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3.1. Introduction 

There are several metal ions capable of catalyzing Suzuki coupling reaction, but the palladium 

catalysts remains the first choice due to its high catalytic activity for a wide range of substrates 

(Dong et al., 2021; Rai et al., 2015). For the fabrication of Pd catalysts reducing agents like 

NaBH4 or hydrazine are required which are toxic. Further, presence of PdO is reported to 

enhance the catalytic efficiency of Pd in Suzuki coupling reaction as reported by Yang et al 

(Yang et al., 2015). They fabricated Pd/PdO nanoparticles decorated on carbon nanotubes 

containing varying percentages of PdO (59%, 63% and 73%). Suzuki coupling reaction with 

bromoanisole and phenylboronic acid using 73% gave maximum conversion.  

The use of Pd and PdO clusters could greatly improve the catalytic efficiency for Suzuki coupling 

reactions because of large surface area and increased proportion of surface atoms. However, the 

small particle size can also lead to aggregation of particles due to which catalytic potential of Pd 

catalyst decreased(Rai et al., 2015).  

Apart from Pd, there are reports on the use of nano NiO for Suzuki coupling reaction (Park et 

al., 2005) though with decreased efficiency. Increased attention is also being directed towards 

bimetallic catalysts because of synergistic influence coming from different transition metals 

(Nan et al., 2020). 

Several Pd based bimetallic systems such as Pd-Au, Pd-Ag, Pd-Rh, Pd-Ru, Pd-Cu, Pd-Co or Pd-

Ni (Rai et al., 2016) are reported for Suzuki coupling reactions, out of which Pd–Ni nanoparticles 

are notably efficient due to the excellent synergistic effect(Bao et al., 2019). Ni and Pd are easily 

miscible because of their similar crystal structure and electronic configuration (Jang et al., 2017) 

with 4d105s0 and 3d84s2 outer electronic configuration respectively. Bimetallic nanosystem (Pd-

Ni) will be a more effective catalyst than the individual monometallic (Pd or Ni) nanoparticles 

(Seth et al., 2014). Bao et. al., synthesized bimetallic Pd–Ni without ligands loaded on carbon 

nanofibers and used it for Suzuki coupling reaction (Bao et al., 2019). Jang et al. synthesized 

nickel doped palladium-iron oxide hybrid nanoparticles with crumpled ball-like morphology and 

used it for Suzuki coupling reaction(Jang et al., 2017). Further, Ghanbari et. al. fabricated 

palladium-nickel/iron oxide core-shell nano alloys via ultrasonic assisted method and applied it 

for Suzuki coupling and p-Nitrophenol reduction reaction (Ghanbari et al., 2017). 

Furthermore, recently surface electronic state of metal nanoparticles was modified with a layer 

of metal oxides. The energy difference between the highest occupied molecular orbital (HOMO) 

of the metal oxides and the Fermi level of the metal induced spontaneous electron tunneling 
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through the thin dielectric barrier resulting in a change in electron density on the metal 

surface(Jiao et al., 2020) 

Thus, the introduction of magnetic support materials with Ni –NiO could effectively stabilize 

the Pd clusters, Pd and PdO as well as augment the catalytic properties. 

Biopolymers like Chitosan, cyclodextrin agarose, cellulose etc. have gained great research 

attention for their use as a support for Pd catalyst due to environmental impact concerns and eco-

sustainable pathway for the demand of green chemistry (Dong et al., 2021). This low-cost 

biopolymer possesses unique affinity towards most transition metals ions, making it a desirable 

solid support for the stabilization of nanocatalyst (Dong et al., 2021). 

Veisi et al.  prepared magnetic nanoparticles comprising palladium immobilized on chitosan-

biguanidine by insitu reduction and applied for Suzuki Miyaura coupling reactions(Veisi et al., 

2018). Sedghi et al developed multi walled functionalized magnetic chitosan on N-heterocyclic 

carbene-palladium (M-f-MWCNTs@chitosan-NHC-Pd) (Sedghi et al., 2019). 

In the present chapter, we report an eco-friendly synthesis process for preparation of Pd nano 

particles on the surface of chitosan supported magnetic iron oxide nanoparticles (IO-Chitosan) 

and nickel immobilsed chitosan supported magnetic iron oxide nanoparticles (Ni@IO-Chitosan) 

as a reusable heterogeneous catalyst. Initially, magnetic nanoparticles were prepared under 

ambient conditions (IO-Chitosan & Ni@IO-Chitosan). This was followed by in situ reduction of 

palladium ions to form magnetically separable palladium nanosystem (Pd@IO-Chitosan & 

Pd@Ni@IO-Chitosan). The catalytic efficiency of the synthesized nanocatalyst in Suzuki 

coupling reaction of aryl halides with arylboronic acid in water and p-Nitrophenol reduction has 

been demonstrated.  

3.2. Materials and methods 

3.2.1. Materials 

All chemicals and solvents were purchased as analytical grade from commercial suppliers 

and were used without further purification. Chitosan and palladium chloride were 

purchased from Sigma Aldrich. 

3.2.2. Procedure for the preparation of Chitosan capped Iron oxide nanoparticles (IO-Chitosan) 

Iron oxide nanoparticles capped with chitosan were prepared by chemical co-

precipitation method in alkaline condition. FeSO4·7H2O (0.96 g) was dissolved in 5% 10 
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mL HCl solution followed by the addition of 1.12 g FeCl3.2H2O and stirred for 10 

minutes. To this solution, 10 mL of 1% chitosan solution prepared in acetic acid was 

added dropwise and stirred for 30 min. This was followed by the dropwise addition of 25 

mL of 50% ammonia solution to adjust the pH to 10 and stirred for 3 h resulting in the 

formation of black particles (IO-Chitosan) which were collected using an external magnet 

and washed with 100 mL water followed by 10 mL acetone and then dried at 100°C in 

oven for 9-10 h. 

3.2.3. Procedure for the immobilization of Palladium on Chitosan capped Ironoxide 

nanoparticles (Pd@IO-Chitosan) 

For the preparation of Pd@IO-Chitosan, 100 mg IO-Chitosan was sonicated in 20 mL ethanol 

for 20 min followed by the addition of 2 mg PdCl2 to the suspension with gentle stirring at RT 

(30-35 °C) for 12h. The resultant Pd@IO-Chitosan nanoparticles were separated with a handheld 

magnet, washed with ethanol and finally dried at 100 °C for 5 h. 

3.2.4. Preparation of Chitosan capped Nickel doped Iron oxide nanoparticles (Ni@IO-Chitosan) 

The synthesis of Ni@IO-Chitosan was performed using chemical precipitation method. Firstly, 

0.96g FeSO4·7H2O was taken in round bottom flask and dissolved in a mixture of 10 mL 5% 

HCl solution in water and stirred for 10 min followed by the addition of 1.12 g FeCl3. 2H2O and 

stirring for 10 min. After 10 minutes, 10 mL of 1% Chitosan solution prepared in acetic acid was 

added drop wise and stirred for 30 min followed by addition of 25mL of 50% ammonia solution 

to adjust the pH of the medium to 10 and stirring for 3 h resulting in precipitation of black 

particles. After 3 h of stirring, 3 mL of 0.3M NiCl2.6H2O solution was added drop wise and 

stirred for an additional 3 h(Ahmad et al., 2015). The black particles of Ni@IO-Chitosan were 

collected using an external magnet and washed with 100 mL water followed by 10 mL acetone 

and then dried in an oven at 100 °C for 7-8 h. 

3.2.5. Procedure for the immobilization of Palladium on Chitosan capped Nickel doped Iron 

oxide nanoparticles (Pd@Ni@IO-Chitosan) 

Pd@Ni@IO-Chitosan nanoparticles were prepared by sonicating a suspension containing 100 

mg Ni@IO-Chitosan in 20 mL ethanol for 10 min. Subsequently, 2 mg PdCl2 was added to 

Ni@IO-Chitosan suspension with gentle stirring for 12 h at room temperature. The resultant 
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Pd@Ni@IO-Chitosan nanoparticles were collected with a magnet, washed with 10 mL EtOH 

followed by 5 mL water and was finally oven dried at 100 °C for 5 h. 

3.2.6. General method for p-Nitrophenol reduction catalysed by Pd@IO-Chitosan and 

Pd@Ni@IO-Chitosan 

The effectiveness of Pd@IO-Chitosan and Pd@Ni@IO-Chitosan as catalysts for reduction of p-

NP was evaluated by taking 50 mL of a solution of p-NP (50 ppm) and 5-10 mg NaBH4 and 

stirred for 1 min. To the resulting mixture, 1 mg of nanocatalyst was added to initiate the reaction 

and the concentration of the products was measured by an UV–Vis spectrophotometer at definite 

time intervals at λmax 400 nm. 

The reusability of the catalyst was tested by a scale-up experiment with 10 mg of catalyst 

maintaining the same ratio of catalyst/p-NP. After completion of the experiment, the catalyst was 

collected by magnetic separation and washed twice with 20 mL conductivity water and then 

placed in a drying oven to dry at 100 °C for 12 h before proceeding to the next cycle of 

nitrophenol reduction. 

3.2.7. General procedure for the Suzuki coupling reaction catalysed by Pd@IO-Chitosan and 

Pd@Ni@IO-Chitosan 

The coupling reaction was carried out by taking 1.59 mmol each of aryl halide, arylboronic acid, 

K2CO3, 1 mg of catalyst and 10 mL H2O in a 25 mL round-bottomed flask and heated on an oil 

bath at 90-100 °C with stirring for 4 to 15 h depending on the aryl halides used. The reaction was 

monitored by thin layer chromatography (TLC). After completion of the reaction the mixture 

was cooled to room temperature and the catalyst was collected by an external magnet. 

Subsequently, the mixture was extracted with ethyl acetate three times (3*5 mL). The ethyl 

acetate phase was then collected, dried with Na2SO4 and coupled products were obtained by 

evaporation which were further analysed by GC-MS.  The crude product was purified using 

column chromatography packed by silica gel to afford the desired product. NMR spectra of the 

purified products are given in the Appendix. 

To test the recyclability of catalyst, after each cycle, catalyst was separated by using an external 

magnet and washed twice with 10 mL water followed by 10 mL of ethyl acetate. The catalyst 

was further dried in an oven at 100°C for 5 h. The recovered catalyst was further used for the 

next cycle of reaction. 
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3.2.8. Characterization of IO-Chitosan, Pd@IO-Chitosan, Ni@IO-Chitosan and Pd@Ni@IO-

Chitosan) 

The structural and morphological properties of Pd@IO-Chitosan and Pd@Ni@IO-Chitosan were 

analyzed by using UV-Vis, IR, XRD, SEM, EDX, VSM, HRTEM, XPS, HRTEM, TG-DTA and 

XANES techniques. 

The X-ray diffraction patterns of the samples were identified using Bruker D8 Advance X-ray 

diffractometer, Scanning Electron Microscopy measurement was performed on a HITACHI 

SU1510 instrument. Energy dispersive X-ray spectroscopy (EDS) analysis was done using a 

JEOL (JSM 7600F model) FEG-SEM spectrometer, X-ray photoelectron spectroscopic (XPS) 

analysis was performed using PHI 5000 Versa Probe II spectrometer, FEI Inc, and XPS analysis 

of recycled catalyst was recorded using PHI 5000 Versa Probe III. Thermo Gravimetric (TG) 

and Differential Thermal Analysis (DTA) in Nitrogen atmosphere from 30℃ to 750℃ using 

TG-DTA-6300, INCARP EXSTAR 6000 instrument. UV-visible spectroscopy studies were 

carried out on a JASCO dual-beam spectrophotometer (model V-630) and UV-visible 

spectroscopy studies of p-NP reduction were performed out on a Perkin Elemer Lamda 35 

spectrophotometer. High Resolution Transmission Electron Microscopy (HRTEM) was 

performed on a JEOL (JEM 2100F Model) instrument, operated at an accelerating voltage 200kV 

Fourier transforms infrared (FTIR) spectroscopy measurements were performed on a BRUKER 

ALPHA, IR spectrometer, using procedure described in chapter 2 section 2.2.6. 

Pd and Fe k-Edge XANES analysis 

Pd K-edge and Fe K-edge XANES spectra were recorded at the beamline BL12, INDUS-2 of 

the RRCAT Facility, Indore. Pellets of samples were prepared by grinding in a mortar and pestle 

and pressing under high pressure under vacuum Pd K-edge XANES spectra were recorded in the 

transmission mode 

VSM analysis 

Dried magnetic nanomaterials were used to obtain the VSM spectra using Lakeshore VSM 7410 

magnetometers.  

ESR analysis 

ESR analysis was performed on a JES-FA200 ESR Spectrometer with X band at room 

temperature using dried powder samples.  
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Palladium leaching study by ICP-MS 

The palladium leaching study was performed by using PerkinElmer ICP-MS, NexION 2000 

spectrometer. After completion of Suzuki coupling reaction at 100℃, products were isolated by 

solvent extraction using ethyl acetate and aqueous phase was preserved for leaching study. These 

aqueous samples were digested using 5 mL HNO3 in microwave digester and the digested 

samples were made up to 20 mL using Milli Q water and further used for ICP-MS analysis.  

GC-MS and NMR analysis 

GC-MS spectra of all the biaryl derivatives obtained from coupling reaction were recorded on 

Thermo Fisher Trace GC Ultra Gas Chromatograph using TR-5MS column. Helium was used as 

a carrier gas and chloroform as a solvent. Column chromatography of biphenyl derivatives was 

done using silica column and Hexane:Ethayl acetate as a mobile phase. 

NMR spectra were recorded on Bruker avance III spectrometer operating at 600 MHz after 

dissolving compounds in CDCl3 in NMR sample tube.  

3.3. Result and Discussion 

3.3.1. Characterization of IO-Chitosan, Pd@IO-Chitosan Ni@IO-Chitosan and 

Pd@Ni@IO-Chitosan 

3.3.1.1. FTIR spectroscopy 

The FTIR spectra for pristine chitosan, IO-Chitosan and Pd@IO-Chitosan, Ni@IO-Chitosan and 

Pd@Ni@IO-Chitosan nanoparticles under study are shown in Figure 3.1.  Characteristic peaks 

of chitosan as well as iron oxide were present in the spectra of all the 4 nanosystems. 

The bands observed at 632,557 cm-1 in IO-Chitosan; 632, 561 cm-1 in Pd@IO-Chitosan; 629, 

581 cm-1 in Ni@IO-Chitosan and at 629, 583 cm-1 in Pd@Ni@IO-chitosan corresponded to the 

Fe-O stretching vibration (MTh-O-MOh of the tetrahedral and octahedral sites). Further the band 

at ~441 cm-1 in IO-Chitosan and Pd@IO-Chitosan; at ~446 cm-1 in Ni@IO-Chitosan and 

Pd@Ni@IO-Chitosan may be attributed to the Fe-O stretching mode of octahedral sites of 

maghemite and a shoulder at ~480 cm-1 was attributed to Fe3O4 indicating the possible presence 

of both magnetite and maghemite (Arumugam et al., 2020). 

The stretching vibrations of –CH, -CH2OH; C-O stretching; C-O-C antisymmetric /C-N 

stretching and OH bending vibration of chitosan were observed at 2921 cm−1, 1427 cm−1, 1373 

cm−1, 1152 cm−1 and 1060 cm−1 respectively in IO-Chitosan. The broad peak of hydrogen-bonded 
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hydroxyl groups and N-H groups was observed at 3440 cm−1. Further the peaks of NH2 group 

scissoring (amide I band) mode and glycoside linkage of saccharide structure were observed at 

~1633 cm−1 and 804 cm−1 respectively. The N-H and O-H bands at ~3400 cm−1 observed in 

chitosan became weak confirming the stabilization of nanosystems with NH2 and OH groups of 

chitosan(Zhou et al., 2013).   

 

Figure 3.1 Overlay IR spectra of Chitosan, IO-Chitosan, Pd@IO-Chitosan, Ni@IO-Chitosan, 

Pd@Ni@IO-Chitosan 

The IR band at 1310 cm-1 in chitosan attributed to amide III band was observed at 1314, 1318, 

1325, 1312 cm-1 in IO-Chitosan and Pd@IO-Chitosan, Ni@IO-Chitosan and Pd@Ni@IO-

Chitosan respectively. The peak at 1067 cm-1 in IO-Chitosan corresponding to OH bend was 

shifted to 1060 cm-1 in Pd@IO-Chitosan confirming the conjugation of iron oxide and Pd 

nanoparticle with chitosan. Similarly, the peak at 1062 cm-1 in Ni@IO-Chitosan was shifted to 

1065 cm-1 in Pd@Ni@IO-Chitosan.  
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3.3.1.2. ICP-MS, SEM-EDS and TEM 

The Pd and Fe content of Pd@IO-Chitosan estimated by Inductively Coupled Plasma-Mass 

Spectrometry (ICP-MS) were observed to be 1.065 wt% and 44.54 wt% respectively. ICP-MS 

analysis revealed the presence of 1.79wt% Pd, 0.55 wt% Ni and 43.33 wt% Fe in Pd@Ni@IO-

Chitosan. The elemental composition and morphology of synthesized nanosystems were 

investigated by SEM and EDX mapping. (Figure 3.2) 

 

Figure 3.2: (A) SEM image of IO-Chitosan, (B) EDX  of IO-Chitosan, (C) TEM image of Io-

Chitosan, (D) SEM image of Pd@IO-Chitosan, (E) EDX  of Pd@IO-Chitosan, (F) TEM image 

of Pd@IO-Chitosan, (G) SEM image of Ni@IO-Chitosan, (H) EDX  of Ni@IO-Chitosan, (I) 

TEM image of Ni@IO-Chitosan, (J) SEM image of Pd@Ni@IO-Chitosan, (K) EDX  of 

Pd@Ni@IO-Chitosan, (L) TEM image of Pd@Ni@IO-Chitosan 

The EDX spectrum confirmed presence of C (6.81 wt%), N (1.19 wt%), O (27.14 wt%), Fe 

(64.85 wt%) in IO-Chitosan (Figure 3.2B); C (1.67 wt%), N (1.43 wt%), O (27.23 wt%), Fe 
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(68.73 wt%) and Pd (0.94 wt%) in Pd@IO-Chitosan (Figure 3.2E); C (6.57 wt%), N (0.83 wt%), 

O (32.61 wt%), Fe (59.36 wt%) and Ni (0.62 wt%) in Ni@IO-Chitosan (Figure 3.2H); C (1.7 

wt%), N (0.91 wt%), O (30.07 wt%), Fe (64.44 wt%), Ni (0.79 wt%) and Pd (2.09 wt%) in 

Pd@Ni@IO-Chitosan (Figure 3.2K). 

The TEM images (Figure 3.2(C, F, I, L)) of synthesized nanocatalysts showed that Pd NPs were 

dispersed on IO-Chitosan and Ni@IO-Chitosan. The supported Pd NPs were spherical in shape 

with size in the range of 5-20 nm. (IO-Chitosan: 5-20 nm, Pd@ IO-Chitosan: 5-15 nm, Ni@IO-

Chitosan: 5-10 nm, Pd@Ni@IO-Chitosan: 5-18 nm). Aggregation of spheres to form nanorods 

were observed in Ni@IO-Chitosan and Pd@Ni@IO-Chitosan to a small extent.  

3.3.1.3. HRTEM and SAED 

High resolution transmission electron microscopy (HRTEM) images exhibited clear lattice 

fringes for maghemite/magnetite nanoclusters indicating crystallinity of the sample. It is difficult 

to distinguish magnetite and maghemite when mixed phases are present. Characteristic lattice 

fringes (Figure 3.3) of magnetite/ maghemite (Iron oxide) were observed at ~0.23, ~0.25, ~0.29 

and ~0.50 nm assigned to 222, 311 and 220  planes(Amendola et al., 2011).  

Well dispersed Pd and PdO (at the edges in the grey region) nanoparticles on IO-Chitosan 

support were observed in HRTEM images of Pd@IO-Chitosan (Figure 3.3B). Lattice fringes at 

0.20 nm and ~0.24 nm observed in the black areas correlated with (200) and (111) planes of fcc 

Pd nanoparticles. Further the lattice fringes at ~0.29, ~0.26, ~0.218 nm were attributed to 100, 

002 and 110 planes of tetragonal PdO (Su et al., 2015). 

Ni@IO-Chitosan showed lattice fringes (Figure 3.3D) characteristic of magnetite/ maghemite 

were observed at 0.272, 0.251 and 0.498 nm attributed to 222, 311 and 111 planes. Further, 

lattice fringe spacings of Pd@Ni@IO-Chitosan (Figure 3.3F) at 0.203 nm and 0.241 nm that 

correlated with (200) and (111) planes of fcc Pd, and lattice spacing of ~0.26, ~0.218 nm, 

attributed to 002 and 110 planes of tetragonal PdO wherein the PdO (110) plane (spacing ~0.218 

nm) was used to differentiate from Pd (200) and (111) planes. Moreover, lattice spacing of 

~0.177 nm was attributed to Ni (200) plane while 0.203 nm was attributed to NiO (200), Ni (111) 

and Pd (200). 

The SAED concentric ring pattern indicated polycrystalline nature of the sample. A weak diffuse 

pattern from the chitosan layer was also observed. SAED pattern of IO-Chitosan in (Figure 3.3A) 

was indexed to Fe3O4 (JCPDS 88-0315) and γ-Fe2O3 (JCPDS No. 39-1346), the diffraction rings 

are assigned to the (220), (311), (222), (400), (422), (511) and (440) planes respectively. The 
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SAED pattern of Pd@IO-Chitosan (Figure 3.3C) corresponded to the (111) and (220) planes of 

fcc Pd nanocrystallites as well as the maghemite and magnetite diffraction planes.  

 

Figure 3.3: (A) SAED image of IO-chitosan, (B) HRTEM image of Pd@IO-chitosan, (C)SAED 

image of Pd@IO-chitosan, (D) HRTEM image of Ni@IO-chitosan, (E)SAED image of Ni@IO-

chitosan, (F) HRTEM image of Pd@Ni@IO-chitosan, (G) SAED image of Pd@Ni@IO-chitosan 

The diffraction rings in SAED pattern of Ni@IO-Chitosan (Figue 3.3E) were attributed to IO 

(220), IO (311), Ni (111), IO (400) & Ni (200), IO (422) and IO (511) planes. The SAED 

diffraction pattern of Pd@Ni@IO-Chitosan (Figure 3.3G) exhibited rings corresponding to (111) 
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and (220) planes of fcc Pd in addition to Fe3O4 and γ-Fe2O3 diffraction planes. The ring pattern 

also exhibited (100), (101) and (112) diffraction planes of PdO and (200) diffraction plane of Ni. 

The ring at 9.43 nm attributed to PdNi (111). 

3.3.1.4. HAADF-STEM and EDX 

The morphology of Pd@Ni@IO-Chitosan was further investigated by High Angle Annular Dark 

Field Scanning Transmission Electron Microscope (HAADF-STEM) and Energy dispersive X-

ray (EDX) spectrometry. As shown in Figure 3.4, it is evident that the metal atoms are 

homogeneously distributed except for aggregation of few palladium nanoclusters (Figure 3.4 (E 

and F)) uniformly over the Ni@IO-Chitosan. 

 

Figure 3.4.: HAADF-STEM images of Pd@Ni@IO-Chitosan 
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3.3.1.5. PXRD analysis 

X-ray powder diffraction (XRD) analysis was used to further examine the crystallinity and phase 

purity. As shown in Figure 3.5A, the XRD pattern of the IO-Chitosan catalyst displayed typical 

maghemite and magnetite peaks, primarily at 2θ  30.2°, 35.6°, 43.3°, 53.8°, 62.8°, and 74.5°, 

which correspond to the diffraction planes of (220), (311), (400), (422), (511), (440) and (533) 

crystal faces of maghemite or magnetite spinel structures respectively. A broad peak at 2θ = 21.4◦ 

indicated the presence of weakly crystalline chitosan in IO-chitosan. 

 

Figure 3.5: (A) XRD pattern of IO-Chitosan, (B) XRD pattern of Pd@IO-Chitosan, (C) (B) XRD 

pattern of Ni@IO-Chitosan, (D) (B) XRD pattern of Pd@Ni@IO-Chitosan   

The XRD spectra of Pd@IO-chitosan in Figure 3.5B, showed XRD peaks at 2θ 30.1°, 35.6°, 

43.3°, 53.7°, 57.3°, 62.9° and 74.4° attributed to (220), (311), (400), (422), (511), (440) and 

(533) diffraction planes of maghemite or magnetite spinel structure respectively. Due to very 

weak diffraction and a very disordered iron oxide structure, the powder diffraction pattern did 

not exhibit a (110) diffraction peak. The presence of maghemite was confirmed by the low 

intensity diffractions at 2θ 23.9° (210) and 26.5° (211), which suggested the presence of both 

magnetite and maghemite. (Jie et al., 2008; Kim et al., 2012). Furthermore, due to the high 
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dispersion, small crystallite size and low loading of Pd, modest distinctive diffraction peaks at 

2θ = 48.7° and 71.06° revealed (200) and (220) diffraction planes of palladium (0). In addition, 

PdO diffraction peaks corresponding to the (112), (200), and (101) planes were seen, which 

supports our findings from HRTEM and SAED experiments. 

As shown in Figure 3.5B, the XRD pattern of the Ni@IO-Chitosan showed the characteristic 

peaks of magnetite and maghemite at 30.2°, 35.6°, 43.3°, 53.8°, 57.3°, 62.8° and 74.5° which 

correlated to the diffractions of (220), (311), (400), (422), (511), (440) and (533) crystal faces of 

maghemite or magnetite spinel structure. XRD peaks can be observed at 44.9° corresponding to 

(110) plane of Ni(0), peaks at 2θ 38.5° and 41.9° corresponded to (111), (200) planes of NiO 

(Neelabh & Srivastava, 2010)(Richardson et al., 2003). 

The XRD pattern of Pd@Ni@IO-chitosan in Figure 3.5D catalyst showed the characteristic 

peaks of IO NPs. In addition to characteristic peaks of IO, Ni and NiO, additional weak peaks 

could be observed at 2θ 40.1° and 49.5° which were well-indexed to the (111) and (112) 

crystalline plane of face cantered Pd(0) and a peak at 2θ ~61° corresponded to (200) plane of 

PdO (200), which were also observed in SAED studies. 

3.3.1.6. XPS analysis 

The C1s, N1s, O1s and Fe 2p XPS spectra of IO-Chitosan are shown in Figure 3.6(A-C). In the 

deconvoluted Fe2p XPS spectrum (Figure 3.6D), the peaks at 710.9, 713.29, 723.9 eV and 

726.29 were ascribed to Fe2p3/2 and Fe2p1/2 of Fe3+ ions along with satellite peaks(Han et al., 

2007; Kolen et al., 2014). The de-convoluted O 1s XPS spectra (Figure 3.6C) showed a peak at 

binding energy 528.14 eV assigned to iron oxide's lattice oxygen, while the peaks at 531.497 eV 

and 533.7 eV were attributed to chitosan's N-C=O bond and C-O-H respectively. Furthermore, 

the N1s (Figure 3.6B) de-convoluted peaks with binding energies of 399.47 eV were assigned to 

chitosan's -NH2 or -NH, 401 eV to C-N, and 402.75 eV to NH2-Fe(Unsoy et al., 2012). The the 

C 1s XPS spectra of  chitosan showed a peak  (Figure 3.6A) with a binding energy of 284.6 eV 

for C-C, 286.2 eV for C-OH and C-NH2 and 288.299 eV for O-C-O. (Kong et al., 2010). 

The XPS spectra of Pd@IO-Chitosan are shown in Figure 3.6 (E-I). In Fe2p XPS spectrum 

(Figure 3.6H), characteristic peaks of Fe2p3/2 and 2p ½ of Fe3+ are seen with the satellites. The 

presence of multiplet peaks may be due to the  interaction with IO with chitosan and 

palladium(Verma et al., 2018). The Pd 3d XPS spectra (Figure 3.6I)) exhibited peaks at binding 

energies 336.73 eV and 341.73 eV  assigned to charged metallic Pd particles (Tsyrul et al., 2007). 
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The signal at 338.4 eV can be assigned to PdO/Pd2+ and the peak at 339.4 eV was attributed to 

the interactions between Pd and IO-Chitosan.  

The O1s XPS spectrum of Pd@IO-Chitosan in Figure 3.6G  exhibited a peak at binding energy 

of 529.99 eV attributed to Pd-O species and Pd-O-Fe interactions while peak at 531.7 eV was 

assigned to C-O of chitosan and 533.7eV to OH group (Shaw et al., 2017). Further, the 

deconvoluted N1s XPS spectra (Figure 3.6F) showed a peak at 399.8 eV ascribed to -NH2 or -

NH of chitosan, 400.5 eV to C-N and 402.2 eV to NH2–Fe. The C 1s XPS spectrum (Figure 

3.6E) exhibited deconvoluted peaks at binding energies 284.8, 286.5 eV and 288.2 eV assigned 

to C−C and C−H; C–NH and C-NH2; (–C–OH) and C-O-C=O groups respectively. 

 

Figure 3.6: (A-D) C, N, O, Fe XPS spectra of IO-Chitosan and (E-I) C, N, O, Fe, Pd XPS spectra 

of Pd@IO-Chitosan 
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The de-convoluted C1s (27.21 At%), N1s (1.78 At%), O1s (52.24 At%), Fe2p (18.45 At%) and 

Ni2p (0.31 At%) XPS spectra of Ni@IO-Chitosan are shown in Figure 3.7. In the Fe2p XPS 

spectrum (Figure 3.7D), the signals at binding energies of about 710.16, 714.12, 723.23 and 

727.23 eV were assigned to Fe2p3/2 and Fe 2p1/2 of Fe3+ of γ-Fe2O3 and α-Fe2O3 ions along 

with satellite peaks(Kong et al., 2010). The peak at 711.97 eV can be attributed to octahedral and 

tetrahedral Fe3+ in Fe3O4. The de-convoluted O 1s (Figure 3.7C) peak at binding energy 529.70 

eV was attributed to lattice oxygen of iron oxide while the peak at 530.80 eV was attributed to 

N-C=O bond of chitosan and 532.38 to C-O-H. Further, the assignment for N1s de-convoluted 

peaks (Figure 3.7B) with binding energy 399.29 eV was made to -NH2 or -NH of chitosan, 

400.24 eV to C-N and 401.82 eV to NH2–Fe (Unsoy et al., 2012). In the C 1s spectrum (Figure 

3.7A) the peak with binding energy of 284.6 eV was attributed to C-C, while peak with binding 

energy 286.2 eV to C-OH, C-NH2 and 288.299 eV to O-C-O of chitosan. 

 

Figure 3.7: C, N, O, Fe, Ni XPS spectra of Ni@IO-Chitosan 

The Ni 2p3/2 spectrum of Ni@IO-Chitosan in Figure 3.7E shows a complex structure with 

intense satellite signals of high binding energy adjacent to the main peaks due to multi-electron 

excitation. The binding energy of 852.58 eV may be attributed to metallic Ni. The most intense 

peak at 855.29 eV was due to Ni2+ in NiO while the second doublet at 860.77 eV could be 
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ascribed to Ni2+ in Ni(OH)2. It should be noted that there are weak peaks related to NiO or 

Ni(OH)2 in the XRD pattern. This is most likely because of the amorphous nature of resulting 

NiO and Ni(OH)2 (Xia et al., 2016). 

The de-convoluted C1s (29.30 At%), N1s (1.36 At%), O1s (50.40 At%), Fe2p (18.14 At%), Ni2p 

(0.20 At%) and Pd3d (0.59 At%) XPS spectra of Pd@Ni@IO-Chitosan are shown in Figure 3.8 

(A-F). In Fe2p XPS spectrum (Figure 3.8D), characteristic peaks at 710.00 and 723 eV of Fe2p 

3/2 and 1/2 of Fe3+ of γ- Fe2O3 and α- Fe2O3 are seen with the satellites at 719.85 eV (Kong et 

al., 2010). The Fe2p3/2 peak at 711.86 eV correspond to tetrahedral Fe3+ in Fe3O4 (Unsoy et al., 

2012). In Pd 3d deconvoluted XPS spectrum (Figure 3.8F) the signals with binding energy 334.94 

and 340.34 eV were assigned to Pd(0), 336.81 eV and 341.61 eV were assigned to charged 

metallic clusters. The signal at 337.79 eV can be attributed to PdO /Pd2+ and 339.4 eV to the 

interactions between Pd and Ni@IO-Chitosan (Tsyrul et al., 2007). From the Ni 2p3/2 spectrum 

(Figure 3.8E) it was observed that metallic character of Ni has increased after immobilization of 

Pd while the NiO content decreased. 

 

Figure 3.8: C, N, O, Fe, Ni, Pd XPS spectra of Pd@Ni@IO-Chitosan 
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The deconvoluted O1s XPS spectrum of Pd@Ni@IO-Chitosan depicted in Figure 3.8C exhibited 

a peak at binding energy of 529.59 eV was assigned to Pd-O species and Pd-O-Fe interactions 

while peak at binding energy 531.11 eV to C-O of chitosan and the peak at 532.47eV to OH 

group (Shaw et al., 2017). Further, N1s deconvoluted peaks with binding energy 398.2 eV was 

made to -NH2 or -NH of chitosan, 399.68 eV to C-N and 401.97 eV to NH2–Fe. (Figure 3.8B). 

The C 1s spectrum exhibited binding energies at 284.8, 286.17 eV and 288.39 eV attributed to 

C-C and C-H; C–NH and C-NH2; (–C–OH) and C-O-C=O groups respectively (Figure 3.8A). 

3.3.1.7. XANES analysis 

X-ray absorption near edge spectra (XANES) technique was used to study the oxidation states 

of Fe and Ni further. (Figure 3.9) 

 

Figure 3.9: (A) Fe K edge XANES spectra of Pd@IO-Chitosan, (B) Fe K edge XANES spectra 

of Pd@Ni@IO-Chitosan, (C) Ni K edge XANES spectra of Pd@Ni@IO-Chitosan 

The Fe K-edge XANES spectrum of Pd@IO-Chitosan and Pd@Ni@IO-Chitosan was matched 

with the the reference FeO and Fe2O3 spectrum (Figure 3.9(A&B)). It is clear from the figure 

that the XANES spectrum of both the compounds did not match with the reference spectra. 
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Further comparison with other iron oxides from literature was done. No exact correlation was 

found due to the complex nature as seen by XRD, HRTEM, SAED and XPS studies. (Piquer et 

al., 2014).  

However, from literature it was inferred that a shoulder at ~7117 eV and a significant pre-edge 

excitation peak at ~7113 eV confirmed the presence of maghemite as the predominant phase. 

The hump at ~7139.3eV confirmed poorly ordered ferric compounds wherein the deposition of 

Pd/PdO may cause the disturbance in the structure (Baumgartner et al., 2013). The intense band 

at ~7133 eV can be assigned to the 1s–4p transition indicating the presence of maghemite(Hsu 

et al., 2010). The presence of a non-stoichiometric phase of maghemite was indicated from these 

observations.  

The Ni K edge XANES spectra (Figure 3.9C), exhibited distinct absorption characteristics at 

8351 eV resembling NiO (Mansour & Melendres, 1994) but with lower intensity due to presence 

of Ni metal component. Pd@Ni@IO-Chitosan show particularly distinct peaks at 8334 eV and 

8366 eV indicating the presence of Ni and NiO in Pd@Ni@IO-Chitosan 

3.3.1.8. TG-DTA analysis 

The thermal stability of IO-Chitosan, Pd@IO-Chitosan, Ni@IO-Chitosan and Pd@Ni@IO-

Chitosan were examined by TGA in the temperature range of 30 to 750 °C and are depicted in 

Figure 3.10.  

The first weight loss of around 13 % in the range of ~100–250 °C in IO-Chitosan (Figure 3.10 

A) was assigned to deacetylation of chitosan and release of hydroxyl groups, while the second 

weight loss of 12.4% (250 °C to 800 °C) may be attributed to degradation of chitosan as well as 

stabilisation of alpha form of iron oxide.  

The TG-DTA curve of Pd@IO-Chitosan (Figure 3.10B) exhibited first weight loss of 2.3% in 

the temperature range of 30-150 °C, attributed to evaporation of adsorbed and bound water. In 

the second stage, weight loss of 5.1% occurred as a result of the release of hydroxyl ions and the 

breakage of the principal chains of chitosan at temperatures between 150 °C and 270 °C. 

Decomposition of  acetylated and deacetylated units as well as amine and –CH2OH group of 

chitosan and oxidation of Fe3O4 to Fe2O3 may be responsible for the 5.6% weight loss in the 

third stage in the temperature range of 270 °C to 480 °C. In the temperature range of 480°C to 

800°C, the final weight loss of 1.6% was due to the degradation of glucopyranose residues of 

chitosan (Parandhaman et al., 2017) as well as stabilisation of iron oxide in alpha form. 
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The thermal stability of Ni@IO-Chitosan and Pd@Ni@IO-Chitosan were investigated by TGA 

and are depicted in Figure 3.10(C and D) respectively in the temperature range 30 to 750 °C. The 

thermograms of Ni@IO-Chitosan and Pd@Ni@IO-Chitosan demonstrated 3 major weight loss 

steps. The weight loss of ~12.4 % in the temperature range of ~150–400 °C in Ni@IO-Chitosan 

may be attributed to degradation and deacetylation of Chitosan as well as release of hydroxyl 

groups while the gradual weight loss of 14.3% in the second stage (400 °C to 750 °C) may be 

attributed to final decomposition of chitosan as well as stabilisation of iron oxide in alpha form. 

The thermogram of Pd@Ni@IO-Chitosan exhibited an initial weight loss of 1.5% up to 150°C 

which was attributed to evaporation of both adsorbed and bound water. In the second stage, 

release of hydroxyl ions and degradation of principle chains of chitosan resulted in a weight loss 

of 9.0% in the temperature range 150 °C to 400 °C. The third stage weight loss of 2.3% in the 

temperature range 400 °C to 750 °C may be attributed to degradation of glucopyranose residues 

of chitosan as well as stabilisation of iron oxide in alpha form. 

 

Figure 3.10: (A) TG-DTA curve of IO-Chitosan, (B) TG-DTA curve of Pd@IO-Chitosan, (C) 

TG-DTA curve of Ni@IO-Chitosan, (D) TG-DTA curve of Pd@Ni@IO-Chitosan 
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3.3.1.9. VSM analysis 

The superparamagnetic behaviour of IO-Chitosan, Pd@IO-Chitosan, Ni@IO-Chitosan and 

Pd@Ni@IO-Chitosan systems were validated by vibrating sample magnetometer (VSM) 

analysis (Figure 3.11). Due to the small size of the particles and chitosan coating/support, or the 

existence of a little amount of magnetic material per gram of sample, the Ms values were low 

(Ahmadzadeh et al., 2018). 

The saturation magnetization of IO-Chitosan was determined to be 52.91emu/g from the 

magnetization curve in Figure 3.11. The magnetic response of the Pd@IO-Chitosan catalyst was 

reduced to 39.037emu/g attributed to the loading of palladium nanoparticles on the IO-Chitosan 

surface. The saturation magnetization of Ni@IO-Chitosan was observed to be 81.07 emu/g, 

which was higher than IO-Chitosan due to presence of Ni species. Further, magnetic saturation 

of Pd@Ni@IO-Chitosan catalyst decreased to 74.38 emu/g.  

 

Figure 3.11: Overlay VSM spectra of IO-Chitosan, Pd@ IO-Chitosan, Ni@ IO-Chitosan and 

Pd@Ni@IO-Chitosan 

3.3.2. Catalytic performance of Pd@IO-Chitosan and Pd@Ni@IO-Chitosan 

3.3.2.1. Catalytic reduction of p-NP in the presence of Pd@IO-Chitosan and Pd@Ni@IO-

Chitosan 

Catalytic activity of the synthesized nanoacatalysts were evaluated by reduction of p-Nitrophenol 

(p-NP) to p-Aminophenol (p-AP) by sodium borohydride in aqueous system at room temperature 

(30-35 ℃) (Figure 3.12). Solution of p‐NP exhibits a strong UV absorption peak at 305 nm, 
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which turns to dark yellow on addition of NaBH4 and absorption peak red shifted to 402 nm due 

to the formation of p-nitrophenolate under alkaline conditions (Figure 3.12 (A&C)) (Baran & 

Nasrollahzadeh, 2019). The reaction was a thermodynamically feasible process and was 

kinetically restricted in the absence of a catalyst (Liu et al., 2016). 

Upon the addition of Pd catalyst to the reaction medium, the p-NP absorption peak at 402 nm 

gradually decreased and completely disappeared after 10 mins with Pd@IO-Chitosan and 8 mins 

with Pd@Ni@IO-Chitosan. Further, a new absorption band was also observed at 300 nm. (Figure 

3.12 (A&C)) At the end of the catalytic reduction, the deep yellow color of the solution changed 

to colorless. Figure 3.12 (B&D) show the linear relations of ln(At/A0) and reaction time (t) in 

the p-NP reduction. Pseudo-first-order rate was calculated by the equation: ln(At/A0) = −kt where 

A0 and At correspond to the p-NP initial concentration and that at selected reaction time (t), 

respectively, and k(min−1) is the reaction rate. The rate constant was determined as 0.3363 min−1 

for Pd@IO-Chitosan and 0.4095 min−1 for Pd@Ni@IO-Chitosan.  

Control experiment with Ni@IO-Chitosan was performed indicated a slight decrease (0.08%) in 

the concentration of p-NP due to reduction by Ni/NiO nanoparticles (Boonying et al., 2018; Xia 

et al., 2016). No reduction was observed with IO-Chitosan (Figure 3.12F). 

Recyclability potential of both the nanoacatalysts was investigated. The Pd@IO-Chitosan 

catalyst could be readily recovered by a magnet after each catalytic cycle due to its 

superparamagnetic nature , was dried in oven and used for the next run. Recyclability 

experiments showed that Pd@IO-Chitosan has high recovery efficiency and can work up to 

twenty-four cycles for p-NP reduction. Recyclability experiments with Pd@Ni@IO-Chitosan 

showed higher recyclability of 27 cycles for p-NP reduction reaction than the Pd@IO-Chitosan. 

The time required for reduction increased to 14 min for 28 to 29 cycles and later increased to 20 

minutes upto 31 cycles. 

3.3.2.2. Application of the magnetic palladium catalyst Pd@IO-Chitosan and Pd@Ni@IO-

Chitosan in Suzuki−Miyaura Cross-Coupling Reactions. 

The potential of the synthesised catalysts was further checked with Suzuki Miyaura C-C coupling 

reaction. Carbon-carbon bond formation is one of the most important and fundamental reactions 

for the preparation of molecular scaffolds in organic chemistry. To the best of our knowledge, it 

is the first time that a Ni-Pd supported on magnetic chitosan is reported as catalyst for Suzuki 

Miyaura reactions. 
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In order to improve the yield of the reaction, the effect of different factors like base, solvent, 

temperature, catalyst amount and time (Figure 3.13) were tested for the model reaction. The cross 

coupling between iodobenzene and Phenyl boronic acid was selected as a model reaction. 

 

Figure 3.12: (A) p-Nitrophenol reduction catalysed by Pd@IO-Chitosan, (B) Kinetic study of p-

NP reaction catalysed by Pd@IO-Chitosan, (C) p-Nitrophenol reduction catalysed by 

Pd@Ni@IO-Chitosan, (D) Kinetic study of p-NP reaction catalysed by Pd@Ni@IO-Chitosan, 

(E) p-Nitrophenol reduction catalysed by IO-Chitosan, (F) p-Nitrophenol reduction catalysed 

by Ni@IO-Chitosan 
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Initially, optimization studies were carried out in water. Different amounts of Phenylboronic 

acid, ranging from 2.38 to 1.59 mmol. (i.e., 2-1 mol%) was reacted with 1.59 mmol Iodobenzene. 

Quantitative aryl halide conversion and formation of biphenyl was accomplished using 1.59 

mmol phenylboronic acid (i.e.,1 mol%). Use of increased amounts of Phenylboronic acid, led to 

the presence of unreacted boronic acid. Therefore 1 mol% of phenylboronic acid was used for 

further studies.  

A solvent plays crucial role in improving the rate of coupling reaction. The effect of solvents on 

the Suzuki coupling reaction was investigated (Figure 3.13A). When water and water:alcohol 

mixture was used as solvents, good yields of the desirable product was obtained while trace 

amount of product was obtained in polar aprotic solvents like DMF & THF. Nevertheless, the 

product yield was 60% with Pd@IO-Chitosan and 5.6% with Pd@Ni@IO-Chitosan when the 

reaction was done in less polar solvent (toluene).  Therefore, water was determined to be the 

most appropriate selection. 

Subsequently the effect of temperature on the reaction yield was investigated. Reactions 

conducted at room temperature (30 ℃), 40℃, 60℃, 80℃ and 100℃ were most efficient in 

water and gave 100% yield at all the temperatures (Table 3.1A and 3.1B, entry 1) studied. The 

optimum reaction temperature for the catalytic conversion of Iodobenzene and Phenyl 

boronicacid was found to be at ambient temperature. When the temperature was raised to 100 

°C, better catalytic performance with other aryl halides (Bromobenzene, Chlorobenzene and 

substituted Iodo benezene) were obtained (Table3.1A and 3.1B, entries 2-7).   

Bases are known play a substantial role in coupling reactions; therefore, the reaction was 

conducted with different inorganic and organic bases (Figure 3.13B). K2CO3 was observed to be 

a suitable base for generating cross-coupling yield. Sodium hydroxide and potassium hydroxide 

were not effective under the reaction conditions studied. Different amounts of K2CO3 ranging 

from 5 to 0.1 equivalent were used in Suzuki coupling (Figure 3.13C). Complete conversion was 

obtained even when 1 mol equivalent of K2CO3 with Pd@Ni@IO-Chitosan was used in the 

reaction while Pd@IO-Chitosan required 2 mol equivalent of base for the completion of reaction. 

Reducing the K2CO3 amount to 1.5 equivalents decreased the yield of the product to ~24%.  

Base free reaction in the presence of optimized catalyst and solvent did not yield any product 

(Table 3.A13 entry 8). The role of the base in these reactions may be to facilitate the formation 

of a more reactive boronate species or form a part of coordination sphere of Pd to facilitate 

intramolecular transmetallation which otherwise is reported to be slow (Turkmen et al., 2009). 
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Figure 3.13: Optimization of Suzuki coupling reaction catalyzed by Pd@IO-Chitosan and 

Pd@Ni@IO-Chitosan, (A)Optimizations of Solvent, (B) Optimizations of base, (C) 

Optimizations of base amount, and (D) Optimizations of time for reaction between Iodobenzene 

and Phenyboronic acid in aqueous medium. Reaction condition: Iodobenzene (1.59 mmol), 

Phenylboronic acid (1.59 mmol), catalyst dose:1 mg, solvent (10 ml water), Base- K2CO3 (1 

equi.), TLC (n-hexane), GC-MS (HPLC grade chloroform) 

It was observed that quantitative yields were obtained with progressive decrease of catalyst 

(Pd@IO-Chitosan) loading from 0.275 mol% Pd to 0.00275% Pd (Table 3.A14, entries 1-8) in 

12h at 100 °C with 1.59 mmol aryl halide. Monitoring of the reaction time indicated that the 

reaction was completed in 6 h from the start of the reaction at both 35 °C and 100 °C (Table 

3.A15, entries 1-11 and Figures 3.A20-3.A21). The optimized reaction conditions for Pd@IO-

Chitosan in water were determined as: iodobenzene,1.59 mmol; phenylboronic acid,1.59 mmol; 

0.00275 mol% Pd present as Pd@IO-Chitosan, K2CO3, 2 mol equivalent; reaction time, 6h; water 

10 mL. 

The progress of coupling reaction was monitored by TLC and % conversion was detected using 

GC-MS. The highest conversion of Suzuki coupling reaction using 1 mg of Pd@Ni@IO-
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Chitosan obtained within 3h with 1.59 mmol of starting materials (Table 3.A16, Entry 34). 

Suzuki coupling of 2.0 mmol Iodobenzene and Phenylboronic acid with 1 mg catalyst (0.0095 

mol% Pd) gave 99.9% yield at 100°C as well as at room temperature (Table 3.A16, entry 35). 

On the other hand reaction performed with Ni@IO-Chitosan as catalyst did not yield any product 

at 100 ℃ (Table 3.A16, entry 36). The optimized reaction conditions for Pd@Ni@IO-Chitosan 

in water were determined as: iodobenzene,2 mmol; phenylboronic acid,2 mmol; 0.0095 mol% 

Pd present as Pd@Ni@IO-Chitosan, K2CO3, 2 mmol; reaction time, 3h; water 10 mL. 

The applicability of the catalyst under study was further investigated for  wider scope of Suzuki 

reactions. Different arylhalides incorporating electron-rich and electron-poor aromatic rings and 

Phenylboronic acids were converted into the corresponding biphenyl derivatives using very low 

amount of catalyst (1 mg), K2CO3 as base and water as solvent. This study revealed that 

Iodobenzene (Table3.1, entry 1) bromobenzene (Table 3.1, entry 6) had almost comparable 

yields but bromobenzene took a little longer time (7 h for Pd@IO-Chitosan and 6 h for 

Pd@Ni@IO-Chitosan) for completion of reaction. However, Chlorobenzene (Table3.1, entry 7) 

reacted slowly with phenylbronic acid (11 h for Pd@IO-Chitosan and 7 h for Pd@Ni@IO-

Chitosan).  

Researchers have reported three fundamental steps for the Suzuki C-C coupling reaction: 

oxidative addition, transmetalation, and reductive elimination as demonstrated in chapter 7 

scheme 2. Oxidative addition is the rate-determining step in the Pd catalytic cycle and the relative 

reactivity decreases in the order of I> Br> Cl based mainly on the strength of the C-X bond. 

Furthermore, the Iodobenzene having electron-withdrawing group (-CHO) can efficiently couple 

with phenylboronic acid in comparison to Iodobenzene containing electron-donating group (-

CH3). The electron withdrawing group (-CHO) facilitated the rate limiting oxidative addition 

step. On the other hand, the ortho-substituted iodobenzene gave slightly lower yields as 

compared to para substituted. Considering the above discussed reaction protocols, this magnetic 

catalyst was amenable to a wide range of aryl halides. 
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Table 3.1: Suzuki Coupling Reaction catalysed by Pd@IO-Chitosan at 30, 60 and 100 ℃ 

Reaction condition For Pd@IO-Chitosan: Aryl halide (1.59 mmol), phenylboronic acid (1.59 mmol), solvent 

(10 mL), catalyst (1 mg, 0.005 mol%), base (2 equi.), TLC (9:1 n-hexane: ethyl acetate), GC-MS (HPLC grade 

chloroform), Yields were obtained by GC-MS analysis 

Reaction condition For Pd@Ni@IO-Chitosan: Aryl halide (2 mmol), phenylboronic acid (2 mmol), solvent (10 

mL), catalyst (1 mg, 0.0095 mol%), base (1 equiv.), TLC (9:1 n-hexane: ethyl acetate), GC-MS (HPLC grade 

chloroform), Yields were obtained by GC-MS analysis 

 

Sr. 

No. 

X R At 30 ℃ 

Pd@IO-Chitosan/ 

Pd@Ni@IO-Chitosan 

At 60℃ 

Pd@IO-Chitosan/ 

Pd@Ni@IO-Chitosan 

At 100℃ 

Pd@IO-Chitosan/ 

Pd@Ni@IO-Chitosan 

 

Time GC-MS Yield 

(%) 

Time GC-MS 

Yield (%) 

Time GC-MS 

Yield (%) 

Isolated 

Yield (%) 

1 I H 7 h 99.99 6 h 99.99 6 h. 99.99 99 

5h 100 4h 100 3h 100 99.99 

2 I p-CH3 12 h 14.91 12 h 58.4 8 h 85.58 85.3 

12h 55.76 10h 75.28 7h 98.96 98.4 

3 I o-CH3 12 h 7.93 12 h 76.4 9 h 83.10 83.05 

12h 52.938 12h 73.061 9h 92.10 91.8 

4 I o-CHO 20 h 4.52 15 h 78.38 12 h 99.99 99 

15h 54.28 13h 89.697 11h 100 99.99 

5 I p-CHO 12 h. 68.66 12 h 93.2 11 h 99.99 99 
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12h 58.81 10h 96.87 8h 100 99.99 

6 Br H 10 h 53.41 8 h 99.5 7 h 99.99 99 

10h 57.98 8h 97.76 6h 100 99.99 

7 Cl H 12 h 10.19 12 h 92.41 11 h 93.65 93.2 

12h 24.51 10h 90.98 7h 100 99.99 

A hot filtration experiment was carried out to investigate the heterogenous nature of the catalyst 

and to obtain information about the presence of leached metal species in our reaction (Figure 

3.A51). Under optimized conditions using model coupling reaction between the Iodobenzene 

and phenylboronic acid, after 2 h the catalyst (Pd@Ni@IO-Chitosan) was separated and the 

reaction was then continued further for 10 h after catalyst removal. Products were isolated and 

analyzed with GC-MS. There was no further conversion of the desired product after magnetic 

removal of the catalyst is detected, ascertaining the heterogeneous nature of the catalyst under 

study. 

3.3.2.3. Recyclability of catalyst 

The recyclability and reusability of Pd@IO-Chitosan as catalyst in successive reactions was 

studied as it is an important requisite from economic, environmental and industrial point of view. 

The recycling of the catalyst was investigated under optimized reaction conditions using a 

reaction between Iodobenzene and Phenylboronic acid at 100℃. The catalyst was magnetically 

separated, washed with water and subsequently with acetone, dried in oven at 100 ℃ and 

employed for another round of reactions. Recycled catalysts were characterized by IR, VSM, 

SEM, TGA and XPS techniques and Pd leaching was tested by ICP-MS. 

Pd@IO-Chitosan maintained its activity upto 12 cycles. A 3% decrease in yield was observed 

during the 13th cycle (Figures 3.A52) and the catalyst (Pd@Ni@IO-Chitosan) proved to be 

readily recyclable and no significant loss of catalytic activity is observed upto 17 cycles. Also 

no significant loss of palladium was observed from ICP-MS (Figure 3.17F). A 2.71% decrease 

in yield was observed during the 18th cycle (Figure 3.A53). 

SEM images of Pd@IO-Chitosan revealed negligible change in morphology up to 4 cycles 

(Figure 3.14C). The SEM images of subsequent cycles exhibited a more porous morphology 

which could be due to gradual breakdown of chitosan chains.  
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Figure 3.14: SEM Images of recycled catalyst (Pd@IO-Chitosan) 

SEM images of Recycled Pd@Ni@IO-chitosan (Figure 3.15) catalyst after 17th cycle showed 

aggregation of nanoparticles.  

 

Figure 3.15: SEM Images of recycled catalyst (Pd@Ni@IO-Chitosan) 

Superparamagnetic property of Pd@IO-Chitosan (Figure 3.16A) was retained even after the 10th 

cycle. Though the magnetic response decreased to 14 emu/g, the catalyst could be still be easily 

separated by a handheld magnet and could be uniformly dispersed in reaction system again after 
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the magnetic separation due to its superparamagnetism. VSM analysis of recycled Pd@Ni@IO-

Chitosan catalyst (Figure 3.16B) revealed super paramagnetic response of the recycled catalyst 

was decreased to 49.49 emu/g from 74.38 emu/g. 

 

Figure 3.16: (A) VSM spectra of recycled catalyst (Pd@IO-Chitosan), (B) VSM spectra of 

recycled catalyst (Pd@Ni@IO-Chitosan) 

The thermogram obtained during thermogravimetric analysis of Pd@IO-Chitosan and 

Pd@Ni@IO-Chitosan (Figure 3.17) showed 3 stages of weight loss. A total weight loss of about 

25% was observed as compared to 25% and 15% in IO-Chitosan and Pd@IO-Chitosan 

respectively, suggesting loss in thermal stability (Figure 3.17A). While the TG-DTA analysis of 

fresh and recycled catalyst (Pd@Ni@IO-Chitosan) of 17th cycle ((Figure 3.17B) revealed a total 

weight loss of 12.8% in and 60.93% respectively in the temperature range of ~30-750 °C.  

 

Figure 3.17: (A) TG-DTA Curve of recycled catalyst (Pd@IO-Chitosan), (B) TG-DTA Curve of 

recycled catalyst (Pd@Ni@IO-Chitosan) 
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The recycled catalyst (Pd@IO-Chitosan) after the 10th run was further investigated by XPS. The 

Fe and Pd spectra (Figure 3.18(A & B)) exhibited the same characteristic peaks as observed in 

the fresh catalyst. There was 8% decrease in Fe content and 0.02% decrease in Pd content. There 

was 3% decrease in nitrogen and 11% increase in C content suggesting a disruption of the 

chitosan backbone and poisoning of the catalyst with reactants (Figure 3.18 (C&D)). Detailed 

XPS assignment of the fresh and recycled catalysts is given in Tables 3.A1-3.A5. 

 

Figure 3.18: (A&B) Fe and Pd XPS spectra of recycled catalyst after 10th cycle, (C&D) Survey 

spectrum of fresh and recycled catalyst 

The recycled catalyst Pd@Ni@IO-Chitosan (after the 17th run) was further investigated by XPS 

(Figure 3.19). The Fe, Ni and Pd spectra (Figure 3.19 (C-E)) exhibited the same characteristic 

peaks as observed in the fresh catalyst. There was 7.92% decrease in Fe content, 1.29% decrease 

in nitrogen, 0.01% decrease in Pd, 0.07% decrease in Ni, 4% decrease in O. There was 22% 

increase in C content suggesting a poisoning of the catalyst with reactants. Detailed XPS 

assignment of the fresh and recycled catalyst are given in Tables (3.A6-3.A11) 
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Figure 3.19:(A) XPS survey spectrum of Fresh catalyst (B) XPS survey spectrum of Recycled 

catalyst (C) Fe2p XPS spectra of Recycled catalyst (D) Ni2p XPS spectra of Recycled catalyst 

(E) Pd3d XPS spectra of Recycled catalyst 

3.4. Conclusions 

In conclusion, we have fabricated a novel catalytic system comprising Pd nanoparticles 

supported on Chitosan stabilized Iron oxide nanoparticles (Pd@IO- Chitosan) and Ni dopped 

Chitosan stabilized Iron oxide nanoparticles (Pd@Ni@IO-Chitosan) at room temperature in 

aqueous medium without using reducing agent.  

Characterization studies of Pd@IO-Chitosan revealed that Pd, Pd2+ and PdO dispersed on IO-

Chitosan. While characterisation of Pd@Ni@IO-Chitosan confirmed the presence of well 

dispersed Pd, Pd2+, PdO, Ni, NiO and Ni(OH)2 on support. Both the catalyst showed the excellent 

catalytic activity for Suzuki coupling reaction and p-Nitrophenol reduction with very high 

recoverability.  

Superparamagnetic property of IO-Chitosan (52.91 emu/g) has increased after loading of Nickel 

on IO-Chitosan (Ni@IO-Chitosan) (81.07 g/emu). Because of that Pd@Ni@IO-Chitosan (74.38 

emu/g) catalyst separation become faster and easier than the Pd@IO-Chitosan (39.037 emu/g). 
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Therefore, recyclability of the catalyst had increased and Pd@Ni@IO-Chitosan can be reuse for 

31 times in p-NP reduction and 17 times in Suzuki coupling reaction. While Pd@IO-DTPA can 

be reuse upto 24 times in p-NP reduction and 12 times for Suzuki coupling reaction.  

Furthermore, combining non noble metal Ni with noble metal Pd can affect the electronic 

structure of Pd by the electron transfer which can disturb the highest occupied and lowest 

unoccupied molecular orbitals of Pd and this further reduces the activation energies. So, 

fabrication of Pd@Ni@IO-DTPA catalyst is potential strategy to enhance the catalytic activity 

and reusability.  
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Appendix 

XPS data of Pd@IO-chitosan 

Table 3.A1: XPS Spectral assignment of Carbon 

ReElement IO-Chitosan Fresh 

Pd@IO-chitosan 

Recycled(10) 

Pd@IO-chitosan 

Assignment 

Binding 

energy 

(eV) 

Area% Binding 

energy 

(eV) 

Area% Binding 

energy 

(eV) 

Area% 

C 1s 284.8 16.88 284.8 39.06 284.76 59.23 C-C/C-H 

C 1s 286.69 20.20 286.32 27.40 285.95 
 

C-O-C , C-OH, C-

O, C-NH2 

C 1s 
  

 
 

287.07 8.94 C=O 

C 1s 288.73 40.21 288.01 23.68 288.54 6.88 O-C-O, O-C=O 

C 1s 290.99 22.72 289.57 9.87 
  

N-C=O 

 

Table 3.A2: XPS Spectral assignment of Nitrogen 

Re 

Element  

IO-Chitosan Fresh 

Pd@IO-chitosan 

Recycled(10) 

Pd@IO-chitosan 

Assignment 

 
Binding 

energy 

(eV) 

Area% Binding 

energy 

(eV) 

Area% Binding 

energy 

(eV) 

Area% 
 

N1s 399.47 38.95 399.81 38.45 399.2 33.43 O=C-NH 

N1s 401.52 6.63 400.54 54.97 400.6 65.75 C-N 

N1s 402.75 38.95 402.21 38.45 402.77 0.82 NH2-Fe 

 

Table 3.A3: XPS Spectral assignment of Oxygen 

ReElement IO-Chitosan Fresh 

Pd@IO-chitosan 

Recycled(10) 

Pd@IO-chitosan 

Assignment 

Binding 

energy 

(eV) 

Area% Binding 

energy 

(eV) 

Area% Binding 

energy 

(eV) 

Area% 

O 1s 528.14 14.28     Surface 

oxygen 

O 1s 529.60 17.91 530.32 39.21 529.99 57.53 Bulk Fe-O, Pd-O 

O 1s 531.49 38.60 531.77 40.00 531.82 28.44 N-C=O 

O 1s 533.25 29.21 533.24 20.79 533.17 14.03 C-OH, C-O-C 
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Table 3.A4: XPS Spectral assignment of Iron 

ReElement IO-Chitosan Fresh 

Pd@IO-chitosan 

Recycled(10) 

Pd@IO-chitosan 

Assignment 

Binding 

Energy 

(eV) 

Area% Binding 

Energy 

(eV) 

Area% Binding 

Energy 

(eV) 

Area% 

Fe2p3/2 710.90 14.10 710.92 27.78 709.77 

711.28 

9.58 

5.58 

Fe3+ 

Fe2p3/2 713.29 21.27 712.60 14.02 713.12 3.18 Fe
3+

 

Fe2p3/2 715.17 13.90 714.32 11.27 
  

Satellite 

Fe2p3/2 717.46 7.61 717.05 4.88 
  

Satellite 

Fe2p3/2 720.80 10.13 719.89 8.09 718.47 51.04 Satellite 

Fe2p1/2 
    

723.17 4.79  

Fe2p1/2 723.90 7.05 723.92 13.89 724.86 2.79  

Fe2p1/2 726.29 10.64 725.60 7.01 726.59 1.59  

Fe2p1/2 728.17 6.95 727.32 5.64 
  

 

Fe2p1/2 730.46 3.80 729.61 3.58 
  

Satellite 

Fe2p1/2 734.11 4.55 733.48 3.84 732.14 21.45 Satellite 

 

Table 3.A5: XPS Spectral assignment of Palladium 

Element Fresh 

Pd@IO-chitosan 

Recycled(10) 

Pd@IO-chitosan 

Assignment 

Binding 

Energy (eV) 

Area% Binding 

Energy (eV) 

Area% 

Pd3d5/2 336.73 9.02 336.70 16.20 Charged Pd metallic nanoclusters    
337.70 33.17 Pd-O 

Pd3d5/2 338.44 32.40 338.64 10.63 
PdO, Pd

2+

 

Pd3d5/2 339.43 20.67 
  

Strong Pd –IO chitosan interactions 

Pd3d3/2 341.73 6.01 341.04 10.80  

Pd3d3/2 343.64 20.36 342.14 22.11  

Pd3d3/2 344.62 11.53 343.09 7.09  
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XPS data of Pd@Ni@IO-chitosan 

Table 3.A6: XPS Spectral assignment of Carbon 

Element Ni@IO-Chitosan Pd@Ni@IO-

Chitosan 

Pd@Ni@IO-

Chitosan (r10) 

Interpretation 

C1s Peak Area% Peak Area% Peak Area% 

C1s 284.80 55.11 284.79 60.39 284.80 43.36 C-C/C-H 

C1s 285.49 26.78 286.17 24.24 285.60 33.84 C-O-C, C-OH, C-O, C-

NH2 

C1s 286.67 11.02 287.15 11.37 286.79 13.85 C=O 

C1s 288.47 7.09 288.39 4.00 288.27 8.95 O-C-O, O-C=O 

 

Table 3.A7: XPS Spectral assignment of Nitrogen 

Element Ni@IO-Chitosan Pd@Ni@IO-

Chitosan 

Pd@Ni@IO-

Chitosan (r10) 

Interpretation 

N1s Peak Area% Peak Area% Peak Area% 

N1s 399.29 54.33 398.20 24.95 398.24 21.29 O=C-NH 

N1s 400.24 35.74 399.68 52.09 400.14 17.82 C-N 

N1s 401.82 9.93 401.97 22.96 402.82 60.89 NH2-Fe 

 

Table 3.A8: XPS Spectral assignment of Oxygen 

Element Ni@IO-Chitosan Pd@Ni@IO-

Chitosan 

Pd@Ni@IO-

Chitosan (r10) 

Interpretation 

O 1s Peak Area% Peak Area% Peak Area% 

O 1s 529.70 55.36 529.59 55.95 529.60 19.72 Bulk Fe-O, Pd-O 

O 1s 530.80 23.21 531.11 25.27 531.24 52.11 N-C=O 

O 1s 532.38 21.43 532.47 18.78 532.85 28.18 C-OH, C-O-C 

 

Table 3.A9: XPS Spectral assignment of iron 

Element Ni@IO-Chitosan Pd@Ni@IO-

Chitosan 

Pd@Ni@IO-

Chitosan (r10) 

Interpretation 

Peak Area% Peak Area% Peak Area% 

Fe2p3/2 710.16 33.00 710.00 25.91 710.25 16.53 Fe3+ octahedral 

Fe2p3/2 711.97 19.00 711.86 14.55 712.12 22.98 Fe3+ octahedral 

Fe2p3/2 714.13 5.10 713.48 10.00 714.93 5.00 Fe3+ Tetrahedral 

Fe2p3/2 716.99 4.01 716.99 7.32 717.88 2.87 Fe2+ octahedral  
Fe2p3/2 719.19 4.35 719.85 6.49 720.33 3.61 Satellite peak of Fe3+ 2p3/2 

 
       

Fe2p1/2 723.26 16.50 723.00 12.95 723.35 15.97 Fe3+ octahedral 

Fe2p1/2 725.07 9.50 724.86 7.27 725.25 22.20 Fe3+ octahedral 

Fe2p1/2 727.23 2.55 726.48 5.00 728.03 4.83 Fe3+ Tetrahedral 

Fe2p1/2 730.09 2.01 728.54 3.16 730.98 2.65 Fe2+ octahedral 2p3/2 

Fe2p1/2 733.60 3.98 732.61 7.34 733.43 3.48 Satellite peak of Fe3+ 2p3/2 
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Table 3.A10: XPS Spectral assignment of Nickel 

Elememt Ni@IO-Chitosan Pd@Ni@IO-

Chitosan 

Pd@Ni@IO-

Chitosan (r10) 

Interpretation 

Peak Area% Peak Area% Peak Area%  

Ni2p3/2 852.58 1.18 852.18 3.87 852.60 4.92 Ni metal 

Ni2p3/2 854.35 10.22 854.62 20.68 853.76 7.54 NiO 

Ni2p3/2 855.29 25.16 855.99 7.57 855.42 30.02 
 

Ni2p3/2 857.33 9.77 857.23 3.55 857.73 3.65 
 

Ni2p3/2 858.90 7.85 859.94 8.39 860.54 15.07 Ni(OH)2 

Ni2p3/2 860.77 11.77 861.00 6.48 861.73 12.03 satellite (Ni metal) 

Ni2p3/2 862.38 20.13 862.36 17.93 862.69 4.66 satellite (higher oxidation 

state of Ni 

Ni2p3/2 864.47 4.45 863.74 14.99 864.52 5.68 satellite 

Ni2p3/2 
  

864.86 8.12 865.45 9.65 
 

Ni2p3/2 866.54 9.48 866.64 8.42 866.91 6.78 satellite (NiO) 

 

Table 3.A11: XPS Spectral assignment of Palladium 

 Pd@Ni@IO-Chitosan Pd@Ni@IO-Chitosan (r10) Interpretation 

Peak Area% Peak Area% 

Pd3d5/2 334.94 21.09 335.14 7.3 Pd (0) 

Pd3d5/2 336.81 19.39 336.88 51.51 Pd (2+) 

Pd3d5/2 337.79 19.52 338.67 25.75 PdO 

 
     

Pd3d3/2 340.34 14.06 340.40 4.87 Pd (0) 

Pd3d3/2 342.61 12.93 342.38 5.35 Pd (2+) 

Pd3d3/2 343.39 13.01 343.93 5.22 PdO 
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GC –MS Spectra of standard Biphenyl 

 

Figure 3.A1 GC –MS Spectra of standard Biphenyl; RT: 9.49 min Molecular weight: 154.18 

gm/mol 

GC –MS Spectra of standard Iodobenzene 

 

Figure 3.A2 GC –MS Spectra of Iodobenzene; RT: 6.02 min Molecular weight: 204.01 

gm/mol 

 

GC-MS spectra of optimization of Suzuki coupling reaction using Pd@IO-Chitosan 

GC MS spectra during screening of solvent for the reaction between Iodobenzene and 

phenylboronic acid (Figures 3.A3-12) 

Polar aprotic and alcoholic solvent was not showing a good yield. However, alcoholic solvents 

with water showing a good quantitative yield. It was observed that reaction in water as a solvent 

leading to quantitative yield (>99%) of biphenyl after 6 h. Ethanol and isopropanol as co-solvents 

with water in the ratio 9:1, 7:3, 1:1, 3:7 respectively also gave quantitative yield of biphenyl. 
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Table 3.A12 Optimization of solvent and temperature 

Entry Catalyst 

[mg(mol%)] 

Solvent Base Temp 

°C 

Time 

(h) 

GC-MS 

Yield 

1.  1 Ethanol K2CO3 (2 equiv.) 60 12 0% 

2.  1 Isopropanol K2CO3 (2 equiv.) 60 12 0% 

3.  1 Toluene K2CO3 (2 equiv.) 60 12 60% 

4.  1 Toluene K2CO3 (2 equiv.) 35  12 0% 

5.  1 DMF K2CO3 (2 equiv.) 60 12 0% 

6.  1 THF K2CO3 (2 equiv.) 60 12 0% 

7.  1 Ethanol:water(9:1) K2CO3 (2 equiv.) 60 12 >99% 

8.  1 Ethanol:water(7:3) K2CO3 (2 equiv.) 60 12 >99% 

9.  1 Ethanol:water(1:1) K2CO3 (2 equiv.) 60 12 >99% 

10.  1 Ethanol:water(3:7) K2CO3 (2 equiv.) 60 12 >99% 

11.  1 Ethanol:water(9:1) K2CO3 (2 equiv.) 35  12 26.28% 

12.  1 Ethanol:water(7:3) K2CO3 (2 equiv.) 35  12 86.11% 

13.  1 Ethanol:water(1:1) K2CO3 (2 equiv.) 35  12 >99% 

14.  1 Isopropanol: water (1:1) K2CO3 (2 equiv.) 60 12 >99% 

15.  1 Isopropanol: water (7:3) K2CO3 (2 equiv.) 60 12 >99% 

16.  1 Isopropanol: water (1:1) K2CO3 (2 equiv.) 35  12 >99% 

17.  1 Water K2CO3 (2 equiv.) 100 12 >99% 

18.  1 Water K2CO3 (2 equiv.) 100 6 >99% 

19.  1 Water K2CO3 (2 equiv.) 75 6 >99% 

20.  1 Water K2CO3 (2 equiv.) 60 6 >99% 

21.  1 Water K2CO3 (2 equiv.) 50 6 >99% 

22.  1 Water K2CO3 (2 equiv.) 35  6 >99% 

Reaction conditions: Iodobenzene (1.59 mmol), phenylboronic acid (1.59 mmol), solvent (10 

ml), catalyst (1 mg), base (2 equiv.), TLC (n-hexane), GC-MS (HPLC grade chloroform), Yields 

were obtained by GC-MS analysis (Figs. S7 to S16 show the representative GC MS spectra of 

standard biphenyl and products obtained in respective solvents) 

Toluene (Figure 3.A3) 

 

                                At 60 C          At 35°C 
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Figure 3.A4: THF     Figure 3.A5: Ethanol 

  

Figure 3.A6: Isopropropanol 

 

Ethanol:Water 

It was observed that as the amount of water increases formation of biphenyl increases Figure 

3.A7-3.A9. In the absence of water negligible amount of yield was obtained. Temperature also 

played an important role, as the temperature increases selectively biphenyl is formed.  

Figure 3.A7: EtOH: H2O (9:1) 

 

At 60 C     At 35°C 
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Figure 3.A8: EtOH: H2O (7:3) 

 

At 60°C     At 35°C 

Figure 3.A9: EtOH: H2O (5:5) 

 

                        At 60°C     At 35°C 

Figure 3.A10: EtOH: H2O (3:7) 
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Figure 3.A11: Isopropanol:Water (6:4) 

 

Figure 3.A12: Water 

 

At 100 ℃ 

 

At 60°C                 At 35°C 

Reaction in absence of iodobenzene 

Recycling of catalyst was carried out using Phenyl boronic acid (1.59 mmol), K2CO3 (3.18 

mmol), Pd@IO-chitosan (1 mg) and H2O (10 ml) at 60°C and at 35°C under stirring for 6 h. 

Figure 3.A13 show that homocoupling of phenylboronic acid was not observed which is reported 

to be a dominant reaction, which gradually subsides as the temperature rises. 
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   At 60°C        At 35°C 

Figure 3.A13: GC-MS spectra of the product for Pd@IO-Chitosan catalysed reaction in 

absence of iodobenzene performed at 60 °C and at 35 °C 

GC MS spectra during screening of base for the reaction between iodo benzene and 

phenylboronic acid (Figures 3.A14 to 3.A18) 

Screening of bases such as K2CO3, Na2CO3, NaOH, KOH and Et3N was performed and it 

revealed that highest yield could be obtained by the use of 2 equiv. K2CO3 and Na2CO3 as base. 

Table 3.A13: Optimization of Base 

Entry Catalyst [mg(mol%)] Solvent Base Temp 

°C 

Time 

(h) 

GC-MS 

Yield 

1.  1 Water K2CO3 (2 equiv.) 100 6 >99% 

2.  1 Water Na2CO3 (2 equiv.) 100 6 98.5% 

3.  1 Water KOH (2 equiv.) 100 6 15.6% 

4.  1 Water NaOH (2 equiv.) 100 6 2.6% 

5.  1 Water Et3N (2 equiv.) 100 6 0% 

6.  1 Water K2CO3 (1.5 equiv.) 35  6.5 24.5% 

7.  1 Water K2CO3 (1 equiv.) 35 6.5 0% 

8.  1 Water No base 100 12 0% 
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Figure 3.A14: KOH    Figure 3.A15 NaOH 

  

Figure 3.A16: Na2CO3    Figure 3.A17 Triethylamine 

  

Figure 3.A18: K2CO3 

 

Optimization of amount of catalyst. 

It was observed that coupling of 1.59 mmol Iodobenzene and 1.59 mmol Phenylboronic acid 

gave same results at 100 to 35 °C (i.e, Room temperature) with 1 mg of Catalyst. Reaction with 

2 mmol Iodobenzene and Phenylboronic acid requires more catalyst for the completion of the 
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reaction at room temperature but 1 mg catalyst is enough for the reaction at 100 °C and gave 

99% yield. 

Table 3.A14: Optimization of amount of catalyst 

Entry Catalyst [mg(mol%)] 

 

Solvent Base Temp 

(°C) 

Time 

(h) 

GC-MS 

Yield 

1.  50 (0.27 mol% Pd) Water K2CO3 (5 equiv.) 100 12 >99% 

2.  25 (0.13 mol% Pd) Water K2CO3 (5 equiv.) 100 12 >99% 

3.  10 (0.05 mol% Pd) Water K2CO3 (5 equiv.) 100 12 >99% 

4.  5 (0.027 mol% Pd) Water K2CO3 (5 equiv.) 100 12 >99% 

5.  2 (0.01 mol% Pd) Water K2CO3 (5 equiv.) 100 12 >99% 

6.  1 (0.0055 mol% Pd) Water K2CO3 (5 equiv.) 100 12 >99% 

7.  0.5 (0.00275 mol% Pd) Water K2CO3 (5 equiv.) 100 12 >99% 

8.  0.5 (0.00275 mol% Pd) Water 

(N2 atmosphere) 

K2CO3 (2 equiv.) 100 12 >99% 

9.  1 mg IO-Chitosan Water K2CO3 (2 equiv.) 100 12 0% 

10.  1 mg PdCl2 Water K2CO3 (2 equiv.) 100 12 >99% 

11.  1 mg PdCl2 Water K2CO3 (2 equiv.) 35 12 >99% 

12.  No Catalyst Water K2CO3 (2 equiv.) 100 12 0% 

Reaction conditions: Iodobenzene (1.59 mmol), phenylboronic acid (1.59 mmol), solvent (10 

ml), temperature (100 C), reaction time (12h), TLC (n-hexane), GC-MS (HPLC grade 

chloroform), Yields were obtained by GC-MS analysis 

Reaction with 2 mmol Starting material and 1 mg catalyst at 100 °C (Figure 3.A19) 
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Optimization of Time: 

Time study of Pd@IO-Chitosan catalysed reaction between iodobenzene and phenyl boronic 

acid performed at 35°C and at 100 °C. It was observed that reaction takes 6 hours for completion 

(Figures 3.A20-21)  

Table 3.A15: Optimization of Time for C-C Coupling 

Entry Catalyst [mg(mol%)] Solvent Base Temp 

(°C) 

Time 

(h) 

GC-MS 

Yield 

1.  1 Water K2CO3 (2 equiv.) 100 7 >99% 

2.  1 Water K2CO3 (2 equiv.) 100 6 >99% 

3.  1 Water K2CO3 (2 equiv.) 100 5 96.51% 

4.  1 Water K2CO3 (2 equiv.) 100 4 49.45% 

5.  1 Water K2CO3 (2 equiv.) 100 1 0% 

6.  1 Water K2CO3 (2 equiv.) 35  6 >99% 

7.  1 Water K2CO3 (2 equiv.) 35  5 89% 

8.  1 Water K2CO3 (2 equiv.) 35  4 47% 

9.  1 Water K2CO3 (2 equiv.) 35  3 0% 

10.  1 Water K2CO3 (2 equiv.) 35  2 0% 

11.  1 Water K2CO3 (2 equiv.) 35  1 0% 

Reaction conditions: Iodobenzene (1.59 mmol), phenylboronic acid (1.59 mmol), solvent (10 

mL), temperature (100°C& RT), TLC (n-hexane), GC-MS (HPLC grade chloroform), Yields 

were obtained by GC-MS analysis 

Time study  
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           5 hours      6 hours 

Figure 3.A21: GC-MS spectra of the product for Pd@IO-Chitosan catalysed reaction between 

iodobenzene and phenyl boronic acid performed at 100 °C in the time range 1 to 6 hours 

GC-MS spectra of the product for Pd@IO-Chitosan catalysed reaction between 2-

methyliodobenzene and phenyl boronic acid performed at 100 °C for 15 hours. 

 

 

Figure 3.A22: GC-MS spectra of the(2-methyl-1,1’-Biphenyl) at 100°C for 15 h 
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GC-MS spectra of the product for Pd@IO-Chitosan catalysed reaction between 4-

methyliodobenzene and phenyl boronic acid performed at 100 °C for 15 hours 

 

Figure 3.A23: GC-MS spectra of the (4-methyl-1,1’-Biphenyl) at 100°C for 15 h
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GC-MS spectra of optimization of Suzuki coupling reaction using Pd@Ni@IO-Chitosan 

Table 3.A16: Optimization of Suzuki coupling reaction 

Sr. 

No. 

Catalyst (mg) Solvent Base Temp 

(℃) 

Time 

(h) 

GC-MS 

Yield 

Optimization of Solvent 

1.  1 Ethanol K2CO3 (2 equi.) 80 12 43.19 

2.  1 Isopropanol K2CO3 (2 equi.) 80 12 20.30 

3.  1 DMF K2CO3 (2 equi.) 100 12 trace 

4.  1 THF K2CO3 (2 equi.) 80 12 trace 

5.  1 Toluene K2CO3 (2 equi.) 100 12 5.61 

6.  1 Ethanol: Water (3:7) K2CO3 (2 equi.) 80 12 68.69 

7.  1 Ethanol: Water (1:1) K2CO3 (2 equi.) 80 12 69.50 

8.  1 Isopropanol: Water (3:7) K2CO3 (2 equi.) 80 12 98.43 

9.  1 Isopropanol: Water (1:1) K2CO3 (2 equi.) 80 12 92.54 

10.  1 Water K2CO3 (2 equi.) 80 12 100 

Optimization of temperature 

11.  1 Water K2CO3 (2 equi.) 100 12 100 

12.  1 Water K2CO3 (2 equi.) 80 12 100 

13.  1 Water K2CO3 (2 equi.) 60 12 100 

14.  1 Water K2CO3 (2 equi.) 40 12 100 

15.  1 Water K2CO3 (2 equi.) 30 12 100 

Optimization of Base 

16.  1 Water K2CO3 (2 equi.) 30 12 100 

17.  1 Water Na2CO3 (2 equi.) 30 12 100 

18.  1 Water KOH (2 equi.) 30 12 0 

19.  1 Water NaOH (2 equi.) 30 12 0 
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20.  1 Water TEA (2 equi.) 30 12 0 

Optimization of amount of base 

21.  1 Water K2CO3 (5 equi.) 30 12 100 

22.  1 Water K2CO3 (2 equi.) 30 12 100 

23.  1 Water K2CO3 (1 equi.) 30 12 100 

24.  1 Water K2CO3 (0.75 equi.) 30 12 95.12 

25.  1 Water K2CO3 (0.5 equi.) 30 12 75.42 

Optimization of Time 

26.  1 Water K2CO3 (1 equi.) 30 12 100 

27.  1 Water K2CO3 (1 equi.) 30 10 100 

28.  1 Water K2CO3 (1 equi.) 30 8 100 

29.  1 Water K2CO3 (1 equi.) 30 6 100 

30.  1 Water K2CO3 (1 equi.) 30 4 100 

31.  1 Water K2CO3 (1 equi.) 30 3 100 

32.  1 Water K2CO3 (1 equi.) 30 2 45.48 

33.  1 Water K2CO3 (1 equi.) 30 1 22.49 

Optimization of amount of catalyst 

34.  1 mg (0.012 mol%) 

(with 1.59 mmol 

starting material 

Water K2CO3 (2 equi.) 30 4 100 

35.  1 mg (with 2 mmol 

starting material) 

Water K2CO3 (2 equi.) 30 4 100 

36.  1 mg Ni@IO-

Chitosan 

Water K2CO3 (2 equi.) 100 12 0 

37.  No catalyst Water K2CO3 (2 equi.) 100 12 0 

Reaction conditions: Iodobenzene (2 mmol), phenylboronic acid (2 mmol), solvent (10 ml), 

catalyst (1 mg), base (1 equiv.), TLC (n-hexane), GC-MS (HPLC grade chloroform), Yields were 

obtained by GC-MS analysis 
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GC MS spectra during screening of solvent for the reaction between Iodobenzene and 

phenylboronic acid (Figures 3.A24) 

 

Figure 3.A24: GC-MS spectra of the product for Pd@Ni@IO-Chitosan catalysed reaction 

between iodobenzene and phenylboronic acid performed using K2CO3 as a base at 100°C and 

at 80°C 
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GC MS spectra during Optimization of temperature for the reaction between Iodobenzene 

and phenylboronic acid (Figure 3.A25) 

 

Figure 3.A25: GC-MS spectra of the product for Pd@Ni@IO-Chitosan catalysed reaction 

between iodobenzene and phenylboronic acid performed using K2CO3 as a base and water as a 

solvent at 100°C and at 30°C 
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GC MS spectra during Optimization of Base for the reaction between Iodobenzene and 

phenylboronic acid (Figures 3.A26) Screening of bases such as K2CO3, Na2CO3, NaOH, KOH 

and Et3N was performed and it revealed that highest yield could be obtained by the use of 2 

equiv. K2CO3 and Na2CO3 as base. 

 

Figure 3.A26: GC-MS spectra of the product for Pd@Ni@IO-Chitosan catalysed reaction 

between iodobenzene and phenylboronic acid performed in water at 30 °C. 
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GC MS spectra during Optimization of Base amount for the reaction between Iodobenzene 

and phenylboronic acid (Figures 3.A27) 

 

Figure 3.A27: GC-MS spectra of the product for Pd@Ni@IO-Chitosan catalysed reaction 

between iodobenzene and phenylboronic acid performed using K2CO3 as a base water as a 

solvent at 30 °C. 
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GC MS spectra during Optimization of Time for the reaction between Iodobenzene and 

phenylboronic acid (Figures 3.A28) 

 

Figure 3.A28: GC-MS spectra of the product for Pd@Ni@IO-Chitosan catalysed reaction 

between iodobenzene and phenyl boronic acid performed at 35 °C in the time range 1 to 4 hours 
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Optimization of amount of catalyst. 

It was observed that coupling of 2 mmol Iodobenzene and 2 mmol Phenylboronic acid using 1 

equivalent K2CO3 gave same results at 100 to 30 °C (i.e, Room temperature) with 1 mg of 

Catalyst. (Figure 3.A29) 

 

Figure 3.A29: GC-MS spectra of the product for Pd@Ni@IO-Chitosan catalysed reaction 

between 2 mmol iodobenzene and phenyl boronic acid performed in water using K2CO3 as a 

Base at 30 °C 

 

 



Chapter 3                                                 Pd/Ni-Pd NPs Stabilized on IO NPs Capped with Chitosan 

 

122 

 

GC-Ms and NMR spectra of biphenyl derivatives 

1.  

 

M.P: 70 °C 

Molecular weight: 154.21 gm/mol 

Pd@IO-Chitosan 

 

At 100°C 

 

At 60 ℃    At room temperature 

Figure 3.A30: GC-Ms spectra of crude product (Biphenyl) synthesized From Iodobenzene at 

RT, 60°C and 100 °C 
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Pd@Ni@IO-Chitosan 

 

Figure 3.A31 GC-Ms spectra of crude product (Biphenyl) synthesized From Iodobenzene at 

RT, 60°C and 100 °C 

 

Figure 3.A32: NMR spectra of column purified (Biphenyl) synthesized From Iodobenzene 
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2.  

 

M.P: 49 °C 

Molecular weight: 168.24 gm/mol` 

Pd@IO-Chitosan 

 

At 100 °C 

 

At 60°C     At room temperature 

Figure 3.A33: GC-Ms spectra of crude product (4-methyl-1,1’-Biphenyl) synthesized at RT, 

60°C and 100 °C 
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Pd@Ni@IO-Chitosan 

 

Figure 3.A34 GC-Ms spectra of crude product (4-methyl-1,1’-Biphenyl) synthesized at RT, 

60°C and 100 °C 

 

Figure 3.A35: NMR spectra of column purified (4-methyl-1,1’-Biphenyl) 
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3. 

 

B.P: 255 °C 

Molecular weight: 168.24 gm/mol 

Pd@IO-Chitosan 

 

At 100 ℃ 

 

At 60 ℃               At Room temperature 

Figure 3.A36: GC-Ms spectra of crude product (2-methyl-1,1’-Biphenyl) synthesized at RT, 

60°C and 100 °C 
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Pd@Ni@IO-Chitosan 

 

Figure 3.A37 GC-Ms spectra of crude product (2-methyl-1,1’-Biphenyl) synthesized at RT, 

60°C and 100 °C 

 

Figure 3.A38: NMR spectra of column purified (2-methyl-1,1’-Biphenyl) 
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4. 

 

       B.P: 90 °C 

Molecular weight: 182.2 gm/mol 

Pd@IO-Chitosan 

 

At 100°C 

 

At 60℃          At Room temperature 

Figure 3.A39: GC-MS spectra of crude product ([1,1'-biphenyl]-2-carbaldehyde) synthesized 

at RT, 60°C and 100 °C 
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Pd@Ni@IO-Chitosan 

 

Figure 3.A40:  GC-MS spectra of crude product ([1,1'-biphenyl]-2-carbaldehyde) synthesized 

at RT, 60°C and 100 °C 

 

Figure 3.A41: NMR spectra of column purified ([1,1'-biphenyl]-2-carbaldehyde) 
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5. 

 

M.P. 60 °C 

Molecular weight: 182.2 gm/mol 

Pd@IO-Chitosan 

 

At 100 ℃ 

 

At 60 ℃    At room temperature 

Figure 3.A42: GC-Ms spectra of crude product ([1,1'-biphenyl]-4-carbaldehyde) synthesized at 

RT, 60°C and 100 °C 

 

RT: 2.99 - 15.37

3 4 5 6 7 8 9 10 11 12 13 14 15

Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

RT: 13.02
AA: 5616737
AH: 1784791
BP: 182.16

RT: 10.11
AA: 61067
AH: 16837
BP: 154.23

RT: 15.24
AA: 38758
AH: 10724
BP: 108.11

RT: 14.10
AA: 70643
AH: 5507
BP: 232.17

RT: 3.25
AA: 16522
AH: 5315
BP: 83.17

RT: 11.56
AA: 23089
AH: 5190
BP: 70.27

RT: 5.44
AA: 12081
AH: 2531
BP: 83.04

RT: 6.54
AA: 11807
AH: 2470
BP: 211.21

RT: 7.46
AA: 7625
AH: 2202
BP: 83.15

RT: 8.68
AA: 16212
AH: 2077
BP: 70.42

RT: 12.17
AA: 16556
AH: 2026
BP: 149.15

NL:
1.79E6

TIC  MS  
ICIS 
4-CHO-RT

4-cho_FCP_27-5 #401 RT: 12.27 AV: 1 NL: 2.36E8
T: + c Full ms [50.00-650.00]

50 100 150 200 250 300 350 400 450 500 550 600 650

m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

181.06

152.10

76.10

77.05

63.09
127.09

90.62

207.08 281.15234.17 340.91302.23 415.13389.11 449.75 625.56593.38475.05 529.53 557.57

RT: 2.97 - 15.33

3 4 5 6 7 8 9 10 11 12 13 14 15

Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

RT: 9.42
AA: 692291844
AH: 449608956
BP: 154.14 RT: 14.46

AA: 338135976
AH: 176962010
BP: 98.14

RT: 11.79
AA: 807140097
AH: 69562265
BP: 149.06

RT: 13.40
AA: 45247338
AH: 16989853
BP: 181.16

RT: 10.33
AA: 103148149
AH: 11607164
BP: 191.22

RT: 9.19
AA: 58170919
AH: 2473721
BP: 83.02

RT: 3.18
AA: 13157736
AH: 1497600
BP: 82.99

RT: 5.26
AA: 8184503
AH: 987721
BP: 83.01

RT: 6.32
AA: 3306041
AH: 740472
BP: 83.00

RT: 12.35
AA: 25383391337
AH: 2824781785
BP: 180.98

NL:
2.84E9

TIC  MS  
ICIS 
4-cho_RT

RT: 2.98 - 15.26 SM: 5G

3 4 5 6 7 8 9 10 11 12 13 14 15

Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e RT: 5.24

AA: 7111977820
AH: 1397517529
BP: 94.04

RT: 9.42
AA: 5518451304
AH: 1364925497
BP: 154.16

RT: 13.68
AA: 10715472540
AH: 1006498324
BP: 198.12

RT: 11.80
AA: 1174111160
AH: 86371363
BP: 149.06

RT: 6.00
AA: 112696059
AH: 31771236
BP: 77.11

RT: 14.48
AA: 169197871
AH: 29374796
BP: 181.14

RT: 10.43
AA: 41108128
AH: 6510851
BP: 168.18

RT: 8.83
AA: 69211038
AH: 2254293
BP: 78.12

RT: 3.35
AA: 1976376
AH: 545431
BP: 83.00

RT: 4.28
AA: 2710228
AH: 432063
BP: 82.99

RT: 12.35
AA: 53720144044
AH: 2761795428
BP: 181.00

NL:
2.80E9

TIC  MS  
ICIS 
4-cho_60c



Chapter 3                                                 Pd/Ni-Pd NPs Stabilized on IO NPs Capped with Chitosan 

 

131 

 

Pd@Ni@IO-Chitosan 

 

Figure 3.A43: GC-Ms spectra of crude product ([1,1'-biphenyl]-4-carbaldehyde) synthesized 

at RT, 60°C and 100 °C 

 

Figure 3.A44: NMR spectra of column purified ([1,1'-biphenyl]-4-carbaldehyde) 
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6. 

 

M.P: 70 °C;  

Molecular weight: 154.21 gm/mol 

Pd@IO-Chitosan 

 

At 100 ℃ 

 

At 60 ℃      At room temperature 

Figure 3.A45: GC-MS spectra of crude product (Biphenyl) synthesized From Bromobenzene at 

RT, 60℃ and 100 °C 
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Pd@Ni@IO-Chitosan 

 

Figure 3.A46: GC-MS spectra of crude product (Biphenyl) synthesized From Bromobenzene 

at RT, 60℃ and 100 °C 

 

Figure 3.A47: NMR spectra of column purified Biphenyl synthesized From Bromobenzene 
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7. 

 

M.P: 70 °C 

Molecular weight: 154.21 gm/mol 

Pd@IO-Chitosan 

 

At 100 °C 

 

At 60 °C     At room temperature  

Figure 3.A48: GC-Ms spectra of crude product (Biphenyl) synthesized From Chlorobenzene at 

RT, 60℃ and 100 °C 
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Pd@Ni@IO-Chitosan 

 

Figure 3.A49: GC-Ms spectra of crude product (Biphenyl) synthesized From Chlorobenzene at 

RT, 60℃ and 100 °C 

 

Figure 3.A50: NMR spectra of column purified Biphenyl synthesized From Chlorobenzene 



Chapter 3                                                 Pd/Ni-Pd NPs Stabilized on IO NPs Capped with Chitosan 

 

136 

 

Hot filtration test: 

After 2 h the catalyst (Pd@Ni@IO-Chitosan) was separated and the reaction was then continued 

further for 10 h after catalyst removal. Products were isolated and analysed with GC-MS, there 

was no further conversion of the desired product after magnetic removal of the catalyst is 

detected, ascertaining the heterogeneous nature of the catalyst under study. 

 

Figure 3.A51: Heterogeneity test (After 2h) 

Recycling of catalyst (Pd@IO-Chitosan) 

Recycling of catalyst was carried out using Iodobenzene (1.59mmol), Phenyl boronic acid (1.59 

mmol), K2CO3 (3.18 mmol), Pd@IO-chitosan (1 mg) and H2O (10 ml) at 90-100 °C under 

stirring for 6 h. Pd@IO-Chitosan maintained its activity upto 12 cycles. A 3% decrease in yield 

was observed during the 13th cycle. (Figure S42) 

 

Recycle 12      Recycle 13 

Figure 3.A52: GC-MS spectra of the product for Recycled catalyst (Pd@IO-Chitosan) catalysed 

reaction between iodobenzene and phenyl boronic acid performed at 100 °C   
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Recycling of catalyst (Pd@Ni@IO-Chitosan) 

Recycling of catalyst was carried out using Iodobenzene (2 mmol), Phenyl boronic acid (2 

mmol), K2CO3 (2 mmol), Pd@Ni@IO-chitosan (1 mg) and H2O (10 ml) at 90-100 °C under 

stirring for 4 h. Pd@IO-Chitosan maintained its activity upto 17 cycles. A 2.71% decrease in 

yield was observed during the 13th cycle. (Figure 3.A53) 

 

Figure 3.A53: GC-MS spectra of the product for Recycled catalyst (Pd@Ni@IO-Chitosan) 

catalysed reaction between iodobenzene and phenyl boronic acid performed at 100 °C 

Reaction with Ni@IO-Chitosan at 100 ℃ 

Recycling was carried out using Iodobenzene (1.59 mmol), Phenyl boronic acid (1.59 mmol), 

K2CO3 (1.59 mmol), Ni@IO-chitosan (1 mg) and H2O (10 ml) at 90-100 °C under stirring for 

12 h. 

 

Figure 3.A54: GC-MS spectra of the product catalysed by Ni@IO-Chitosan with reaction 

between Iodobenzene and phenyl boronic acid performed at 100 °C. 
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