (311), (400), (422), (511), (440) and (533) crystal faces of
maghemite or magnetite spinel structure. XRD peaks can be observed at 44.9° corresponding to
(110) plane of Ni(0), peaks at 26 38.5° and 41.9° corresponded to (111), (200) planes of NiO
(Neelabh & Srivastava, 2010)(Richardson et al., 2003).

The XRD pattern of PA@Ni@10-chitosan in Figure 3.5D catalyst showed the characteristic
peaks of 10 NPs. In addition to characteristic peaks of 10, Ni and NiO, additional weak peaks
could be observed at 26 40.1° and 49.5° which were well-indexed to the (111) and (112)
crystalline plane of face cantered Pd(0) and a peak at 260 ~61° corresponded to (200) plane of
PdO (200), which were also observed in SAED studies.

3.3.1.6. XPS analysis

The C1s, N1s, Ol1s and Fe 2p XPS spectra of 10-Chitosan are shown in Figure 3.6(A-C). In the
deconvoluted Fe2p XPS spectrum (Figure 3.6D), the peaks at 710.9, 713.29, 723.9 eV and
726.29 were ascribed to Fe2p3/2 and Fe2p1/2 of Fe** ions along with satellite peaks(Han et al.,
2007; Kolen et al., 2014). The de-convoluted O 1s XPS spectra (Figure 3.6C) showed a peak at
binding energy 528.14 eV assigned to iron oxide's lattice oxygen, while the peaks at 531.497 eV
and 533.7 eV were attributed to chitosan's N-C=0 bond and C-O-H respectively. Furthermore,
the N1s (Figure 3.6B) de-convoluted peaks with binding energies of 399.47 eV were assigned to
chitosan's -NH. or -NH, 401 eV to C-N, and 402.75 eV to NH2-Fe(Unsoy et al., 2012). The the
C 1s XPS spectra of chitosan showed a peak (Figure 3.6A) with a binding energy of 284.6 eV
for C-C, 286.2 eV for C-OH and C-NH: and 288.299 eV for O-C-O. (Kong et al., 2010).

The XPS spectra of Pd@10-Chitosan are shown in Figure 3.6 (E-I). In Fe2p XPS spectrum
(Figure 3.6H), characteristic peaks of Fe2p3/2 and 2p ¥ of Fe3* are seen with the satellites. The
presence of multiplet peaks may be due to the interaction with 10 with chitosan and
palladium(Verma et al., 2018).-The Pd 3d XPS spectra (Figure 3.61)) exhibited peaks at binding
energies 336.73 eV and 341.73 eV assigned to charged metallic Pd particles (Tsyrul et al., 2007).
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The signal at 338.4 eV can be assigned to PdO/Pd?* and the peak at 339.4 eV was attributed to

the interactions between Pd and 10-Chitosan.

The O1s XPS spectrum of Pd@10-Chitosan in Figure 3.6G exhibited a peak at binding energy
of 529.99 eV attributed to Pd-O species and Pd-O-Fe interactions while peak at 531.7 eV was
assigned to C-O of chitosan and 533.7eV to OH group (Shaw et al., 2017). Further, the
deconvoluted N1s XPS spectra (Figure 3.6F) showed a peak at 399.8 eV ascribed to -NH: or -
NH of chitosan, 400.5 eV to C-N and 402.2 eV to NH>—Fe. The C 1s XPS spectrum (Figure
3.6E) exhibited deconvoluted peaks at binding energies 284.8, 286.5 eV and 288.2 eV assigned
to C—C and C—H; C—NH and C-NH3; (—-C—OH) and C-O-C=0 groups respectively.
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Figure 3.6: (A-D) C, N, O, Fe XPS spectra of I0-Chitosan and (E-1) C, N, O, Fe, Pd XPS spectra

of Pd@I10-Chitosan
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The de-convoluted C1s (27.21 At%), N1s (1.78 At%), O1s (52.24 At%), Fe2p (18.45 At%) and
Ni2p (0.31 At%) XPS spectra of Ni@1O-Chitosan are shown in Figure 3.7. In the Fe2p XPS
spectrum (Figure 3.7D), the signals at binding energies of about 710.16, 714.12, 723.23 and
727.23 eV were assigned to Fe2p3/2 and Fe 2p1/2 of Fe** of y-Fe,O3 and a-Fe,Os ions along
with satellite peaks(Kong et al., 2010). The peak at 711.97 eV can be attributed to octahedral and
tetrahedral Fe** in FesOa4. The de-convoluted O 1s (Figure 3.7C) peak at binding energy 529.70
eV was attributed to lattice oxygen of iron oxide while the peak at 530.80 eV was attributed to
N-C=0 bond of chitosan and 532.38 to C-O-H. Further, the assignment for N1s de-convoluted
peaks (Figure 3.7B) with binding energy 399.29 eV was made to -NH2 or -NH of chitosan,
400.24 eV to C-N and 401.82 eV to NH>—Fe (Unsoy et al., 2012). In the C 1s spectrum (Figure
3.7A) the peak with binding energy of 284.6 eV was attributed to C-C, while peak with binding
energy 286.2 eV to C-OH, C-NHz and 288.299 eV to O-C-O of chitosan.
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Figure 3.7: C, N, O, Fe, Ni XPS spectra of Ni@lO-Chitosan

The Ni 2p3/2 spectrum of Ni@I10-Chitosan in Figure 3.7E shows a complex structure with
intense satellite signals of high binding energy adjacent to the main peaks due to multi-electron
excitation. The binding energy of 852.58 eV may be attributed to metallic Ni. The most intense
peak at 855.29 eV was due to Ni?* in NiO while the second doublet at 860.77 eV could be
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ascribed to Ni?* in Ni(OH),. It should be noted that there are weak peaks related to NiO or
Ni(OH): in the XRD pattern. This is most likely because of the amorphous nature of resulting
NiO and Ni(OH). (Xia et al., 2016).

The de-convoluted C1s (29.30 At%), N1s (1.36 At%), O1s (50.40 At%), Fe2p (18.14 At%), Ni2p
(0.20 At%) and Pd3d (0.59 At%) XPS spectra of Pd@Ni@10-Chitosan are shown in Figure 3.8
(A-F). In Fe2p XPS spectrum (Figure 3.8D), characteristic peaks at 710.00 and 723 eV of Fe2p
3/2 and 1/2 of Fe* of y- Fe2Os3 and a- Fe2Os are seen with the satellites at 719.85 eV (Kong et
al., 2010). The Fe2p3/2 peak at 711.86 eV correspond to tetrahedral Fe** in Fe3O4 (Unsoy et al.,
2012). In Pd 3d deconvoluted XPS spectrum (Figure 3.8F) the signals with binding energy 334.94
and 340.34 eV were assigned to Pd(0), 336.81 eV and 341.61 eV were assigned to charged
metallic clusters. The signal at 337.79 eV can be attributed to PdO /Pd?" and 339.4 eV to the
interactions between Pd and Ni@10-Chitosan (Tsyrul et al., 2007). From the Ni 2p3/2 spectrum
(Figure 3.8E) it was observed that metallic character of Ni has increased after immobilization of
Pd while the NiO content decreased.
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Figure 3.8: C, N, O, Fe, Ni, Pd XPS spectra of PA@Ni@10-Chitosan
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The deconvoluted O1s XPS spectrum of PA@Ni@I1O-Chitosan depicted in Figure 3.8C exhibited
a peak at binding energy of 529.59 eV was assigned to Pd-O species and Pd-O-Fe interactions
while peak at binding energy 531.11 eV to C-O of chitosan and the peak at 532.47eV to OH
group (Shaw et al., 2017). Further, N1s deconvoluted peaks with binding energy 398.2 eV was
made to -NH2 or -NH of chitosan, 399.68 eV to C-N and 401.97 eV to NH>—Fe. (Figure 3.8B).
The C 1s spectrum exhibited binding energies at 284.8, 286.17 eV and 288.39 eV attributed to
C-C and C-H; C-NH and C-NH; (-C-OH) and C-O-C=0 groups respectively (Figure 3.8A).

3.3.1.7. XANES analysis

X-ray absorption near edge spectra (XANES) technique was used to study the oxidation states
of Fe and Ni further. (Figure 3.9)
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Figure 3.9: (A) Fe K edge XANES spectra of Pd@10-Chitosan, (B) Fe K edge XANES spectra
of PA@Ni@10-Chitosan, (C) Ni K edge XANES spectra of PA@Ni@10-Chitosan

The Fe K-edge XANES spectrum of Pd@10-Chitosan and Pd@Ni@10-Chitosan was matched
with the the reference FeO and Fe;Os spectrum (Figure 3.9(A&B)). It is clear from the figure
that the XANES spectrum of both the compounds did not match with the reference spectra.
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Further comparison with other iron oxides from literature was done. No exact correlation was
found due to the complex nature as seen by XRD, HRTEM, SAED and XPS studies. (Piquer et
al., 2014).

However, from literature it was inferred that a shoulder at ~7117 eV and a significant pre-edge
excitation peak at ~7113 eV confirmed the presence of maghemite as the predominant phase.
The hump at ~7139.3eV confirmed poorly ordered ferric compounds wherein the deposition of
Pd/PdO may cause the disturbance in the structure (Baumgartner et al., 2013). The intense band
at ~7133 eV can be assigned to the 1s—4p transition indicating the presence of maghemite(Hsu
etal., 2010). The presence of a non-stoichiometric phase of maghemite was indicated from these

observations.

The Ni K edge XANES spectra (Figure 3.9C), exhibited distinct absorption characteristics at
8351 eV resembling NiO (Mansour & Melendres, 1994) but with lower intensity due to presence
of Ni metal component. PA@Ni@10-Chitosan show particularly distinct peaks at 8334 eV and
8366 eV indicating the presence of Ni and NiO in PA@Ni@10-Chitosan

3.3.1.8. TG-DTA analysis

The thermal stability of 10-Chitosan, Pd@IO-Chitosan, Ni@IO-Chitosan and Pd@Ni@I10-
Chitosan were examined by TGA in the temperature range of 30 to 750 °C and are depicted in
Figure 3.10.

The first weight loss of around 13 % in the range of ~100-250 °C in 10-Chitosan (Figure 3.10
A) was assigned to deacetylation of chitosan and release of hydroxyl groups, while the second
weight loss of 12.4% (250 °C to 800 °C) may be attributed to degradation of chitosan as well as
stabilisation of alpha form of iron oxide.

The TG-DTA curve of Pd@IO-Chitosan (Figure 3.10B) exhibited first weight loss of 2.3% in
the temperature range of 30-150 °C, attributed to evaporation of adsorbed and bound water. In
the second stage, weight loss of 5.1% occurred as a result of the release of hydroxyl ions and the
breakage of the principal chains of chitosan at temperatures between 150 °C and 270 °C.
Decomposition of acetylated and deacetylated units as well as amine and —CH>OH group of
chitosan and oxidation of FesO4 to Fe2O3 may be responsible for the 5.6% weight loss in the
third stage in the temperature range of 270 °C to 480 °C. In the temperature range of 480°C to
800°C, the final weight loss of 1.6% was due to the degradation of glucopyranose residues of

chitosan (Parandhaman et al., 2017) as well as stabilisation of iron oxide in alpha form.
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The thermal stability of Ni@I10-Chitosan and PdA@Ni@10O-Chitosan were investigated by TGA
and are depicted in Figure 3.10(C and D) respectively in the temperature range 30 to 750 °C. The
thermograms of Ni@10O-Chitosan and Pd@Ni@10-Chitosan demonstrated 3 major weight loss
steps. The weight loss of ~12.4 % in the temperature range of ~150—400 °C in Ni@lO-Chitosan
may be attributed to degradation and deacetylation of Chitosan as well as release of hydroxyl
groups while the gradual weight loss of 14.3% in the second stage (400 °C to 750 °C) may be
attributed to final decomposition of chitosan as well as stabilisation of iron oxide in alpha form.
The thermogram of PA@Ni@10-Chitosan exhibited an initial weight loss of 1.5% up to 150°C
which was attributed to evaporation of both adsorbed and bound water. In the second stage,
release of hydroxyl ions and degradation of principle chains of chitosan resulted in a weight loss
of 9.0% in the temperature range 150 °C to 400 °C. The third stage weight loss of 2.3% in the
temperature range 400 °C to 750 °C may be attributed to degradation of glucopyranose residues

of chitosan as well as stabilisation of iron oxide in alpha form.
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Figure 3.10: (A) TG-DTA curve of 10-Chitosan, (B) TG-DTA curve of Pd@10O-Chitosan, (C)
TG-DTA curve of Ni@10-Chitosan, (D) TG-DTA curve of PdA@Ni@I1O-Chitosan
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3.3.1.9. VSM analysis

The superparamagnetic behaviour of 10-Chitosan, Pd@I1O-Chitosan, Ni@10-Chitosan and
Pd@Ni@I1O-Chitosan systems were validated by vibrating sample magnetometer (VSM)
analysis (Figure 3.11). Due to the small size of the particles and chitosan coating/support, or the
existence of a little amount of magnetic material per gram of sample, the Ms values were low
(Ahmadzadeh et al., 2018).

The saturation magnetization of 10-Chitosan was determined to be 52.91emu/g from the
magnetization curve in Figure 3.11. The magnetic response of the Pd@10-Chitosan catalyst was
reduced to 39.037emu/g attributed to the loading of palladium nanoparticles on the 10-Chitosan
surface. The saturation magnetization of Ni@I10O-Chitosan was observed to be 81.07 emul/g,
which was higher than 10-Chitosan due to presence of Ni species. Further, magnetic saturation
of PA@Ni@I10-Chitosan catalyst decreased to 74.38 emu/g.
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Figure 3.11: Overlay VSM spectra of 10-Chitosan, Pd@ 10-Chitosan, Ni@ 10-Chitosan and
Pd@Ni@IO-Chitosan

3.3.2. Catalytic performance of Pd@I10O-Chitosan and PA@Ni@ 1O-Chitosan

3.3.2.1. Catalytic reduction of p-NP in the presence of Pd@10-Chitosan and Pd@Ni@10-

Chitosan

Catalytic activity of the synthesized nanoacatalysts were evaluated by reduction of p-Nitrophenol
(p-NP) to p-Aminophenol (p-AP) by sodium borohydride in aqueous system at room temperature
(30-35 °C) (Figure 3.12). Solution of p-NP exhibits a strong UV absorption peak at 305 nm,
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which turns to dark yellow on addition of NaBH4and absorption peak red shifted to 402 nm due
to the formation of p-nitrophenolate under alkaline conditions (Figure 3.12 (A&C)) (Baran &
Nasrollahzadeh, 2019). The reaction was a thermodynamically feasible process and was
kinetically restricted in the absence of a catalyst (Liu et al., 2016).

Upon the addition of Pd catalyst to the reaction medium, the p-NP absorption peak at 402 nm
gradually decreased and completely disappeared after 10 mins with Pd@10-Chitosan and 8 mins
with PA@Ni@10-Chitosan. Further, a new absorption band was also observed at 300 nm. (Figure
3.12 (A&C)) At the end of the catalytic reduction, the deep yellow color of the solution changed
to colorless. Figure 3.12 (B&D) show the linear relations of In(At/Ao) and reaction time (t) in
the p-NP reduction. Pseudo-first-order rate was calculated by the equation: In(At/Ao) = —kt where
Ao and A: correspond to the p-NP initial concentration and that at selected reaction time (t),
respectively, and k(min™) is the reaction rate. The rate constant was determined as 0.3363 min™*
for Pd@10-Chitosan and 0.4095 min* for Pd@Ni@10-Chitosan.

Control experiment with Ni@10-Chitosan was performed indicated a slight decrease (0.08%) in
the concentration of p-NP due to reduction by Ni/NiO nanoparticles (Boonying et al., 2018; Xia
et al., 2016). No reduction was observed with 10-Chitosan (Figure 3.12F).

Recyclability potential of both the nanoacatalysts was investigated. The Pd@I10-Chitosan
catalyst could be readily recovered by a magnet after each catalytic cycle due to its
superparamagnetic nature , was dried in oven and used for the next run. Recyclability
experiments showed that Pd@I10-Chitosan has high recovery efficiency and can work up to
twenty-four cycles for p-NP reduction. Recyclability experiments with Pd@Ni@1O-Chitosan
showed higher recyclability of 27 cycles for p-NP reduction reaction than the Pd@10-Chitosan.
The time required for reduction increased to 14 min for 28 to 29 cycles and later increased to 20
minutes upto 31 cycles.

3.3.2.2. Application of the magnetic palladium catalyst Pd@ 10-Chitosan and PAd@Ni@10-

Chitosan in Suzuki—Miyaura Cross-Coupling Reactions.

The potential of the synthesised catalysts was further checked with Suzuki Miyaura C-C coupling
reaction. Carbon-carbon bond formation is one of the most important and fundamental reactions
for the preparation of molecular scaffolds in organic chemistry. To the best of our knowledge, it
is the first time that a Ni-Pd supported on magnetic chitosan is reported as catalyst for Suzuki

Miyaura reactions.
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In order to improve the yield of the reaction, the effect of different factors like base, solvent,

temperature, catalyst amount and time (Figure 3.13) were tested for the model reaction. The cross

coupling between iodobenzene and Phenyl boronic acid was selected as a model reaction.
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Figure 3.12: (A) p-Nitrophenol reduction catalysed by Pd@10-Chitosan, (B) Kinetic study of p-
NP reaction catalysed by Pd@IO-Chitosan, (C) p-Nitrophenol reduction catalysed by
Pd@Ni@IO-Chitosan, (D) Kinetic study of p-NP reaction catalysed by PA@Ni@IlO-Chitosan,
(E) p-Nitrophenol reduction catalysed by 10-Chitosan, (F) p-Nitrophenol reduction catalysed

by Ni@1O-Chitosan
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Initially, optimization studies were carried out in water. Different amounts of Phenylboronic
acid, ranging from 2.38 to 1.59 mmol. (i.e., 2-1 mol%) was reacted with 1.59 mmol lodobenzene.
Quantitative aryl halide conversion and formation of biphenyl was accomplished using 1.59
mmol phenylboronic acid (i.e.,1 mol%). Use of increased amounts of Phenylboronic acid, led to
the presence of unreacted boronic acid. Therefore 1 mol% of phenylboronic acid was used for

further studies.

A solvent plays crucial role in improving the rate of coupling reaction. The effect of solvents on
the Suzuki coupling reaction was investigated (Figure 3.13A). When water and water:alcohol
mixture was used as solvents, good yields of the desirable product was obtained while trace
amount of product was obtained in polar aprotic solvents like DMF & THF. Nevertheless, the
product yield was 60% with Pd@10-Chitosan and 5.6% with PA@Ni@10-Chitosan when the
reaction was done in less polar solvent (toluene). Therefore, water was determined to be the

most appropriate selection.

Subsequently the effect of temperature on the reaction yield was investigated. Reactions
conducted at room temperature (30 °C), 40°C, 60°C, 80°C and 100°C were most efficient in
water and gave 100% yield at all the temperatures (Table 3.1A and 3.1B, entry 1) studied. The
optimum reaction temperature for the catalytic conversion of lodobenzene and Phenyl
boronicacid was found to be at ambient temperature. When the temperature was raised to 100
°C, better catalytic performance with other aryl halides (Bromobenzene, Chlorobenzene and
substituted lodo benezene) were obtained (Table3.1A and 3.1B, entries 2-7).

Bases are known play a substantial role in coupling reactions; therefore, the reaction was
conducted with different inorganic and organic bases (Figure 3.13B). K2CO3 was observed to be
a suitable base for generating cross-coupling yield. Sodium hydroxide and potassium hydroxide
were not effective under the reaction conditions studied. Different amounts of K>COs ranging
from 5 to 0.1 equivalent were used in Suzuki coupling (Figure 3.13C). Complete conversion was
obtained even when 1 mol equivalent of KoCO3z with Pd@Ni@I10-Chitosan was used in the
reaction while Pd@I1O-Chitosan required 2 mol equivalent of base for the completion of reaction.
Reducing the K.COz amount to 1.5 equivalents decreased the yield of the product to ~24%.

Base free reaction in the presence of optimized catalyst and solvent did not yield any product
(Table 3.A13 entry 8). The role of the base in these reactions may be to facilitate the formation
of a more reactive boronate species or form a part of coordination sphere of Pd to facilitate
intramolecular transmetallation which otherwise is reported to be slow (Turkmen et al., 2009).
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Optimization of Solvent
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Figure 3.13: Optimization of Suzuki coupling reaction catalyzed by Pd@I10O-Chitosan and
Pd@Ni@I10O-Chitosan, ©

Optimizations of base amount, and (D) Optimizations of time for reaction between lodobenzene

(A)Optimizations of Solvent, (B) Optimizations of base,
and Phenyboronic acid in aqueous medium. Reaction condition: lodobenzene (1.59 mmol),
Phenylboronic acid (1.59 mmol), catalyst dose:1 mg, solvent (10 ml water), Base- K.COs (1
equi.), TLC (n-hexane), GC-MS (HPLC grade chloroform)

It was observed that quantitative yields were obtained with progressive decrease of catalyst
(Pd@10-Chitosan) loading from 0.275 mol% Pd to 0.00275% Pd (Table 3.A14, entries 1-8) in
12h at 100 °C with 1.59 mmol aryl halide. Monitoring of the reaction time indicated that the
reaction was completed in 6 h from the start of the reaction at both 35 °C and 100 °C (Table
3.A15, entries 1-11 and Figures 3.A20-3.A21). The optimized reaction conditions for Pd@I10-
Chitosan in water were determined as: iodobenzene,1.59 mmol; phenylboronic acid,1.59 mmol;
0.00275 mol% Pd present as PAd@10-Chitosan, KoCOgz, 2 mol equivalent; reaction time, 6h; water
10 mL.

The progress of coupling reaction was monitored by TLC and % conversion was detected using
GC-MS. The highest conversion of Suzuki coupling reaction using 1 mg of PA@Ni@IO-
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Chitosan obtained within 3h with 1.59 mmol of starting materials (Table 3.A16, Entry 34).
Suzuki coupling of 2.0 mmol lodobenzene and Phenylboronic acid with 1 mg catalyst (0.0095
mol% Pd) gave 99.9% yield at 100°C as well as at room temperature (Table 3.A16, entry 35).
On the other hand reaction performed with Ni@1O-Chitosan as catalyst did not yield any product
at 100 °C (Table 3.A16, entry 36). The optimized reaction conditions for PdA@Ni@10-Chitosan
in water were determined as: iodobenzene,2 mmol; phenylboronic acid,2 mmol; 0.0095 mol%
Pd present as Pd@Ni@10-Chitosan, KoCO3, 2 mmol; reaction time, 3h; water 10 mL.

The applicability of the catalyst under study was further investigated for wider scope of Suzuki
reactions. Different arylhalides incorporating electron-rich and electron-poor aromatic rings and
Phenylboronic acids were converted into the corresponding biphenyl derivatives using very low
amount of catalyst (1 mg), KoCO3 as base and water as solvent. This study revealed that
lodobenzene (Table3.1, entry 1) bromobenzene (Table 3.1, entry 6) had almost comparable
yields but bromobenzene took a little longer time (7 h for Pd@10O-Chitosan and 6 h for
Pd@Ni@10-Chitosan) for completion of reaction. However, Chlorobenzene (Table3.1, entry 7)
reacted slowly with phenylbronic acid (11 h for Pd@10-Chitosan and 7 h for PA@Ni@I10-
Chitosan).

Researchers have reported three fundamental steps for the Suzuki C-C coupling reaction:
oxidative addition, transmetalation, and reductive elimination as demonstrated in chapter 7
scheme 2. Oxidative addition is the rate-determining step in the Pd catalytic cycle and the relative

reactivity decreases in the order of 1> Br> Cl based mainly on the strength of the C-X bond.

Furthermore, the lodobenzene having electron-withdrawing group (-CHO) can efficiently couple
with phenylboronic acid in comparison to lodobenzene containing electron-donating group (-
CHa). The electron withdrawing group (-CHO) facilitated the rate limiting oxidative addition
step. On the other hand, the ortho-substituted iodobenzene gave slightly lower yields as
compared to para substituted. Considering the above discussed reaction protocols, this magnetic

catalyst was amenable to a wide range of aryl halides.
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Table 3.1: Suzuki Coupling Reaction catalysed by Pd@10-Chitosan at 30, 60 and 100 °C

Reaction condition For Pd@10-Chitosan: Aryl halide (1.59 mmol), phenylboronic acid (1.59 mmol), solvent
(10 mL), catalyst (1 mg, 0.005 mol%), base (2 equi.), TLC (9:1 n-hexane: ethyl acetate), GC-MS (HPLC grade

chloroform), Yields were obtained by GC-MS analysis

Reaction condition For PA@Ni@10-Chitosan: Aryl halide (2 mmol), phenylboronic acid (2 mmol), solvent (10
mL), catalyst (1 mg, 0.0095 mol%), base (1 equiv.), TLC (9:1 n-hexane: ethyl acetate), GC-MS (HPLC grade
chloroform), Yields were obtained by GC-MS analysis

X
S
/\/

R

B(OH),

X=1I, Br,Cl
R=H, CH; CHO

Pd@1O-Chitosan/

K,CO;

H,O ‘
e

Pd@Ni@IO-Chitosan AN
/

R=H, CH3 CHO

Sr. X |R

No.

1 I H

2 I p-CHs
3 I 0-CHs
4 I 0-CHO
5 I  p-CHO

At 30 °C

Pd@10-Chitosan/
Pd@Ni@I1O-Chitosan

Time

7h

5h

12 h

12h

12 h

12h

20 h

15h

12 h.

GC-MS Yield
(%)

99.99
100
1491
55.76
7.93
52.938
4.52
54.28

68.66

At 60°C

Pd@10-Chitosan/
Pd@Ni@I10O-Chitosan

Time GC-MS
Yield (%)
6 h 99.99
4h 100
12 h 58.4
10h 75.28
12 h 76.4
12h 73.061
15h 78.38
13h 89.697
12 h 93.2

At 100°C
Pd@10-Chitosan/
Pd@Ni@I1O-Chitosan

Time | GC-MS Isolated
Yield (%) | Yield (%)

6 h. 99.99 99
3h 100 99.99
8h 85.58 85.3
7h 98.96 98.4
9h 83.10 83.05
9h 92.10 91.8
12h 1 99.99 99
11h 100 99.99
11h  99.99 99
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12h 58.81 10h 96.87 8h 100 99.99
Br H 10 h 53.41 8h 99.5 7h 99.99 99
10h 57.98 8h 97.76 6h 100 99.99
Cl H 12 h 10.19 12 h 9241 11h  93.65 93.2
12h 2451 10h 90.98 7h 100 99.99

A hot filtration experiment was carried out to investigate the heterogenous nature of the catalyst
and to obtain information about the presence of leached metal species in our reaction (Figure
3.A51). Under optimized conditions using model coupling reaction between the lodobenzene
and phenylboronic acid, after 2 h the catalyst (Pd@Ni@I1O-Chitosan) was separated and the
reaction was then continued further for 10 h after catalyst removal. Products were isolated and
analyzed with GC-MS. There was no further conversion of the desired product after magnetic
removal of the catalyst is detected, ascertaining the heterogeneous nature of the catalyst under

study.

3.3.2.3. Recyclability of catalyst

The recyclability and reusability of Pd@10-Chitosan as catalyst in successive reactions was
studied as it is an important requisite from economic, environmental and industrial point of view.
The recycling of the catalyst was investigated under optimized reaction conditions using a
reaction between Iodobenzene and Phenylboronic acid at 100°C. The catalyst was magnetically
separated, washed with water and subsequently with acetone, dried in oven at 100 °C and
employed for another round of reactions. Recycled catalysts were characterized by IR, VSM,
SEM, TGA and XPS techniques and Pd leaching was tested by ICP-MS.

Pd@10O-Chitosan maintained its activity upto 12 cycles. A 3% decrease in yield was observed
during the 13th cycle (Figures 3.A52) and the catalyst (Pd@Ni@I1O-Chitosan) proved to be
readily recyclable and no significant loss of catalytic activity is observed upto 17 cycles. Also
no significant loss of palladium was observed from ICP-MS (Figure 3.17F). A 2.71% decrease

in yield was observed during the 18th cycle (Figure 3.A53).

SEM images of Pd@10-Chitosan revealed negligible change in morphology up to 4 cycles
(Figure 3.14C). The SEM images of subsequent cycles exhibited a more porous morphology
which could be due to gradual breakdown of chitosan chains.
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Figure 3.14: SEM Images of recycled catalyst (Pd@10-Chitosan)
SEM images of Recycled PdA@Ni@I0-chitosan (Figure 3.15) catalyst after 17" cycle showed

aggregation of nanoparticles.
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Figure 3.15: SEM Images of recycled catalyst (Pd@Ni@1O-Chitosan)

Superparamagnetic property of Pd@10-Chitosan (Figure 3.16A) was retained even after the 10th
cycle. Though the magnetic response decreased to 14 emu/g, the catalyst could be still be easily

separated by a handheld magnet and could be uniformly dispersed in reaction system again after
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the magnetic separation due to its superparamagnetism. VSM analysis of recycled PA@Ni@10-

Chitosan catalyst (Figure 3.16B) revealed super paramagnetic response of the recycled catalyst

was decreased to 49.49 emu/g from 74.38 emu/g.
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Figure 3.16: (A) VSM spectra of recycled catalyst (Pd@10-Chitosan), (B) VSM spectra of
recycled catalyst (Pd@Ni@I10O-Chitosan)

The thermogram obtained during thermogravimetric analysis of Pd@IO-Chitosan and
Pd@Ni@I10O-Chitosan (Figure 3.17) showed 3 stages of weight loss. A total weight loss of about
25% was observed as compared to 25% and 15% in 10-Chitosan and Pd@IO-Chitosan
respectively, suggesting loss in thermal stability (Figure 3.17A). While the TG-DTA analysis of
fresh and recycled catalyst (Pd@Ni@10-Chitosan) of 17" cycle ((Figure 3.17B) revealed a total
weight loss of 12.8% in and 60.93% respectively in the temperature range of ~30-750 °C.
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Figure 3.17: (A) TG-DTA Curve of recycled catalyst (Pd@I10-Chitosan), (B) TG-DTA Curve of
recycled catalyst (Pd@Ni@10-Chitosan)
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The recycled catalyst (Pd@10-Chitosan) after the 10th run was further investigated by XPS. The
Fe and Pd spectra (Figure 3.18(A & B)) exhibited the same characteristic peaks as observed in
the fresh catalyst. There was 8% decrease in Fe content and 0.02% decrease in Pd content. There
was 3% decrease in nitrogen and 11% increase in C content suggesting a disruption of the
chitosan backbone and poisoning of the catalyst with reactants (Figure 3.18 (C&D)). Detailed
XPS assignment of the fresh and recycled catalysts is given in Tables 3.A1-3.A5.

) Pd@I10-Chitosan (R10): Fe XPS A Pd@10-Chitosan (R10): Pd XPS

"y Pd 3d

23z
£ 2]
28]
326
224
22
220
T T T T T T T ! !
735 T30 725 720 Ti5 710 TO5 248 343 235
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N1s  401.08 4.66 50688.31  4.03 20] ©1s 529.00 4.50 32698.80 43.50
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Figure 3.18: (A&B) Fe and Pd XPS spectra of recycled catalyst after 10" cycle, (C&D) Survey

spectrum of fresh and recycled catalyst

The recycled catalyst Pd@Ni@10-Chitosan (after the 17" run) was further investigated by XPS
(Figure 3.19). The Fe, Ni and Pd spectra (Figure 3.19 (C-E)) exhibited the same characteristic
peaks as observed in the fresh catalyst. There was 7.92% decrease in Fe content, 1.29% decrease
in nitrogen, 0.01% decrease in Pd, 0.07% decrease in Ni, 4% decrease in O. There was 22%
increase in C content suggesting a poisoning of the catalyst with reactants. Detailed XPS
assignment of the fresh and recycled catalyst are given in Tables (3.A6-3.A11)
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Figure 3.19:(A) XPS survey spectrum of Fresh catalyst (B) XPS survey spectrum of Recycled
catalyst (C) Fe2p XPS spectra of Recycled catalyst (D) Ni2p XPS spectra of Recycled catalyst
(E) Pd3d XPS spectra of Recycled catalyst

3.4. Conclusions

In conclusion, we have fabricated a novel catalytic system comprising Pd nanoparticles
supported on Chitosan stabilized Iron oxide nanoparticles (Pd@10- Chitosan) and Ni dopped
Chitosan stabilized Iron oxide nanoparticles (Pd@Ni@10-Chitosan) at room temperature in

aqueous medium without using reducing agent.

Characterization studies of Pd@IO-Chitosan revealed that Pd, Pd?" and PdO dispersed on 10-
Chitosan. While characterisation of Pd@Ni@I10O-Chitosan confirmed the presence of well
dispersed Pd, Pd?*, PdO, Ni, NiO and Ni(OH). on support. Both the catalyst showed the excellent
catalytic activity for Suzuki coupling reaction and p-Nitrophenol reduction with very high

recoverability.

Superparamagnetic property of 10-Chitosan (52.91 emu/g) has increased after loading of Nickel
on 10-Chitosan (Ni@I10O-Chitosan) (81.07 g/emu). Because of that Pd@Ni@10-Chitosan (74.38
emu/g) catalyst separation become faster and easier than the Pd@10-Chitosan (39.037 emu/qg).
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Therefore, recyclability of the catalyst had increased and PA@Ni@10-Chitosan can be reuse for
31 times in p-NP reduction and 17 times in Suzuki coupling reaction. While Pd@10O-DTPA can
be reuse upto 24 times in p-NP reduction and 12 times for Suzuki coupling reaction.

Furthermore, combining non noble metal Ni with noble metal Pd can affect the electronic
structure of Pd by the electron transfer which can disturb the highest occupied and lowest
unoccupied molecular orbitals of Pd and this further reduces the activation energies. So,
fabrication of PA@Ni@IO-DTPA catalyst is potential strategy to enhance the catalytic activity

and reusability.
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Appendix
XPS data of Pd@IO-chitosan
Table 3.A1: XPS Spectral assignment of Carbon
ReElement I0-Chitosan Fresh Recycled(10) Assignment
Pd@IO-chitosan Pd@IO-chitosan
Binding | Area% Binding Area% Binding Area%
energy energy energy
(eV) (eV) (eV)
Cls 284.8 16.88 284.8 39.06 284.76 59.23 C-C/C-H
Cls 286.69 20.20 286.32 27.40 285.95 C-O-C, C-OH, C-
O, C-NH2
Cls 287.07 8.94 C=0
Cls 288.73 40.21 288.01 23.68 288.54 6.88 0-C-0, O-C=0
Cls 290.99 22.72 289.57 9.87 N-C=0
Table 3.A2: XPS Spectral assignment of Nitrogen
Re 10-Chitosan Fresh Recycled(10) Assignment
Element Pd@IO-chitosan Pd@IO-chitosan
Binding Area% Binding Area% Binding Area%
energy energy energy
(eV) (eV) (eV)
Nls 399.47 38.95 399.81 38.45 399.2 33.43 O=C-NH
Nls 401.52 6.63 400.54 54.97 400.6 65.75 C-N
Nls 402.75 38.95 402.21 38.45 402.77 0.82 NH2-Fe
Table 3.A3: XPS Spectral assignment of Oxygen
ReElement 10-Chitosan Fresh Recycled(10) Assignment
Pd@IO-chitosan Pd@IO-chitosan
Binding | Area% | Binding | Area% Binding Area%
energy energy energy
(eV) (eV) (eV)
O1s 528.14 | 14.28 Surface
oxygen
Ols 529.60 | 17.91 530.32 39.21 529.99 57.53 Bulk Fe-O, Pd-O
Ols 53149 | 38.60 531.77 40.00 531.82 28.44 N-C=0
O1ls 533.25 | 29.21 533.24 20.79 533.17 14.03 C-OH, C-0-C
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Table 3.A4: XPS Spectral assignment of Iron

ReElement I0-Chitosan Fresh Recycled(10) Assignment
Pd@IO-chitosan Pd@IO-chitosan
Binding | Area% | Binding | Area% | Binding Area%
Energy Energy Energy
(eV) (eV) (eV)
Fe2p3/2 71090 | 14.10 710.92 27.78 709.77 9.58 Fe*
711.28 5.58
Fe2p3/2 713.29 | 21.27 712.60 14.02 713.12 3.18 Fe3+
Fe2p3/2 715.17 | 13.90 714.32 11.27 Satellite
Fe2p3/2 717.46 7.61 717.05 4.88 Satellite
Fe2p3/2 720.80 | 10.13 719.89 8.09 718.47 51.04 Satellite
Fe2pl/2 723.17 4.79
Fe2pl/2 723.90 7.05 723.92 13.89 724.86 2.79
Fe2pl/2 726.29 | 10.64 725.60 7.01 726.59 1.59
Fe2pl/2 728.17 6.95 727.32 5.64
Fe2pl/2 730.46 3.80 729.61 3.58 Satellite
Fe2pl/2 734.11 4.55 733.48 3.84 732.14 21.45 Satellite
Table 3.A5: XPS Spectral assignment of Palladium
Element Fresh Recycled(10) Assignment
Pd@IO-chitosan Pd@IO-chitosan
Binding Area% Binding Area%
Energy (eV) Energy (eV)
Pd3d5/2 336.73 9.02 336.70 16.20 Charged Pd metallic nanoclusters
337.70 33.17 Pd-O
2+
Pd3d5/2 338.44 32.40 338.64 10.63 PdO, Pd
Pd3ds/2 339.43 20.67 Strong Pd —1O chitosan interactions
Pd3d3/2 341.73 6.01 341.04 10.80
Pd3d3/2 343.64 20.36 342.14 22.11
Pd3d3/2 344.62 11.53 343.09 7.09
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XPS data of Pd@Ni@IO-chitosan
Table 3.A6: XPS Spectral assignment of Carbon
Element | Ni@lO-Chitosan Pd@Ni@I10- Pd@Ni@I10O- Interpretation
Chitosan Chitosan (r10)
Cls Peak Area% Peak Area% Peak Area%
Cls 284.80 55.11 284.79 60.39 284.80 43.36 C-C/C-H
Cls 285.49 26.78 286.17 24.24 285.60 33.84 C-0-C, C-OH, C-O, C-
NH2
Cls 286.67 11.02 287.15 11.37 286.79 13.85 C=0
Cls 288.47 7.09 288.39 4.00 288.27 8.95 0-C-0, 0O-C=0
Table 3.A7: XPS Spectral assignment of Nitrogen
Element | Ni@10-Chitosan Pd@Ni@IO- Pd@Ni@lO- Interpretation
Chitosan Chitosan (r10)
N1s Peak Area% Peak Area% Peak Area%
N1s 399.29 54.33 398.20 24.95 398.24 21.29 0O=C-NH
N1s 400.24 35.74 399.68 52.09 400.14 17.82 C-N
N1s 401.82 9.93 401.97 22.96 402.82 60.89 NH2-Fe
Table 3.A8: XPS Spectral assignment of Oxygen
Element | Ni@IlO-Chitosan Pd@Ni@IO- Pd@Ni@IO- Interpretation
Chitosan Chitosan (r10)
O1s Peak Area% Peak Area% Peak Area%
O1s 529.70 55.36 529.59 55.95 529.60 19.72 Bulk Fe-O, Pd-O
O 1s 530.80 23.21 531.11 25.27 531.24 52.11 N-C=0
O 1s 532.38 21.43 532.47 18.78 532.85 28.18 C-OH, C-0-C
Table 3.A9: XPS Spectral assignment of iron
Element | Ni@lO-Chitosan Pd@Ni@IO- Pd@Ni@IO- Interpretation
Chitosan Chitosan (r10)
Peak | Area% Peak Area%o Peak Area%
Fe2p3/2 | 710.16 | 33.00 710.00 25.91 710.25 16.53 Fe®* octahedral
Fe2p3/2 | 711.97 19.00 711.86 14.55 712.12 22.98 Fe3* octahedral
Fe2p3/2 | 714.13 5.10 713.48 10.00 714.93 5.00 Fe®* Tetrahedral
Fe2p3/2 | 716.99 4.01 716.99 7.32 717.88 2.87 Fe?* octahedral
Fe2p3/2 | 719.19 | 4.35 719.85 6.49 720.33 3.61 Satellite peak of Fe** 2p3/2
Fe2pl/2 | 723.26 16.50 723.00 12.95 723.35 15.97 Fe®* octahedral
Fe2pl/2 | 725.07 9.50 724.86 7.27 725.25 22.20 Fe®* octahedral
Fe2pl/2 | 727.23 2.55 726.48 5.00 728.03 4.83 Fe®* Tetrahedral
Fe2pl/2 | 730.09 | 201 728.54 3.16 730.98 2.65 Fe?* octahedral 2p3/2
Fe2pl1/2 | 733.60 3.98 732.61 7.34 733.43 3.48 Satellite peak of Fe3* 2p3/2
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Table 3.A10: XPS Spectral assignment of Nickel
Elememt | Ni@1O-Chitosan Pd@Ni@I10O- Pd@Ni@I0O- Interpretation
Chitosan Chitosan (r10)
Peak | Area% Peak Area% Peak Area%
Ni2p3/2 | 852.58 1.18 852.18 3.87 852.60 4,92 Ni metal
Ni2p3/2 | 854.35 10.22 854.62 20.68 853.76 7.54 NiO
Ni2p3/2 | 855.29 25.16 855.99 7.57 855.42 30.02
Ni2p3/2 | 857.33 9.77 857.23 3.55 857.73 3.65
Ni2p3/2 | 858.90 7.85 859.94 8.39 860.54 15.07 Ni(OH):
Ni2p3/2 | 860.77 11.77 861.00 6.48 861.73 12.03 satellite (Ni metal)
Ni2p3/2 | 862.38 | 20.13 862.36 17.93 862.69 4.66 satellite (higher oxidation
state of Ni
Ni2p3/2 | 864.47 4.45 863.74 14.99 864.52 5.68 satellite
Ni2p3/2 864.86 8.12 865.45 9.65
Ni2p3/2 | 866.54 9.48 866.64 8.42 866.91 6.78 satellite (NiO)
Table 3.A11: XPS Spectral assignment of Palladium
Pd@Ni@I10O-Chitosan Pd@Ni@10-Chitosan (r10) Interpretation
Peak Area% Peak Area%o
Pd3d5/2 334.94 21.09 335.14 7.3 Pd (0)
Pd3d5/2 336.81 19.39 336.88 51.51 Pd (2+)
Pd3d5/2 337.79 19.52 338.67 25.75 PdO
Pd3d3/2 340.34 14.06 340.40 4.87 Pd (0)
Pd3d3/2 342.61 12.93 342.38 5.35 Pd (2+)
Pd3d3/2 343.39 13.01 343.93 5.22 PdO
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GC —-MS Spectra of standard Biphenyl
== TG
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Figure 3.A1 GC —MS Spectra of standard Biphenyl; RT: 9.49 min Molecular weight: 154.18

gm/mol
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Figure 3.A2 GC —MS Spectra of lodobenzene; RT: 6.02 min Molecular weight: 204.01

gm/mol

GC-MS spectra of optimization of Suzuki coupling reaction using Pd@10-Chitosan

GC MS spectra during screening of solvent for the reaction between lodobenzene and

phenylboronic acid (Figures 3.A3-12)

Polar aprotic and alcoholic solvent was not showing a good yield. However, alcoholic solvents
with water showing a good quantitative yield. It was observed that reaction in water as a solvent
leading to quantitative yield (>99%) of biphenyl after 6 h. Ethanol and isopropanol as co-solvents

with water in the ratio 9:1, 7:3, 1:1, 3:7 respectively also gave quantitative yield of biphenyl.
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Table 3.A12 Optimization of solvent and temperature
Entry | Catalyst Solvent Base Temp | Time | GC-MS
[mg(mol%)] °C (h) Yield

1. |1 Ethanol K2COs3 (2 equiv.) 60 12 0%
2. |1 Isopropanol K2COs (2 equiv.) 60 12 0%
3. |1 Toluene K2COs (2 equiv.) 60 12 60%
4, |1 Toluene K2COs (2 equiv.) 35 12 0%
5 |1 DMF K2COs (2 equiv.) 60 12 0%
6. |1 THF K2COs (2 equiv.) 60 12 0%
7. |1 Ethanol:water(9:1) K2COs (2 equiv.) 60 12 >99%
8. |1 Ethanol:water(7:3) K2COs (2 equiv.) 60 12 >99%
9. |1 Ethanol:water(1:1) K2COs (2 equiv.) 60 12 >99%
10. |1 Ethanol:water(3:7) K2COs (2 equiv.) 60 12 >99%
11.]1 Ethanol:water(9:1) K2COs (2 equiv.) 35 12 26.28%
12.]1 Ethanol:water(7:3) K2COs (2 equiv.) 35 12 86.11%
13.]1 Ethanol:water(1:1) K2COs (2 equiv.) 35 12 >99%
14. 11 Isopropanol: water (1:1) K2COs (2 equiv.) 60 12 >99%
15.]1 Isopropanol: water (7:3) K2COs (2 equiv.) 60 12 >99%
16. |1 Isopropanol: water (1:1) K2COs (2 equiv.) 35 12 >99%
17.]1 Water K2COs (2 equiv.) 100 12 >99%
18.]1 Water K2CO3 (2 equiv.) 100 6 >99%
19.]1 Water K2CO3 (2 equiv.) 75 6 >99%
20. |1 Water K2COs (2 equiv.) 60 6 >99%
21. |1 Water K2CO3 (2 equiv.) 50 6 >99%
22. 11 Water K2COs (2 equiv.) 35 6 >99%

Reaction conditions: lodobenzene (1.59 mmol), phenylboronic acid (1.59 mmol), solvent (10
ml), catalyst (1 mg), base (2 equiv.), TLC (n-hexane), GC-MS (HPLC grade chloroform), Yields
were obtained by GC-MS analysis (Figs. S7 to S16 show the representative GC MS spectra of

standard biphenyl and products obtained in respective solvents)

Toluene (Figure 3.A3)

At 35°C
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Figure 3.A4: THF Figure 3.A5: Ethanol
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Figure 3.A6: Isopropropanol
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It was observed that as the amount of water increases formation of biphenyl increases Figure
3.A7-3.A9. In the absence of water negligible amount of yield was obtained. Temperature also

played an important role, as the temperature increases selectively biphenyl is formed.

Figure 3.A7: EtOH: H20 (9:1)
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Figure 3.A8: EtOH: H20 (7:3)

Pd/Ni-Pd NPs Stabilized on 10 NPs Capped with Chitosan
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Figure 3.A9: EtOH: H20 (5:5)

At 35°C
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Figure 3.A10: EtOH: H20 (3:7)
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Figure 3.Al11: Isopropanol:Water (6:4)
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Reaction in absence of iodobenzene

Recycling of catalyst was carried out using Phenyl boronic acid (1.59 mmol), K.COs (3.18
mmol), Pd@10-chitosan (1 mg) and H20 (10 ml) at 60°C and at 35°C under stirring for 6 h.
Figure 3.A13 show that homocoupling of phenylboronic acid was not observed which is reported

to be a dominant reaction, which gradually subsides as the temperature rises.
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Figure 3.A13: GC-MS spectra of the product for Pd@IO-Chitosan catalysed reaction in

absence of iodobenzene performed at 60 °C and at 35 °C

GC MS spectra during screening of base for the reaction between iodo benzene and
phenylboronic acid (Figures 3.A14 to 3.A18)

Screening of bases such as KoCOs, Na,COsz, NaOH, KOH and EtsN was performed and it

revealed that highest yield could be obtained by the use of 2 equiv. K.CO3z and Na,COz as base.

Table 3.A13: Optimization of Base

Entry | Catalyst [mg(mol%)] | Solvent Base Temp Time | GC-MS

°C (h) Yield

1. |1 Water K2CO3 (2 equiv.) 100 6 >99%

2. |1 Water Na>COz (2 equiv.) 100 6 98.5%

3. |1 Water KOH (2 equiv.) 100 6 15.6%

4. 11 Water NaOH (2 equiv.) 100 6 2.6%

5 |1 Water EtaN (2 equiv.) 100 6 0%

6. |1 Water K2CO3 (1.5 equiv.) 35 6.5 24.5%

7. |1 Water K2CO3 (1 equiv.) 35 6.5 0%

8. |1 Water No base 100 12 0%
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Figure 3.A14: KOH

Pd/Ni-Pd NPs Stabilized on 10 NPs Capped with Chitosan

Figure 3.A15 NaOH
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Optimization of amount of catalyst.

It was observed that coupling of 1.59 mmol lodobenzene and 1.59 mmol Phenylboronic acid

gave same results at 100 to 35 °C (i.e, Room temperature) with 1 mg of Catalyst. Reaction with

2 mmol lodobenzene and Phenylboronic acid requires more catalyst for the completion of the
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reaction at room temperature but 1 mg catalyst is enough for the reaction at 100 °C and gave

99% yield.
Table 3.A14: Optimization of amount of catalyst
Entry Catalyst [mg(mol%)] Solvent Base Temp | Time GC-MS

(°C) (h) Yield

1. 50 (0.27 mol% Pd) Water K2COs (5 equiv.) 100 12 >99%

2. 25 (0.13 mol% Pd) Water K2COs (5 equiv.) 100 12 >99%

3. 10 (0.05 mol% Pd) Water K2COs (5 equiv.) 100 12 >99%

4. 5 (0.027 mol% Pd) Water K2COs (5 equiv.) 100 12 >99%

5. 2 (0.01 mol% Pd) Water K2CO3 (5 equiv.) 100 12 >99%

6. 1 (0.0055 mol% Pd) Water K2CO3 (5 equiv.) 100 12 >99%

7. 0.5 (0.00275 mol% Pd) Water K2COs (5 equiv.) 100 12 >99%

8. 0.5 (0.00275 mol% Pd) Water K2COs (2 equiv.) 100 12 >99%

(N2 atmosphere)

9. 1 mg 10-Chitosan Water K2COs (2 equiv.) 100 12 0%

10. 1 mg PdClI> Water K2COs (2 equiv.) 100 12 >99%

11. 1 mg PdCl> Water K2CO3 (2 equiv.) 35 12 >99%

12. No Catalyst Water K2COs (2 equiv.) 100 12 0%

Reaction conditions: lodobenzene (1.59 mmol), phenylboronic acid (1.59 mmol), solvent (10
ml), temperature (100 C), reaction time (12h), TLC (n-hexane), GC-MS (HPLC grade
chloroform), Yields were obtained by GC-MS analysis

Reaction with 2 mmol Starting material and 1 mg catalyst at 100 °C (Figure 3.A19)
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Time study of Pd@IO-Chitosan catalysed reaction between iodobenzene and phenyl boronic

acid performed at 35°C and at 100 °C. It was observed that reaction takes 6 hours for completion
(Figures 3.A20-21)

Table 3.A15: Optimization of Time for C-C Coupling

Entry Catalyst [mg(mol%)] | Solvent | Base Temp Time | GC-MS
(°C) (h) Yield

1. 1 Water K2COs (2 equiv.) 100 7 >99%
2. 1 Water K2COs3 (2 equiv.) 100 6 >99%
3. 1 Water K2CO3 (2 equiv.) 100 5 96.51%
4. 1 Water K2COs (2 equiv.) 100 4 49.45%
5. 1 Water K2COs (2 equiv.) 100 1 0%
6. 1 Water K2CO3 (2 equiv.) 35 6 >99%
7. 1 Water K2CO3 (2 equiv.) 35 5 89%
8. 1 Water K2COs3 (2 equiv.) 35 4 47%
9. 1 Water K2CO3 (2 equiv.) 35 3 0%
10. |1 Water K2COs3 (2 equiv.) 35 2 0%
11. |1 Water K2COs3 (2 equiv.) 35 1 0%

Reaction conditions: lodobenzene (1.59 mmol), phenylboronic acid (1.59 mmol), solvent (10
mL), temperature (100°C& RT), TLC (n-hexane), GC-MS (HPLC grade chloroform), Yields
were obtained by GC-MS analysis

Time study
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Figure 3.A21: GC-MS spectra of the product for PAd@10-Chitosan catalysed reaction between

iodobenzene and phenyl boronic acid performed at 100 °C in the time range 1 to 6 hours

GC-MS spectra of the product for Pd@IO-Chitosan catalysed reaction between 2-

methyliodobenzene and phenyl boronic acid performed at 100 °C for 15 hours.
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Figure 3.A22: GC-MS spectra of the(2-methyl-1,1’-Biphenyl) at 100°C for 15 h
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GC-MS spectra of the product for Pd@IO-Chitosan catalysed reaction between 4-

methyliodobenzene and phenyl boronic acid performed at 100 °C for 15 hours
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Figure 3.A23: GC-MS spectra of the (4-methyl-1,1’-Biphenyl) at 100°C for 15 h

113




Chapter 3 Pd/Ni-Pd NPs Stabilized on 10 NPs Capped with Chitosan

GC-MS spectra of optimization of Suzuki coupling reaction using PA@Ni@1O-Chitosan

Table 3.A16: Optimization of Suzuki coupling reaction

Sr. Catalyst (mg) Solvent Base Temp Time

No. (

Optimization of Solvent

°C)

1. 1 Ethanol K2COs (2 equi.) 80
2. 1 Isopropanol K2CO3 (2 equi.) 80
3. 1 DMF KoCOs (2equi) 100
4, 1 THF K2COs (2 equi.) 80
5. 1 Toluene K2CO3 (2 equi.) 100
6. 1 Ethanol: Water (3:7) K2COs (2 equi.) 80
7. 1 Ethanol: Water (1:1) K2CO3 (2 equi.) 80
8. 1 Isopropanol: Water (3:7) K2COs (2 equi.) 80
9. 1 Isopropanol: Water (1:1) K2CO3 (2 equi.) 80
10. 1 Water K2CO3 (2 equi.) 80
Optimization of temperature
11. 1 Water K2COs (2 equi.) 100
12. 1 Water K2COs (2 equi.) 80
13. 1 Water K2CO3 (2 equi.) 60
14. 1 Water K2CO3 (2 equi.) 40
15. 1 Water K2CO3 (2 equi.) 30
Optimization of Base
16. 1 Water K2CO3 (2 equi.) 30
17. 1 Water Na,COs (2 equi.) 30
18. 1 Water KOH (2 equi.) 30
19. 1 Water NaOH (2 equi.) 30

(h)

12
12
12
12
12
12
12
12
12

12

12
12
12
12

12

12
12
12

12

GC-MS
Yield

43.19
20.30
trace
trace
5.61
68.69
69.50
98.43
92.54

100

100
100
100
100

100

100

100
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20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

1 Water TEA (2 equi.) 30 12 0

Optimization of amount of base

1 Water K>CO3 (5 equi.) 30 12 100
1 Water K2COs (2 equi.) 30 12 100
1 Water K2CO3 (1 equi.) 30 12 100
1 Water K2COs (0.75 equi.) 30 12 95.12
1 Water K2COs (0.5 equi.) 30 12 75.42

Optimization of Time

1 Water K2COs (1 equi.) 30 12 100
1 Water K2CO3 (1 equi.) 30 10 100
1 Water K2COs (1 equi.) 30 8 100
1 Water K2CO3 (1 equi.) 30 6 100
1 Water K2COs (1 equi.) 30 4 100
1 Water K2COs (1 equi.) 30 3 100
1 Water K2COs (1 equi.) 30 2 45.48
1 Water K2COs (1 equi.) 30 1 22.49

Optimization of amount of catalyst

1 mg (0.012 mol%) Water K2COs (2 equi.) 30 4 100

(with 1.59 mmol
starting material

1 mg (with 2 mmol Water K2COs (2 equi.) 30 4 100
starting material)
1 mg Ni@I10- Water K2CO3 (2 equi.) 100 12 0
Chitosan
No catalyst Water K2CO3 (2 equi.) 100 12 0

Reaction conditions: lodobenzene (2 mmol), phenylboronic acid (2 mmol), solvent (10 ml),
catalyst (1 mg), base (1 equiv.), TLC (n-hexane), GC-MS (HPLC grade chloroform), Yields were
obtained by GC-MS analysis
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GC MS spectra during screening of solvent for the reaction between lodobenzene and

phenylboronic acid (Figures 3.A24)
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Figure 3.A24: GC-MS spectra of the product for Pd@Ni@IlO-Chitosan catalysed reaction
between iodobenzene and phenylboronic acid performed using K.COs as a base at 100°C and
at 80°C
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GC MS spectra during Optimization of temperature for the reaction between lodobenzene

and phenylboronic acid (Figure 3.A25)
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Figure 3.A25: GC-MS spectra of the product for PA@Ni@10-Chitosan catalysed reaction
between iodobenzene and phenylboronic acid performed using K.COs as a base and water as a
solvent at 100°C and at 30°C
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GC MS spectra during Optimization of Base for the reaction between lodobenzene and
phenylboronic acid (Figures 3.A26) Screening of bases such as K.CO3, Na,CO3, NaOH, KOH
and EtsN was performed and it revealed that highest yield could be obtained by the use of 2
equiv. K2CO3 and Na,COs as base.
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Figure 3.A26: GC-MS spectra of the product for PA@Ni@IO-Chitosan catalysed reaction
between iodobenzene and phenylboronic acid performed in water at 30 °C.

118




Chapter 3

Pd/Ni-Pd NPs Stabilized on 10 NPs Capped with Chitosan

GC MS spectra during Optimization of Base amount for the reaction between lodobenzene

and phenylboronic acid (Figures 3.A27)
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Figure 3.A27: GC-MS spectra of the product for Pd@Ni@10O-Chitosan catalysed reaction

between iodobenzene and phenylboronic acid performed using K>CO3 as a base water as a

solvent at 30 °C.
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GC MS spectra during Optimization of Time for the reaction between lodobenzene and

phenylboronic acid (Figures 3.A28)
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Figure 3.A28: GC-MS spectra of the product for PA@Ni@IO-Chitosan catalysed reaction

between iodobenzene and phenyl boronic acid performed at 35 °C in the time range 1 to 4 hours
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Optimization of amount of catalyst.

It was observed that coupling of 2 mmol lodobenzene and 2 mmol Phenylboronic acid using 1
equivalent KoCOs gave same results at 100 to 30 °C (i.e, Room temperature) with 1 mg of
Catalyst. (Figure 3.A29)
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Figure 3.A29: GC-MS spectra of the product for Pd@Ni@10-Chitosan catalysed reaction
between 2 mmol iodobenzene and phenyl boronic acid performed in water using K.COs as a
Base at 30 °C

121




Chapter 3

Pd/Ni-Pd NPs Stabilized on 10 NPs Capped with Chitosan

GC-Ms and NMR spectra of biphenyl derivatives
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Figure 3.A30: GC-Ms spectra of crude product (Biphenyl) synthesized From lodobenzene at

RT, 60°C and 100 °C
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Figure 3.A31 GC-Ms spectra of crude product (Biphenyl) synthesized From lodobenzene at
RT, 60°C and 100 °C
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Figure 3.A32: NMR spectra of column purified (Biphenyl) synthesized From lodobenzene
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Figure 3.A33: GC-Ms spectra of crude product (4-methyl-7,1-Biphenyl) synthesized at RT,
60°C and 100 °C
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Figure 3.A34 GC-Ms spectra of crude product (4-methyl-1,1°-Biphenyl) synthesized at RT,
60°C and 100 °C
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: NMR spectra of column purified (4-methyl-1, 1 -Biphenyl)
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Figure 3.A36: GC-Ms spectra of crude product (2-methyl-17,1-Biphenyl) synthesized at RT,
60°C and 100 °C
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Figure 3.A37 GC-Ms spectra of crude product (2-methyl-1,1’-Biphenyl) synthesized at RT,

60°C and 100 °C
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Figure 3.A38: NMR spectra of column purified (2-methyl-1,1’-Biphenyl)
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Figure 3.A39: GC-MS spectra of crude product ([1,1'-biphenyl]-2-carbaldehyde) synthesized
at RT, 60°C and 100 °C
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Figure 3.A40: GC-MS spectra of crude product ([1,1'-biphenyl]-2-carbaldehyde) synthesized
at RT, 60°C and 100 °C
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Figure 3.A41: NMR spectra of column purified ([1,1'-biphenyl]-2-carbaldehyde)

129




Chapter 3 Pd/Ni-Pd NPs Stabilized on 10 NPs Capped with Chitosan

5.

B(OH),
Pd@I10-Chitosan/
Pd@Ni@IO-Chitosan
J: J K2C03
OHC H,0 OHC
4-jodobenzaldehyde ~ Phenylboronic acid [1,1'-biphenyl]-4-carbaldehyde

M.P. 60 °C
Molecular weight: 182.2 gm/mol
Pd@I10-Chitosan

RT: 2.99-15.37 <o FCP 2754401 RT: 1227 AV: 1 NL: 23668
RT:13.02 7.+ Fulms [5000-650.00]
AAI5616737 18106
AH: 1784791 109
8P:182.16 P
903
854
803
759 15210
709
653
603
555
503
5]
409
354
a3
53 1610
209
AH:2026
BP:149.15 5] |mos
RI:544 \RT'654 \RT:746  RT:8.68 RT:10.11 RT: 1156 RT:1410 RT:15.24 10363
AR 12081 AA: 11807 ‘AA:T625  AA:16212 AA: 61067 AA:23089 AA: 70643 AA: 3875¢ w082 1z7u9
AH:2531 . AH:2470 AH:2202 . AH:2077 L8R ‘AH: 5190 AH:5507  AH: 59
BP8304_BPILLL BPLB3IS | BP 1042 BP:154.23 BP:70.27 BP: 23217 L l\‘ j] 1 )| 20708 2317 28115 30223 34091 38911 41513 44975 47505 52953 55757 59338 62556
i T T T T f T T U T T A T e T T T T T T T 1
3 4 5 6 7 8 9 10 1 12 13 1 15 150 20 20 ) 0 0 50 500 550 600 650
Time (min) ez

At 100 °C

RT: 297-15.33 RT:2.98-1526 SM: 56
RT:12.35 RT:12.35
A: 25383391337 AN 53720144044
AH: 2824781785 AH: 2761795428
8P:18098 8P:181.00
1005

RT:9.42
E AAT111977820
55 AH: 1397517529 ::‘ Eﬁ??ﬁg‘;
o 8P:94.04 BP:154.16 RT: 1368
5] AA: 10715472540
3 AH: 1006498324
e BP:198.12
359
30
RT:942 3 RT:1043
AA; 692291844 e A o028 T
pErig RT:1340  RU1446 = Chis285 B S s
A\, s R vavasar 15 3 RT:1180 AA: 16919787
48 RT:5.26 |\ | RT:632 RT:9.9 AN 108148149 \n: 607140007 | | Ap: 16989853 A& ooe 2010 103 Bl Ak 2600 e Aioosas A
57736 AA:8184503 |AA:3306041 AASB170019. | AH: 11607164 A 60562265 | |Bp:1s11s O ooit ¥ 514957463376 AH: 31771236 by Bhitdage =
53 AH:1497600 | A 987721 | AH: 740472 AH: 2473721 | BP:19122 . Bp: 149,06 51|k o ; AH:2254203 BP:149.06
el S5 2901, eR 8300 BP 8302 N\ p A L S S
3 4 5 6 7 8 9 10 1 2 3 1 15 3 4 5 6 7 8 9 10 1 12 3 1 15
Time (min) Time (min)

At 60 °C At room temperature

Figure 3.A42: GC-Ms spectra of crude product ([1,1'-biphenyl]-4-carbaldehyde) synthesized at
RT, 60°C and 100 °C
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Figure 3.A43: GC-Ms spectra of crude product ([1,1'-biphenyl]-4-carbaldehyde) synthesized
at RT, 60°C and 100 °C
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Figure 3.A44: NMR spectra of column purified ([1,1'-biphenyl]-4-carbaldehyde)
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Figure 3.A45: GC-MS spectra of crude product (Biphenyl) synthesized From Bromobenzene at
RT, 60°C and 100 °C
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Figure 3.A46: GC-MS spectra of crude product (Biphenyl) synthesized From Bromobenzene
at RT, 60°C and 100 °C
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Figure 3.A47: NMR spectra of column purified Biphenyl synthesized From Bromobenzene
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Figure 3.A48: GC-Ms spectra of crude product (Biphenyl) synthesized From Chlorobenzene at

RT, 60°C and 100 °C
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Figure 3.A49: GC-Ms spectra of crude product (Biphenyl) synthesized From Chlorobenzene at
RT, 60°C and 100 °C
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Figure 3.A50: NMR spectra of column purified Biphenyl synthesized From Chlorobenzene

135




Chapter 3 Pd/Ni-Pd NPs Stabilized on 10 NPs Capped with Chitosan

Hot filtration test:

After 2 h the catalyst (Pd@Ni@10-Chitosan) was separated and the reaction was then continued
further for 10 h after catalyst removal. Products were isolated and analysed with GC-MS, there
was no further conversion of the desired product after magnetic removal of the catalyst is

detected, ascertaining the heterogeneous nature of the catalyst under study.
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Figure 3.A51: Heterogeneity test (After 2h)
Recycling of catalyst (Pd@10-Chitosan)

Recycling of catalyst was carried out using lodobenzene (1.59mmol), Phenyl boronic acid (1.59
mmol), KoCO3 (3.18 mmol), Pd@10-chitosan (1 mg) and H>O (10 ml) at 90-100 °C under
stirring for 6 h. Pd@1O-Chitosan maintained its activity upto 12 cycles. A 3% decrease in yield
was observed during the 13th cycle. (Figure S42)
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Figure 3.A52: GC-MS spectra of the product for Recycled catalyst (Pd@10-Chitosan) catalysed

reaction between iodobenzene and phenyl boronic acid performed at 100 °C
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Recycling of catalyst (Pd@Ni@10-Chitosan)

Recycling of catalyst was carried out using lodobenzene (2 mmol), Phenyl boronic acid (2
mmol), K2COz (2 mmol), PA@Ni@10-chitosan (1 mg) and H2O (10 ml) at 90-100 °C under
stirring for 4 h. Pd@I1O-Chitosan maintained its activity upto 17 cycles. A 2.71% decrease in
yield was observed during the 13th cycle. (Figure 3.A53)

E]
#
E]

veon e
o T Recycle 17 o = Recycle 18
" o
w p
e e
3 o 3 e
g g
g s g ss
e g
i i
Y i
- -
m o
10 10 E61
408 95 744 1021 1107 1400 5304 377 aa s ser TS 3
A e N R i Shlleh um o omenm uw o L s THR m oo sm s o
e L.
= — s —
e Recycle 19 s Recycle 20

Rt fwrcan

BBUERELBRER AU EREEE

It HELrCarc

W EABUBUEE LSBT A AEBEEE

s
R L
¥l

Figure 3.A53: GC-MS spectra of the product for Recycled catalyst (Pd@Ni@10-Chitosan)
catalysed reaction between iodobenzene and phenyl boronic acid performed at 100 °C

Reaction with Ni@1O-Chitosan at 100 °C

Recycling was carried out using lodobenzene (1.59 mmol), Phenyl boronic acid (1.59 mmol),
K2CO3 (1.59 mmol), Ni@IO-chitosan (1 mg) and H2O (10 ml) at 90-100 °C under stirring for
12 h.
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Figure 3.A54: GC-MS spectra of the product catalysed by Ni@I1O-Chitosan with reaction

between lodobenzene and phenyl boronic acid performed at 100 °C.
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