Chapter 5: Palladium Nanostructures and
Nickel-Palladium Nanostructures Stabilized on
Iron Oxide Nanoparticles Capped with
Diethylenetriamine Pentaacetic acid:
Preparation, Characterization and Applications
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5.1. Introduction

Surface modification with appropriate capping agents offers better dispersion of the
nanomaterials in appropriate solvents, and thus better performance can be anticipated in various
applications. Additionally, these surface-modified nanomaterials can be employed as noble
metal supports to develop heterogeneous catalysts that are more accessible to the reactants(Guin
et al., 2007). Aminopolycarboxylic acids are able to form strong complexes with metal ions by
donation of electron pairs from nitrogen and oxygen atoms to the metal ion to form multiple
chelate rings. This property makes aminopolycarboxylic acid based ligands such as
Ethylenediaminetetraacetic acid (EDTA) and Diethylenetriaminepentaacetic acid (DTPA) as
versatile capping agents for metal ions and forms the basis of their applications in a wide variety

of chemical, medical and environmental processes(Li et al., 2019; Malkar et al., 2014).

Esmaeilpour et al have prepared palladium nanoparticles supported on EDTA-modified
Fe304@SiO2 nanospheres and used it for Suzuki coupling and Sonogashira coupling reactions
(Esmaeilpour et al., 2018). FesOs@SiO2-EDTA-Pd catalyst showed very low TON and
recyclability upto 10 cycles with successive decrease in yield after 5™ cycle. Heydari at al
synthesized Pd(ll) anchored onto ethylenediaminetetraacetic acid-coated FesOs. Its catalytic
activity was checked for Nitroarene reduction and Suzuki—Miyaura coupling reaction. They got

recyclability with successive decrease in yield upto 5 cycles(Azizi et al., 2015)

Nanoparticles with superparamagnetic properties are a new class of environmentally friendly
catalysts support for organic transformation reactions(Stevens et al., 2005) as they can be rapidly
isolated, easily recovered (Guin et al., 2007; Jinhui Tong et al., 2016; Khazaei et al., 2017) and
can be utilised to immobilise Pd catalysts having the properties of heterogeneity and magnetic
separability. It is possible to create magnetic nanoparticles from a variety of materials, including
Fe, Co, and Ni alloys, FePt and CoPt; and ferrites, CoFe204, MnFe204, CuFe204, and ZnFez0a4.
The majority of magnetic reusable nano-catalysts in use are metal oxides, including iron(l1) oxide
(FeO), magnetite (FesOs), and maghemite (y-Fe203). Due to its ease of production (Sydnes,
2017). Magne O. Sydnes has prepared palladium on magnetic supports (Iron oxide nanoparticles)
and used it as a catalyst for Suzuki Miyaura cross coupling reaction(Sydnes, 2017). Singh et. al.,
fabricated Palladium(Il) on Schiff base functionalized NiFe;O4 and used it as phosphine-free
heterogeneous catalyst for Suzuki Coupling reactions(Singh et al., 2015). Dehghani et al.,
synthesized magnetic zeolite Y—palladium—nickel ferrite by ultrasonic irradiation for application

as a catalyst in Suzuki coupling reaction (Dehghani et al., 2019). Ghanbari et. al. prepared
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palladium-nickel/iron oxide core—shell nanoalloy via ultrasonic assisted method and utilized it

for Suzuki-Miyaura coupling and p-nitrophenol reduction (Ghanbari et al., 2017).

In the present chapter, we have reported the synthesis of magnetic Pd based metallic and Pd-Ni
based bimetallic nanocatalyst through Diethylenetriamine Pentaacetic acid functionalized
iron oxide nanoparticles (I0- DTPA & Ni@10-DTPA).

The use of DTPA with multiple carboxyl groups not only facilitated the fabrication of capped
Iron Oxide nanoparticles and Nickel doped Iron Oxide nanoparticles (I10- DTPA & Ni@IO-
DTPA) but also provided active sites for the further immobilization of Pd to fabricate a
magnetically recoverable nanocatalyst (Pd@10-DTPA & Pd@Ni@IO-DTPA).

Synthesized Pd@10-DTPA and (Pd@Ni@IO-DTPA) nanocatalysts were characterized by
Transmission Electron Microscopy, Scanning Electron Microscopy, Energy Dispersive X-ray
Spectroscopy, X-ray Diffraction, Vibrating Sample Magnetometer, Electron Spin Resonance
Spectroscopy, X-Ray Photoelectron Spectroscopy and X-ray Absorption Near Edge Structure
techniques. The effectiveness of Pd@IO-DTPA, Pd@Ni@lO-DTPA as catalysts for p-
Nitrophenol reduction and Suzuki cross coupling reaction of aryl halides and aryl boronic acids
was investigated. The catalysts could be recovered using a simple magnet. Simplicity of design,
low cost of fabrication, high efficiency and extensive reusability make Pd@IO-DTPA,
Pd@Ni@IO-DTPA promising catalysts for Suzuki coupling reaction.

5.2. Materials and methods
5.2.1. Materials

All chemicals were purchased as analytical grade from commercial suppliers and were used
without further purification. DTPA was purchased from Spectrochem Pvt. Ltd. The
synthesized nanoparticles were first dried in oven at 100°C and then used for further

analysis
5.2.2. Procedure for the preparation of DTPA capped Iron oxide nanoparticles (I0-DTPA)

Magnetic nanoparticles 10-DTPA were prepared in alkaline condition at room temperature.
About 0.96 g FeSO4-7H20 was dissolved in 10 mL 5% HCI and stirred for 10 min followed by
the addition of 1.12g FeClz.2H,0 and further stirring for 10 min. To this solution, 3 mL of DTPA
solution (prepared by dissolving 0.1g DTPA in 3 ml 0.1M NaOH) was added drop wise and

stirred for 30 min. The pH of the resultant solution was adjusted to 10 by the dropwise addition
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of 25ml of 50% ammonia solution and the mixture was stirred at RT (30-35 °C) for 3 hours. The
resultant black precipitates of IO-DTPA were separated using an external magnet and washed

with water until neutral followed by10 mL acetone and then dried in oven at 100 °C for 7-8 h.

5.2.3. Procedure for the immobilization of Palladium on DTPA capped Iron oxide nanoparticles
(Pd@10-DTPA)

For the preparation of PdA@IO-DTPA, 100 mg I0-DTPA was sonicated in 20 mL ethanol for 20
min followed by the addition of 2 mg PdCl; to the suspension with gentle stirring at RT (30-35
°C) for 12h. The resultant Pd@1O-DTPA nanoparticles were separated with a handheld magnet,
washed with ethanol and finally dried at 100 °C for 5 h.

5.2.4. Preparation of DTPA capped Nickel doped Iron oxide nanoparticles (Ni@10-DTPA)

The synthesis of Ni@IO-DTPA was performed using chemical precipitation method. In a round
bottom flask 0.96g FeSO4-7H20 was dissolved in 10 mL of 5% HCI solution and stirred for 10
min followed by the addition of 1.12 g FeClz.2H20 and further stirring for 10 min. Subsequently
0.1 g DTPA dissolved in 3 mL 0.1M NaOH solution was added drop wise and stirred for 30 min.
The pH of the resulting solution was raised to 10 by dropwise addition of 25mL of 50% ammonia
solution and stirred for 3 h which resulted in precipitation of black particles. After 3 h of stirring,
0.3M 3 mL NiCl.6H20 solution was added dropwise and stirred for another 3 h(Ahmad et al.,
2015). The black particles of Ni@1O-DTPA were collected using an external magnet and washed
with 100 mL water followed by 10 mL acetone and then dried in an oven at 100 °C for 7-8 h.

5.2.5. Procedure for the immobilization of Palladium on DTPA capped Nickel doped Iron oxide
nanoparticles (PA@Ni@10-DTPA)

Pd@Ni@IO-DTPA nanoparticles were prepared by sonicating a suspension containing 100 mg
Ni@10O-DTPA in 20 mL ethanol for 10 min. Subsequently, 2 mg PdCl> was added to Ni@I10-
DTPA suspension with gentle stirring for 12 hours at room temperature. The resultant
Pd@Ni@IO-DTPA nanoparticles were collected with a magnet, washed with 10 mL EtOH

followed by 5 mL water and was finally oven dried at 100 °C for 5 h.
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5.2.6. General method for p-Nitrophenol reduction catalysed by Pd@IO-DTPA and
Pd@Ni@IO-DTPA

25 mg/L of the p-NP solution was prepared with conductivity water. In a 100 mL conical flask,
50 mL of 25 ppm p-NP solution, NaBH4 (optimized amount: 10 mg for Pd@10-DTPA and 9 mg
for PA@Ni@IO-DTPA) and 1 mg of the catalysts were added. The solutions were mixed by
shaking before each measurement. The reduction reaction was monitored using UV-Vis
absorption spectrophotometer within a range of 200 to 600 nm at different time intervals. A color

change of the solution from bright yellow to colorless was observed.

The reusability of the catalyst was tested by a scale-up experiment with 10 mg of catalyst
maintaining the same ratio of catalyst/p-NP. The catalyst was separated by hand held magnet,
and washed twice in 20 mL conductivity water and 1 mL acetone, and then placed in a drying

oven to dry for 5 h (at 100 °C) and then used for the next run.

5.2.7. General procedure for the Suzuki coupling reaction catalysed by Pd@10-DTPA and
Pd@Ni@IO-DTPA

The coupling reaction was carried out by taking 1.59 mmol each of aryl halide, arylboronic acid,
K2COs, 1 mg of catalyst under study and 10 mL H20 in a 25 mL round-bottomed flask and
heated on an oil bath at 90-100 °C with stirring for 6 to 15 h depending on the aryl halides used.
The reaction was monitored by TLC. After completion of the reaction, the mixture was cooled
to room temperature and the catalyst under study was collected by an external magnet.
Subsequently, the mixture was extracted with ethyl acetate three times (3*5 mL). The ethyl
acetate phase was then collected, dried with Na2SO4 and coupled products were obtained by
evaporation which were further analysed by GC-MS. Crude product was purified using column
chromatography packed by silica gel to obtain the desired product. NMR spectra of the purified
products are given in the Supporting Information.

To test the recyclability of catalyst, after each cycle catalyst was separated by using an external
magnet, washed twice with 10 mL conductivity water and ethyl acetate and further dried in an

oven at 100°C for 5 h. The recovered catalyst was further used for the next cycle of reaction.
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5.2.8. Characterization of synthesized nanosystems (Pd@10-DTPA and Pd@Ni@10-DTPA)

The structural and morphological properties of PdA@IO-DTPA and Pd@Ni@lO-DTPA were
analysed by using the techniques such as, UV-Vis, IR, XRD, SEM, EDX, VSM, HRTEM, XPS,
HRTEM, TG-DTA and XANES techniques as discussed in described in chapter 2 section 2.2.6

Fe K-edge XANES spectra were recorded at room temperature in the transmission mode using
procedure described in chapter 3. VSM Spectra recorded on Lakeshore VSM 7410 magnetometer
using procedure mentioned in chapter 3 section 3.2.8. The palladium and iron content in the
catalyst and leaching study were performed by using PerkinElmer ICP-MS, NexION 2000
spectrometer. GC-MS spectra of crude products obtained after coupling reaction were recorded
on Thermo fisher trace ultra GC model. NMR Spectra of column purified biphenyl products were
recorded on Bruker avance Ill spectrometer operating at 600 MHz in CDCl3 solvent using
procedure described in chapter 3 section 3.2.8.

5.3. Result and Discussion
5.3.1. Characterization Studies of Pd@10-DTPA and PA@Ni@10-DTPA

5.3.1.1. IR Spectra

The FT-IR spectra of the IO-DTPA, Pd@IO-DTPA, Ni@lO-DTPA and Pd@Ni-1O-DTPA are
depicted in Figure 5.1. All characteristic peaks of DTPA and iron oxide were present in the FT-

IR spectra of all the 4 compounds.

The bands at 630, 560 cm™ in 10-DTPA, at 632, 558 cm™ in PA@I0O-DTPA, 638, 580 cm™ in
Ni@IO-DTPA and 631, 579 cm™ in PdA@Ni@10-DTPA are ascribed to the stretching vibration
of Fe-O (Mth-O-Mon of the tetrahedral and octahedral sites) confirming the existence of
magnetic nanoparticles (Amirmahani et al., 2021). Further the band at 443 cm™ may be attributed

to the Fe-O stretching mode of octahedral sites of maghemite(Arumugam et al., 2020).

FTIR spectra of synthesized DTPA-coated NPs have characteristic peaks in the spectral region
from 900 to 1800 cm™. The presence of IR bands originating from the vibration of chemical
bonds in the DTPA structure clearly confirm the formation of I0-DTPA and Ni@IO-DTPA

providing many carboxylate groups facilitating further functionalization with Pd.

The vibrational bands observed at 1045 cm™ and 978 cm™ in the spectrum of DTPA can be
assigned to the v(C-N) and C-C stretching vibrations respectively. The bands observed at 3167
and 3382 cm™ were ascribed to v(C-H) and v(O-H) stretching vibrations respectively. The bands
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at 1406 cm 1, 1218 cm* and 1127 cm* were attributed to —~CH, and C—H stretching and wagging
vibration modes respectively while the peak at 2856 cm™ corresponded to the N-C-H
asymmetric stretching. The peak observed at ~1625 cm™* was attributed to the C=0 stretching
vibration of acetyl group and that observed at 1475 cm™ to C=0 and C-OH stretching vibrations
(Silva, Carvalho, Freitas, Tormena, & Melo, 2007; Silva, Carvalho, Freitas, Tormena, &
Walcl ee C. Melo, 2007).
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Figure 5.1: IR spectra of (A) DTPA, (B) 10-DTPA, (C) Pd@10-DTPA, (D) Ni@lO-DTPA, (E)
Pd@Ni@10-DTPA.

The presence of IR bands originating from the vibration of chemical bonds of DTPA in 10-
DTPA clearly confirm the capping of DTPA on IO providing many carboxylate groups
facilitating further functionalization with Ni and or Pd. The IR spectra of IO-DTPA, Pd@I0-
DTPA, Ni@lO-DTPA, Pd@Ni@IO-DTPA exhibited bathochromic shifts for C-O and C-N
bands when compared to pristine DTPA, indicating that nitrogen and oxygen are sites for
stabilization. The diminishing and shifting of peaks attributed to N-C-H, C-OH, C-N in Pd@IO-
DTPA and Pd@Ni@IO-DTPA as compared to 10- DTPA and Ni@lO-DTPA respectively
confirm the binding of Pd.
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5.3.1.2. ICP-MS, SEM-EDX and TEM

The Pd and Fe content of PA@10-DTPA estimated by ICP-MS were observed to be 0.669 wt%
and 54.26 wt% respectively while the Pd, Ni and Fe content of PdA@Ni@10-DTPA estimated by
ICP-MS were observed to be 1.109 wt%, 0.661 wt% and 47.41 wt% respectively.

The morphology and elemental composition were further investigated by SEM-EDX mapping
(Figure 5.2 (B, E, H, K)).

Figure 5.2: (A) SEM image of I0-DTPA, (B) EDS of 10-DTPA, (C) TEM image of 10-DTPA,
(D) SEM image of PA@10O-DTPA, (E) EDS of Pd@IO-DTPA, (F) TEM image of PdA@I0-DTPA,
(G) SEM image of Ni@I10-DTPA, (H) EDS of Ni@IO-DTPA, (I) TEM image of Ni@10-DTPA,
(J) SEM image of Pd@Ni@IO-DTPA, (K) EDS of Pd@Ni@IO-DTPA, (L) TEM image of
Pd@Ni@IO-DTPA.

The EDX spectrum confirmed the presence of C (3.89 wt%), N (0.6 wt%), O (32.72 wt%) and
Fe (62.79 wt%) in 10-DTPA; C (1.51 wt%), N (0.51 wt%), O (29.39 wt%), Fe (67.88 wt%), and
Pd (0.71 wt%) in Pd@10-DTPA,; C (3.51 wt%), N (3.30 wt%), O (28.18 wt%), Fe (64.27 wt%),
Ni (0.75 wt%) in Ni@10-DTPA; C (1.94 wt%), N (1.05 wt%), O (36.86 Wt%), Fe (58.24 wt%),
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Ni (0.72 wt%) and Pd (1.20 wt%) in PA@Ni@I1O-DTPA. The EDX mapping of Pd@10-DTPA
and PA@Ni@IO-DTPA indicated uniform dispersion of palladium on 10-DTPA. Further, ICP-
MS and EDX results indicated greater percent (165%) of Pd in PdA@Ni@10-DTPA as compared
to PA@IO-DTPA

As shown in TEM images (Figure 5.2(C, F, I, L)), the size of the synthesized magnetic particles
IO-DTPA ranged from 15-25 nm while that of Pd@IO-DTPA ranged from 15 to 30 nm. The
particle size of Ni@IO-DTPA ranged from 7-15 nm and Pd@Ni@I10-DTPA ranged from 8-25
nm. The magnetic nanoparticles with near sphere-shaped morphology and monodispersity were

observed.

Particle size of all the 4 nanosystems are less than 15 nm. One of the important reasons behind
this observation is the use of DTPA as a capping agent which plays an important role in stability
of the synthesized nanoparticles. Plausible mechanism involves covalent bond formation
between surface of the particles and DTPA, causing steric hindrance between particles and the
resultant stability(Rahal et al., 2017).

5.3.1.3. HRTEM and SAED images

High Resolution Transmission Electron Microscopy (HRTEM) images and Selective Area
Electron Diffraction (SAED) patterns were obtained to provide morphology, particle size and
structural information of Pd@10-DTPA and PA@Ni@IO-DTPA (Esmaeilpour et al., 2018).

The HRTEM images (Figure 5.3 (B & F)) of Pd@1O-DTPA and PA@Ni@10-DTPA, depicted the
preferential mono deposition of palladium on 10-DTPA and Ni@IO-DTPA respectively. Regular
fringes (Figure 5.3B) were clearly observed in PdA@10O-DTPA with a spacing of 0.253 nm and
0.3 nm indicating (311), (220) planes of Fe3O4 respectively (Lara & José G. Carriazo, 2019;
Predoi et al., 2010) and 0.22 nm (111) plane of Pd (Vats et al., 2016). The fringes in PdA@Ni@10-
DTPA (Figure 5.3F) with a spacing of 0.24 nm, was attributed to (311) plane and 0.29 nm to
(220) interplanar distance of the maghemite while 0.246 nm was attributed to (111) plane of
NiO (Predoi et al., 2010) and 0.20 nm to (311) plane of Pd (Vats et al., 2016).

The SAED pattern of IO-DTPA (Figure 5.3A) exhibited diffraction rings indexed to (220), (222),
(400), (422), (511) and (440) planes of FesO4 (JCPDS 88-0315) and y-Fe2O3 (JCPDS No. 39-
1346). In addition to diffraction rings of iron oxide, the SAED pattern of PdA@IO-DTPA (Figure
5.3C) exhibited (111) and (200) planes of fcc Pd nanocrystallites as well as (100), (101) and
(112) diffraction planes of PdO.
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The SAED pattern of Ni@IO-DTPA (Figure 5.3E), was indexed to Fe304 (JCPDS 88-0315) and
y-Fe203 (JCPDS No. 39-1346) with the diffraction rings being attributed to the (111), (220),
(311), (222), (400), (422) and (511) planes as well as (111) plane of Ni. The diffraction ring of
(311) plane was most intense, compared with the other rings, which reflected the preferred
direction of nanocrystal growth. The SAED pattern of PA@Ni@IO-DTPA (Figure 5.3G)
corresponded to Iron oxide (maghemite and magnetite), Ni, Pd and PdO. The ring pattern
exhibited (111) and (200) planes of fcc Pd and (100) and (112) diffraction planes of PdO and

(111) of Pd(Ni).
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Figure 5.3: (A) SAED image of I0-DTPA, (B) HRTEM image of Pd@10-DTPA, (C) SAED image
of Pd@IO-DTPA, (D) HRTEM image of Ni@lO-DTPA, (E) SAED image of Ni@IO-DTPA, (F)
HRTEM image of PA@Ni@IO-DTPA, (G) SAED image of Pd@Ni@10-DTPA
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5.3.1.4. HAADF-STEM

The high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)
micrographs of PA@Ni@I1O-DTPA (Figure 5.4) and their corresponding energy dispersive X-
ray spectroscopy (EDS) mappings (Figure 5.4(B-F)) show that Pd, Fe and Ni were well
dispersed. Further, bimetallic character of the nanocatalyst PA@Ni@10-DTPA was confirmed

as both the Ni and Pd were observed in the micrograph adjacent to each other.

Figure 5.4: (A) STEM image of Pd@NiFe204-DTPA (B-F) HAADF mapping of Pd@Ni@I0O-
DTPA

5.3.1.5. XRD Spectra

The lattice parameters, crystallite domain size and phase composition of I0-DTPA, Pd@I10-
DTPA, Ni@IO-DTPA, Pd@Ni@IO-DTPA were investigated with X-ray powder diffraction
(XRD) and it confirms the nano-crystalline structure of the catalyst. (Figure 5.5)

The characteristic XRD diffraction peaks observed at 20= 30.1°, 35.5°, 43.1°, 54.5°, 57.6° and
63.6° for IO-DTPA were attributed to (220), (311), (400), (422), (511) and (440) crystal faces of
Fe30a spinel structure (Predoi et al., 2010). The characteristic diffraction peaks of iron oxide
were observed in Pd@IO-DTPA along with two diffractions positioned at 20 of 40.1°,46.7°

attributed to (111) and (200) crystalline planes of face centered Pd nanoparticles in good
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agreement with (JCPDS file number 46-1043)(Vats et al., 2016). Further, the (200) plane of PdO
was observed at 26 59.9°(Ganji et al., 2013) indicating that Pd existed as both Pd(0) and PdO.
This is in good agreement with the HRTEM and SAED analysis.

The XRD pattern of the Ni@1O-DTPA (Figure 5.5C) catalyst exhibited the characteristic peaks
of 10, Ni and NiO. In addition to 10 peaks, XRD peaks were observed at 26 of 42.64° and 51.75°
corresponding to (111) and (200) planes of Ni(0), and at 26 32.51°, 72.61 which were attributed
to (111), (311) planes of NiO (Richardson et al., 2003). As shown in Figure 5.5D the XRD pattern
of the PA@Ni@IO-DTPA catalyst shows the characteristic peaks of 10 NPs mainly as well as
Ni and NiO. Besides the characteristic peaks of 10, Ni and NiO, additional weak peaks were
observed at 40.1°, 46.7° which were well-indexed to the (111) and (200) crystalline plane of face
centred Pd nanoparticles (Qi et al., 2014), though the peaks are weak due to dispersion and low
concentration. Further, (200) plane of PdO was observed at 20 59.9°(Ganji et al., 2013)
indicating presence of Pd in the form of Pd(0) and PdO.
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Figure 5.5: (A) XRD spectra of I0-DTPA, (B) XRD spectra of PA@IO-DTPA, (C) XRD spectra
of Ni@1O-DTPA and (D)XRD spectra of PA@Ni@10-DTPA
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5.3.1.6. XPS analysis

The 10-DTPA, Pd@IO-DTPA, Ni@IO-DTPA and Pd@Ni@IO-DTPA were further evaluated
by X-ray photoelectron spectroscopy (XPS). (Figure 5.6 -Figure 5.9). In addition to the peaks of
Fe (2p), O (1s), C (1s) and N (1s) signals, a peak associated with Pd (3d) was observed in XPS
spectrum of Pd@I1O-DTPA, indicating the successful formation of PA@10-DTPA.

C(1s) spectrum of 10-DTPA (Figure 5.6A) exhibited 2 peaks at 284.6 and 286.08 eV attributed
to binding energies of C-C/C-H and C-N bonds respectively. IO-DTPA also exhibited a N(1s)
(Figure 5.6 B) binding energy peak at 399.74 eV, which corresponded to the tertiary amine group
in DTPA. The O(1s) XPS spectra (Figure 5.6C) exhibited a peak at 530.4 eV that can be
attributed to Fe-O bond and the peak at 532.6 eV can be attributed to C=0 bond binding energies
respectively. The Fe(2p1/2) peak (Figure 5.6D) was observed at 724.9eV. The absence of
satellite peak at about 715 eV attributed to Fe?* suggested the presence of maghemite
phase(Fondell et al., 2018).
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Figure 5.6: C, N, O, Fe XPS spectra of IO-DTPA

The Pd@I10-DTPA, survey spectrum confirmed the presence of (13.25 At%) C, (1.06 At%) N,
(69.18 At%) O, (16.32 At%) Fe, (0.20 At%) Pd. The deconvoluted peaks of C(1s) (Figure 5.7A)
presented 3 characteristic peaks with binding energies at 284.6, 286.08, 288.15 eV attributed to
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C-C/C-H, C-N and O-C=0 bonds respectively. The Nitrogen 1s spectra (Figure 5.7B) displayed
binding energy at 400.98 eV representing C-N bond(Ma et al., 2021; Ravi et al., 2018; Wang et
al., 2020). Similarly, O1s (Figure 5.7C) spectra exhibited peaks with binding energies at 530,
531.66, 533.05 eV that were ascribed to Fe-O/Pd-O, C=0, and C-O-C bonds(Yamashita &
Hayes, 2008; Zhao et al., 2017a) respectively. The deconvoluted Fe 2p XPS spectra (Figure
5.7D) exhibited a peak at 710.25 eV attributed to octahedral Fe3*(2p 3/2) of y- Fe2Os and a-
Fe,O3 while the satellite peak of Fe** and Fe®*(2p1/2) were observed at 720.44 eV, and 723.25
eV respectively. The peak at 713.94 eV can be attributed to tetrahedral Fe** in FesOa.

The Pd XPS spectra (Figure 5.7E) with peaks at binding energies of 335.4 eV and 340.5 eV were
assigned to Pd(0) 3d5/2 and 3d3/2 orbitals with a spin orbit splitting of 5.1eV. The Pd 3d5/2
peak observed at 336.35eV was attributed to Pd?* (Peuckert, 1985) while that observed at 338.58
eV was attributed to nanoclusters bound to the support (Kumaresan et al., 2008). The partial
formation of Pd(0) species in the catalyst without the use of any additional reducing agent can
be attributed to the presence of electron rich O and N in the network support which may donate
electrons to Pd(ll). Thus, from deconvoluted Pd XPS analysis confirmed that Pd is present at
(42.17%) Pd(0), (36.2%) Pd?* and (21.63%) PdO.
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Figure 5.7: C, N, O, Fe and Pd XPS spectra of Pd@10-DTPA
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The de-convoluted C 1s, N 1s, Ols, Fe 2p and Ni 2p XPS spectra of Ni@I10-DTPA are shown
in Figure 5.8. In the Fe2p XPS spectrum (Figure 5.8D), the signals at binding energies of about
709.98, 713.37 and 722.98 eV, 726.37 were assigned to Fe2p3/2 and Fe2p1/2 of Fe* ions along
with satellite peaks. Ni 2p XPS spectra of Ni@1O-DTPA (Figure 5.8E) exhibited peaks at 852.61
eV assigned to Ni(0) and 854.40 eV to NiO. The de-convoluted O1s peak (Figure 5.8C) at
binding energy 530 eV was attributed to bulk Fe-O, while the peak at 531.12 eV was attributed
to O-H bond and 532.65 eV to C=0. Further, the assignment for N1s de-convoluted peaks
(Figure 5.8B)with binding energy 400.97 eV was made to C-N(Ma et al., 2021). In the C 1s
spectrum (Figure 5.8A) the peak with binding energy 284.5 eV was attributed to C-C/C-H,
285.48 eV to C-O, 286.34 eV to C-N and 288.23 eV to -COOH(Xu et al., 2019).

1

‘ Ni@10-DTPA: O XPS

1%

‘ Ni@10-DTPA: C XPS ‘ B ‘ Ni@10-DTPA: N XPS ‘ C
30,

o - o

I

T T T T T T T T T T T
288 28 280 48 404 00 e e B44 £40 86 532
Binding Energy {eV) Brrg Enemy (2] Binding Energy {eV}

Pinted usng UNLIOENEED CasaXPS sciware [Prinved usirg LINLCBMEED CamaFS sofvare Frinted using UMLICEMSED CasaXPS software

T
&2

D .« ‘ Fe XPS: Ni@10-DTPA E. ‘ Ni XPS: Ni@10-DTPA
120

T T T T T
15 0 T05 868 BG4

T T
1% 10

T T
g T 860

Binding Energylevh Binding Enemy{eV}

Prined using UNLICENSE D Casa¥FS softvar Printed using UNLICENSED CasaXP5 software

Figure 5.8: C, N, O, Fe and Pd XPS spectra of Ni@IO-DTPA

XPS survey spectrum of PA@Ni@I10-DTPA confirmed the presence of C (8.55 At%), N (0.20
At%), O (62.95 At%), Fe (27.69 At%), Ni (0.25 At%) and Pd (0.36 At%). The de-convoluted
XPS spectra of PA@Ni@I10O-DTPA are shown in (Figure 5.9). In Fe2p XPS spectrum (Figure
5.9D), characteristic peaks of Fe2ps;> and Fe2pas, of Fe** were seen with satellites. Ni 2p XPS
spectra (Figure 5.9E) of PA@NIi@IO-DTPA exhibited peaks at 852.59 eV and 853.98 eV

attributed to Ni2p3/2 peak of Ni(0) and NiO respectively.
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In Pd 3d XPS spectrum (Figure 5.9F) the signals with binding energy 335.13 eV and 340.39 eV
were assigned to Pd(0) indicating metallic character while 335.96 eV and 341.22 eV were
assigned to Pd(Ni) (Zhang et al., 2015). The signal at 338.88 eV can be attributed to PdO/Pd-N
and peak at 339.94 eV can be attributed to the interactions between Pd and Ni@IO-DTPA
support. From deconvoluted Pd3d XPS spectra, it was found that Pd present in the nanosystem
in the form of (28.95%) Pd(0), (5.87%) Pd(Ni), (45.17%) PdO.

In the O1s XPS spectrum of PA@Ni@IO-DTPA (Figure 5.9C), the peak at binding energy of
529.93 eV was assigned to Pd-O species and Pd-O-Fe interactions while peak at binding energy
of 531.22 eV was attributed to O-H of the DTPA and the peak at 533.99 eV to C=0 group (Zhao
et al., 2017b). Further, the assignment for N1s deconvoluted peak with binding energy 401.01
eV was attributed to C-N(C)-C (Figure 5.9B). The C 1s spectrum exhibited peaks with binding
energies at 284.5, 285.7, 286.49 and 287.99 eV attributed to C-C and C-H; C-O; C-N and (-
COOH) groups respectively (Figure 5.9A).
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Figure 5.9: C, N, O, Fe, Ni and Pd XPS spectra of PA@Ni@IO-DTPA
5.3.1.7. XANES analysis

To obtain the information of the valence state and coordination number of Nickel and Iron oxide

XANES technique was used (Sciortino et al., 2011). The Fe K edge XANES spectra of Pd@10-
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DTPA showed (Figure 5.10A) that the chemical state of iron in PA@10-DTPA was similar to
the chemical state of iron in Fe»Os, i.e., iron has an oxidation state of Fe®* and the iron cations

were surrounded by oxygen atoms in both octahedral and tetrahedral sites. (Hiroki et al., 2012).
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Figure 5.10: (A) Fe k edge spectra of PA@10-DTPA, (B) Fe k edge spectra of PA@Ni@I0O-
DTPA, and (C) Ni k edge spectra of PA@Ni@I0O-DTPA

The Fe—K edge XANES spectra of PdA@Ni@IO-DTPA (Figure 5.10B) exhibited split pre-edge
features indicating the presence of iron in 2 different states. As seen in the Fe K edge XANES
Spectra (Figure 5.10B) pre- edge excitation peak at 7113 eV and main edge peak at 7132 eV are
indicative of maghemite as the predominant phase. The hump at 7139.3eV suggested poorly
ordered ferric compounds wherein the structure might be disturbed due to deposition of
palladium/PdO. The intense white line band at 7132.5 eV can be attributed to the 1s—4p transition
indicating the presence of maghemite (Fe2Oz3) (Galoisy et al., 2001). The presence of a non-

stoichiometric phase of maghemite was indicated from these observations.
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The Ni K edge XANES spectra (Figure 5.10C), exhibited distinct absorption characteristics at
8351.5 eV resembling NiO (Mansour & Melendres, 1994), but with lower intensity due to
presence of Ni metal component. PA@Ni@I1O-DTPA exhibited particularly distinct peak at 8337
eV and 8367 eV indicating the presence of Ni and NiO in PA@Ni@I10-DTPA.

5.3.1.8. TG-DTA analysis

Thermal stability of all the fabricated materials were studied by Thermo gravimetric analysis
(TG-DTA) (Figure 5.11) under nitrogen atmosphere from 30 to 750°C with a temperature

increment of 10°C/min.
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Figure 5.11: (A) TG-DTA graph of IO-DTPA (B) TG-DTA graph of Pd@10-DTPA and (C)
Overlay VSM spectra of 10-DTPA and Pd@IO-DTPA

Thermograms of IO-DTPA, Ni@IO-DTPA, Pd@I0-DTPA and Pd@Ni@I10-DTPA are shown
in Figure 5.12(A, B, C, D) respectively. The weight losses observed upto ~100 °C was allocated
to the adsorbed (surface) water (8.8% in 10-DTPA, 1.4% in Ni@IO-DTPA, 4.7% in Pd@I10-
DTPA and 1.2% in Pd@Ni@IO-DTPA). The weight loss at 100-200 °C (3.1% in I0-DTPA,
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2.9% in Ni@IO-DTPA, 3.3% in PA@IO-DTPA, 0.6% in PA@Ni@IO-DTPA) was attributed to
the bound water. Further the weight loss at ~250-500 °C was attributed to the decomposition of
DTPA (3.2% in IO-DTPA, 3.4% in Ni@IO-DTPA, 4.0% in Pd@IO-DTPA and 3.2% in
Pd@Ni@IO-DTPA). (Aghazadeh et al., 2017). Inclusion of Ni to 10-DTPA has rendered
stability as observed in thermograms of Ni@IO-DTPA and Pd@10-DTPA

5.3.1.9. VSM analysis

The magnetization curve (Figure 5.12) for 10-DTPA, Pd@IO-DTPA, Ni@lO-DTPA and
Pd@Ni@IO-DTPA confirmed the superparamagnetic behaviour of all the nanosystems from the
absence of hysteresis (zero coercive force). It was also found that the magnetic response of these
samples was so strong that one minute was enough to completely separate these magnetic

particles by a handheld magnet.
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Figure 5.12: Overlay VSM spectra of 10-DTPA, Pd@IO-DTPA, Ni@lO-DTPA and
Pd@Ni@IO-DTPA

The saturation magnetization of IO-DTPA was 67.20 emu/g which decreased to 64.948 emu/g
after immobilization of nonmagnetic Pd on IO-DTPA. The saturation magnetization of Ni@I10-
DTPA and Pd@Ni@IO-DTPA was observed to be 78.06 emu/g and 75.43 emu/g respectively.
The increase in saturation magnetization in Ni@lO-DTPA may be attributed to changes in

exchange interactions between tetrahedral and octahedral sub-lattices with the presence of Ni?*
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and Fe®" ions in both octahedral and tetrahedral sites(Alarifi et al., 2009; Nejati & Zabihi, 2012;
Pradeep et al.,, 2008).The decrease in Pd@Ni@IO-DTPA was due to the inclusion of
nonmagnetic Pd. Furthermore, the catalyst could be easily and uniformly dispersed in solution
again after the magnetic separation due to its superparamagnetism..(Lara & José G. Carriazo,
2019)

5.4. Catalytic performance of PdA@10-DTPA and PA@Ni@1O-DTPA
5.4.1. Catalytic reduction of p-NP in the presence of PA@10-DTPA and PA@Ni@IO-DTPA

The catalytic performance of Pd@I1O-DTPA and PA@Ni@10-DTPA catalysts was examined for
reduction of p-NP to p-AP in water at room temperature (25-30°C) (Figure 5.13). An absorption
peak for p-NP was observed at 319 nm. When NaBH4 was added to the p-NP aqueous solution,
it was found that the p-NP absorption peak shifted to a higher wavelength (403 nm), and the
yellow colour of the solution changed to bright yellow as a result of the formation of 4-
nitrophenolate ions (Baran & Nasrollahzadeh, 2019; Kumar et al., 2019). Upon the addition of
catalyst to the reaction medium, the p-NP absorption peak at 403 nm slowly decreased and
disappeared after completion of the reduction. A new absorption band was also observed at ~300
nm attributed to formation of p-Aminophenol. The bright yellow color of the solution changed
to colourless at the end of the reduction.

To achieve maximum conversion, the reaction conditions were optimized. The optimum
conditions for the p-NP reduction reaction for 50 mL 25 ppm p-NP were found to be, 10 mg
NaBH4 for PA@10-DTPA and 9 mg for PA@Ni@I1O-DTPA, 1 mg catalyst, and 10 min and 12
min time interval for PA@I10-DTPA and PA@Ni@I1O-DTPA respectively (Figure 5.13(A&B)).
A blank reaction in the absence of catalysts was conducted wherein no reduction was observed.
Reduction performed with Ni@IO-DTPA gave 5.998% conversion while with 10-DTPA 0%
conversion was obtained (Figure 5.13 (C&D)) indicating the role of Pd.

Kinetic studies were performed on the reduction of p-NP using Pd@10-DTPA and PA@Ni@I10-
DTPA catalyst (Figure 5.13 (E&F). The pseudo-first-order kinetic model was used to calculate
the rate constants (k). The pseudo-first-order was confirmed by the linear relations of In(A:/Ao)
against reaction time where Acand A, were the final and initial absorbance of p-NP. The rate
constant (k) determined from slope of logarithmic plot and was 0.2878 min~ for Pd@IO-DTPA
and 0.3218 min~! for PdA@Ni@I0-DTPA.
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Figure 5.13: (A, B) p-Nitrophenol reduction catalysed by Pd@10-DTPA & Pd@Ni@I1O-DTPA
monitored by UV-Vis spectroscopy, (C) Reaction with 10-DTPA, (D) Reaction with Ni@I10-
DTPA and (E, F) kinetic plot of In(At/A0) vs time. Reaction conditions: 50 ml 25 ppm p-NP, 10
mg NaBHa, 1 mg catalyst

The recyclability of Pd@IO-DTPA catalyst was also investigated for catalysing the p-NP
reduction reaction. After each catalytic cycle catalyst was easily separated by magnet, dried and
used for subsequent cycles. Recyclability experiments showed that Pd@10-DTPA has high
recovery efficiency and can work up to fifteen cycles for p-NP reduction. After fifteen cycles
reaction time has increased to 16 min and the catalytic efficiency remained the same up to

twenty-one cycles. On the other hand, PA@Ni@10-DTPA exhibited recovery efficiency up to
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twenty-four cycles. After 24 cycles reaction time has increased to 16 mins up to 27 cycles and

to 21 min up to 29 cycles.

5.4.2. Application of Pd@IO-DTPA and Pd@Ni@lO-DTPA in Suzuki—Miyaura Cross-

Coupling Reactions.

To explore the catalytic activity of Pd@10-DTPA and PA@Ni@I10-DTPA, the cross-coupling
between lodobenzene and Phenylboronic acid was chosen as the model reaction. Yields were
obtained by GC-MS analysis. Figure 5.A1 to 5.A13 (Annexures) show the representative GC

MS spectra of standard biphenyl and products obtained in respective solvents.

The influence of various reaction parameters through the variation of solvents, temperature, base,
time and dosages of the catalyst for coupling reaction of lodobenzene with Phenyl boronic acid
catalyzed by Pd@IO-DTPA and Pd@Ni@IO-DTPA are shown in Figure 5.14. Initially,
optimizations studies were carried out in water as solvent considering green chemistry,
economical and industrial aspects. Different amounts of Phenylboronic acid, ranging from 2.38
to 1.59 mmol. (i.e., 2-1 mol%) was reacted with 1.59 mmol lodobenzene. Quantitative aryl halide
conversion and formation of biphenyl was accomplished using 1.59 mmol phenylboronic acid
(i.e.,1 mol%). Further increase in Phenylboronic acid led to the presence of unreacted boronic
acid. Therefore 1 mol% of phenylboronic acid was used for further studies.

The performance of the reaction in different solvents was investigated (Figure 5.14A). Use of
DMF, THF and toluene gave very low conversions. Neat alcohols like EtOH and i-PrOH were
discovered to be ineffective solvents. However, different ratios of Isopropanol with water gave
efficient catalytic conversion with both the catalysts. PA@Ni@IO-DTPA showed good activity
with ethanol and water mixture while no yield was observed with Pd@10-DTPA. Water is
clearly the ideal solvent for both the catalytic systems under study (Pd@IO-DTPA and
Pd@Ni@IO-DTPA), possibly as a result of the excellent dispersion of the catalyst and the

reactants as well as the high solubility of bases in water for the activation of phenylboronic acid.

Investigation of the effect of different bases on the Suzuki coupling reaction using Pd@I10-
DTPA (Figure 5.14B) revealed that K.COs, Na2COs were most effective in the temperature range
30°C-100°C. However, TEA dissolved Pd@IO-DTPA in the reaction system and was not
magnetically separable. Other bases such as alkali metal hydroxide were effective only at 100°C
(Table 5.A13, entries 6-9). On the other hand, PA@Ni@10-DTPA exhibited excellent activity
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with K2CO3 Na,CO3 KOH and NaOH at room temperature (30 °C) (Table 5.A15, entries 16-

20).

For the optimization of amount of base, different amounts of K-CO3 (2 to 0.1 equivalent) were

used (Figure 5.14C). Complete conversion was obtained even when 0.5 equivalent of K>COs

was used in the reaction. In the absence of base, the reaction did not proceed to completion even

after 15 h (Table 5.A13, entry 12). Reactions with bromobenzene and chlorobenzene required

higher amount of base. 0% yield were obtained at 100 °C with 0.2 to 0.5 equivalent of K>COs.

Therefore, 1 equivalent of KoCO3z was used in the further reactions. The coupling could be

performed in water effectively in the temperature range (30 -100 °C) (Table 5.A13, entry 13 and

table 5.A15, entries 12-16)).
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Figure 5.14: (A)Optimizations of Solvent, (B) Optimizations of base, (C) Optimizations of base

amount, and (D) Optimizations of time for reaction between lodobenzene and Phenyboronic acid

in aqueous medium. Reaction condition: lodobenzene (1.59 mmol), Phenylboronic acid (1.59

mmol), catalyst dose:1 mg, solvent (10 ml water), Base- K2COz (1 equi.), TLC (n-hexane), GC-

MS (HPLC grade chloroform)
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The optimum reaction temperature for the catalytic conversion of lodobenzene and Phenyl
boronic acid was found to be at ambient temperature. For other biphenyl derivatives the reactions
could not be performed at room temperature, improvement in yield was observed with increase
in temperature, therefore further reactions and studies were carried out at 100 °C. (Table 5.1,

entries 2-7)

Investigation of catalyst amount (Table 5.A13, entries 1-3 and Table 5.A15 Entries 33-35) on
the reaction showed that, complete conversion was obtained with 1 mg of catalyst (0.0037 mol%
Pd in PA@IO-DTPA and 0.00704 mol% Pd in Pd@Ni@10-DTPA) in aqueous medium with

1.59 mmol lodobenzene and Phenylboronic acid.

While coupling of 2.0 mmol lodobenzene and Phenylboronic acid gave 99.9% vyield only at
100°C with Pd@10O-DTPA, Suzuki coupling of 2.0 mmol lodobenzene and Phenylboronic acid
with 1 mg Pd@Ni@IlO-DTPA catalyst (0.0056 mol% Pd) gave 99.9% yield at 100°C as well as
at room temperature. The reaction when performed in the absence of catalyst and in the presence
of IO-DTPA and Ni@1O-DTPA under optimized conditions did not yield any product.

It was observed that quantitative yields with Pd@IO-DTPA were obtained with progressive
increase of time from 1 to 7 h at 100 °C for all the substrates under study. Monitoring of the
reaction time indicated that the reaction between lodobenzene and Phenylboronic acid was
completed in 7 h from the start of the reaction at 30 °C (Figure 5.15D). The optimized reaction
conditions with Pd@10-DTPA for the model coupling reaction in water were: lodobenzene,1.59
mmol; Phenylboronic acid,1.59 mmol; 0.0037 mol% Pd present as Pd@1O-DTPA, K.COs, 1

mmol; reaction time, 7h; water, 10mL.

On the other hand, quantitative yield was achieved with PA@Ni@I1O-DTPA catalyst in 5 h at
room temperature (30 °C), Quantitative yield could be achieved even with 2 mmol lodobenzene
and Phenyl boronic acid (2 mmol) in water using K.COz (1 equi.) in the presence of PA@Ni@I10-
DTPA catalyst (0.0056 mol% Pd) at 30°C for about 5 h.

The applicability of the catalyst under study was further investigated using various aryl halides
with electron-donating or electron-withdrawing groups (Table 5.1). All coupling reactions were
accomplished with good to excellent yields using very low amounts of catalyst (Pd@IO-
DTPA(0.0037 mol% Pd) and Pd@Ni@10-DTPA (0.0056 mol% Pd)) under aqueous conditions.
lodobenzene and bromobenzene (Table 5.1, entries 1 & 6) had almost comparable activity, with
bromobenzene taking a little longer time (8h for PA@IO-DTPA and 6.5h for PA@Ni@I10O-

DTPA) for complete reaction, while chlorobenzene was the most challenging and required a
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higher temperature of 100 °C (10h for Pd@10-DTPA and 8h for PA@Ni@10-DTPA). (Table
5.1, entry 7)

It was noticed that with electron-rich halides the yields were low as compared to electron-
deficient substrates, though the oxidative addition was slower for aryl halides with electron-
donating groups (Barder et al., 2005) The electron withdrawing group may have facilitated the
rate limiting oxidative addition step. Therefore, the aryl iodide with electron deficient group (-
CHO) gave more yield as compared to electron rich group (-CHz). On the other hand, ortho-
substituted lodobenzene with electron donating group (-CHz) gave slightly lower yield as

compared to para substituted lodobenzene (Table 5.1, entries 2&3).

Thin layer chromatography (TLC) technique was used to monitor the progress of the reaction.
The spots for the starting material on TLC vanished after a definite time, indicating that the
reactant had completely converted to the product. During workup, an external hand held magnet
was used to separate the catalyst from the flask. In order to isolate the product from the aqueous
medium, the reaction mass was subjected to solvent extraction with ethyl acetate(Islam et al.,
2011). This was followed by spectroscopic characterizations of the product using *H NMR, and
GC-MS (Supporting Information). The Pd catalysts were washed several times with ethyl acetate
and water and dried in oven at 100 °C. More than 99% of the catalyst could usually be recovered

(based on the weight).

Table 5.1 Suzuki Coupling Reaction catalysed by Pd@10-DTPA and Pd@Ni@10-DTPA at 30 °C, 60 °C
and 100 °C

Reaction condition for Pd@10O-DTPA: Arylhalide (1.59 mmol), phenylboronic acid (1.59 mmol), solvent (10
ml), catalyst (Pd@10-DTPA) (1 mg), base (1 equiv.), Temperature: 30°C, 60°C and 100 °C, TLC (n-hexane),
GC-MS (HPLC grade chloroform), Yields were obtained by GC-MS analysis
Reaction condition for PA@Ni@10-DTPA: Arylhalide (2 mmol), phenylboronic acid (2 mmol), solvent (10
ml), catalyst (Pd@Ni@10-DTPA) (1 mq), base (1 equiv.), Temperature: 30°C, 60°C and 100 °C, TLC (n-
hexane), GC-MS (HPLC grade chloroform), Yields were obtained by GC-MS analysis

B(OH),
Pd@1O-DTPA/

N Pd@Ni@IO-DTPA A

‘ \ + K,COj; (1 equiv.)
2 -
ZR 10 ml Water / Z
Aryl halide Phenylboronic acid R

X=1, Br R=H, CH; CHO

R=H, CH; CHO
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Sr. X R
No.
1 I H
2 I p-CHs
3 I 0-CHzs
4 I 0-CHO
5 I p-CHO
6 Br H
7 Cl H

Pd/Ni-Pd NPs Stabilized on 10 NPs Capped with DTPA

At 30°C At 60°C
Pd@I1O-DTPA/ Pd@I1O-DTPA/

Pd@Ni@IO-DTPA Pd@Ni@IO-DTPA

Time GC-MS Yield | Time GC-MS
(%) Yield (%)

8h 100 7h 100
6h 100 5h 100
13h 54.42 12 h 73.8
11h 59.13 10h 67.99
15h trace 14 h 72
16 h 51.19 14h 58.48
20 h 70.9 18 h 92.8
17 h 89.74 15h 94.95
15 h. 92.2 14 h 96.3
11h 91.83 11h 96.54
12 h 34.80 10 h 97.14
10h 71.78 8h 88.35
15h 6.1 12 h 24.8
12h 15.34 11h 39.20

At 100°C

Pd@10-DTPA/ Pd@Ni@10-

Time

7h.

5h.

12 h

10 h

13 h

11h

17 h

14 h

12 h

10 h

8h

6.5h

10 h

8h

DTPA
GC-MS
Yield
(%)
100
100
92.3
95.33
84.3
92.03
100
100
100
100
100
100
75.6

100

Isolated
Yield (%)

99.99
99.99
92.0
94.98
81.78
91.76
99.9
99.84
99.9
99.96
99.9
99.99
75.1

99.99

Table 5.1: Suzuki cross-coupling of several aryl halides with arylboronic acids that were

investigated using nanoparticle-supported Pd catalysts.

To study the heterogeneous nature of the catalysts, a hot filtration test was carried out under

optimized conditions. The catalyst was separated after two hours and the reaction was then

carried out for an additional ten hours. Products were isolated and analysed using GC-MS (Figure

5.A38&39), There was no increase in yield of the desired product after magnetic removal of the

catalyst, revealing the heterogeneous nature of the catalyst under study.
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5.4.3. Recyclability of catalyst (Pd@IO-DTPA and PA@Ni@10-DTPA)

The potential recyclability of the catalyst (Pd@10-DTPA and PA@Ni@I10-DTPA) was explored
in the model cross-coupling of lodobenzene and phenylboronic acid. The catalyst was
magnetically separated, washed with water and subsequently with acetone, dried in oven at 100
°C and employed for another round of reactions. Recycled catalysts were characterized by IR,
VSM, SEM, TGA and XPS techniques and Pd leaching was tested by ICP-MS.

The reusability of the catalysts was examined by using a reaction between lodobenzene and
Phenylboronic acid. PdA@Ni@10-DTPA showed an isolation yield of 100% up to 13 cycles and
no discernible loss of catalytic activity as well as no significant amount of Pd leaching was found
by ICP-MS (Figure 5.18F), while Pd@IO-DTPA showed recyclability upto 6 cycles with no
significant amount of Pd leaching (Figure 5.16 A&E)

SEM images of recycled Pd@10-DTPA catalyst showed an aggregation of Pd (Figure 5.15).
There was no change in Fe K edge spectra of catalyst suggesting the stability of DTPA capped

10 nanostructure under the reaction conditions.

After 2" cycle

After 5th cycle

After 3" cycle

After 6th cycle

Figure 5.15: SEM images of Recycled catalyst (Pd@I10O-DTPA)

According to the VSM spectra of recycled Pd@IO-DTPA catalyst, the superparamagnetic

property (Figure 5.16C) of the catalyst was retained even after the 6th cycle. The catalyst could
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be easily separated by a magnet and could be uniformly dispersed in reaction system again after

the magnetic separation. The magnetic response of the recycled catalyst was decreased from
64.948 to 31.29 emu/g. The weight loss observed at ~30-100 °C during TGA-DTA analysis
recycled Pd@10-DTPA catalyst (Figure 5.16D), attributed to the adsorbed water increased from
4.7% in fresh PA@IO-DTPA as compared to 11.4% in recycled catalyst (after 6 cycle).
However, the weight loss of 4.0% in fresh PA@10-DTPA at ~250-500 °C associated to
decomposition of the grafted DTPA did not show significant change in recycled catalyst (is

almost same (3.9%)).

A Recyclability of catalyst (Pd@10-DTPA) at 100 °C B 14 Fe Kedge XANES spectra of recycled|
catalyst
W GC-MS Yield. 124
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Figure 5.16: (A) Recyclability of the catalyst, (B) overlay Fe K-edge XANES spectra of fresh

and recycled catalyst, (C) Overlay VSM spectra of Fresh and recycle catalyst (After 6th cycle),

(D) TG-DTA data of recycled catalyst (After 6th cycle), (E) Pd leaching study by ICP-MS
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The XPS spectra of recycled Pd@IO-DTPA catalyst (after the 6th reaction cycle) (Figure 5.17)

exhibited the same characteristic peaks as observed in the fresh catalyst. The Fe Content was

decreased by 2%. There was 0.5% increase in nitrogen, 6% increase in O and 7.5% increase in

C content suggesting poisoning of the catalyst with reactants. Detailed XPS assignment of the

fresh and recycled catalyst are provided in Tables 5.A1-5.A2
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Figure 5.17: Fe, Pd XPS Spectra of Recycled catalyst, survey spectrum of fresh and recycled

catalyst (after 6" cycle)

SEM images of recycled PA@Ni@1O-DTPA catalyst showed aggregation of Pd (Figure 5.18 (A-
C)). A 4% decrease in yield was observed during the 14th cycle (Figure 5.A36) and leaching was

also confirmed from ICP-MS data after 14" cycle (Figure 5.18F). Recycled catalyst was also

investigated by VSM technique. The superparamagnetic response of the recycled catalyst was

decreased from 75.43 to 39.98 emu/g, the catalyst could be still be easily separated by a magnet

and could be uniformly dispersed in reaction system again after the magnetic separation due to

the retainment of its super paramagnetic property (Figure 5.18E) even after the 13th cycle.
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Recycled catalyst was further characterized by TG-DTA ((Figure 5.18D). Total weight loss of
26.3% in fresh catalyst while in the case of recycled catalyst i.e, 19.51% at ~30-750 °C.
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Figure 5.18: (A-C) SEM images of Recycled catalyst, (D) TGA of recycled catalyst, (E) VSM
spectra of fresh and recycled catalyst (F) Pd leaching study by ICP-MS

The recycled PA@Ni@IO-DTPA catalyst (after the 13th run) was further investigated by XPS.
The Fe, Ni, Pd, O, N, C XPS (Figure 5.19)) exhibited the same characteristic peaks as observed
in the fresh catalyst. There was 46% decrease in Fe content. There was 0.5% decrease in N, 26%
increase in O and 22% increase in C content suggesting poisoning of the catalyst with reactants.
Fresh catalyst contains 0.38 at% Pd (72.62% Pd(0), 27.37% Pd? from deconvoluted spectra). Pd
XPS spectra of recycled catalyst confirmed that Pd content was decreased to 0.28 at% and from
deconvoluted spectra it was found that 28.86% Pd(0), 45.6% Pd(2+) and 25.53% PdO were
present in the sample. XPS Survey spectrum also revealed tha Nickel content was decreased to
0.21 at% (36.96% Ni(0), 33.98% Ni?*). Detailed XPS assignment of the fresh and recycled
catalyst are given in Tables S5.6-S5.11.
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Figure 5.19:(A-C) C, N, O XPS spectra of recycles catalyst. (D) Fe XPS spectra of Recycled
catalyst, (E) Ni XPS spectra of Recycled catalyst, (F) Pd XPS spectra of Recycled catalyst (G)

XPS Survey spectrum of Fresh catalyst (H) XPS Survey spectrum of Recycled catalyst

5.5. Conclusions

In conclusion, a novel catalytic system comprising Pd nanoparticles supported on DTPA
stabilized Iron oxide nanoparticles (Pd@10-DTPA) and Ni doped DTPA stabilized Iron oxide

nanoparticles (Pd@Ni@IlO-DTPA) was fabricated at room temperature in aqueous medium

without using reducing agent.

Characterization studies of Pd@IO-DTPA revealed that Pd and PdO were dispersed on 10-
DTPA and that of PA@Ni@IO-DTPA confirmed the presence of well dispersed Pd, PdO, Ni,
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NiO on support. Both the catalysts showed excellent catalytic activity for Suzuki coupling

reaction and p-Nitrophenol reduction with very high recoverability.

Superparamagnetic property of 10-DTPA (67.20 emu/g) has increased after loading of Nickel
on 10-DTPA (Ni@lO-DTPA) (78.06 g/emu). The separation of PA@Ni@IO-DTPA (75.43
emu/g) was faster and easier than the Pd@IO-DTPA (64.948 emu/g) due to their magnetic
prperties. Therefore, recyclability of the catalyst had increased. PA@Ni@IO-DTPA can be
reused for 29 times for the reduction of p-NP and 13 times in Suzuki coupling reaction. While
Pd@IO-DTPA can be reused upto 21 times in p-NP reduction and 6 times for Suzuki coupling

reaction.

Furthermore, combining non noble metal Ni with noble metal Pd can affect the electronic
structure of Pd by the electron transfer which can disturb the highest occupied and lowest
unoccupied molecular orbitals of Pd and this further reduces the activation energies. So,
fabrication of PA@Ni@IO-DTPA catalyst is a potential strategy to enhance the catalytic activity
with high TON and high reusability.
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Appendix
XPS data interpretation of PA@10-DTPA
Table 5.A1: C 1s XPS
Element | IO-DTPA Pd@IO-DTPA Pd@10O-DTPA (R6) Interpretation
Peak (ev) | Area% Peak (ev) | Area% Peak (ev) Area%
Cls 284.612 70.3 284.34 30.27 284.84 70.37 C-C/C-H
C1ls 286.085 29.7 286.34 26.57 286.12 22.83 C-N
Cls 288.53 43.16 288.15 6.8 -COOH
Table 5.A2: N 1s XPS
Element | IO-DTPA Pd@I1O-DTPA Pd@IO-DTPA(RG6) Interpretation
Peak (ev) | Area% Peak (ev) | Area% Peak (ev) | Area%
N 1s 399.38 36.64 399.69 50.78
N 1s 399.746 100 400.99 63.36 400.98 49.22 C-N(C)-C
Table 5.A3: O 1s XPS
Element | IO-DTPA Pd@IO-DTPA Pd@IO-DTPA (R6) Interpretation
Peak (ev) | Area% Peak (ev) | Area% Peak (ev) Area%
O1s 530.453 66.1 530 40.50 529.99 38.22 Bulk Fe-O, Pd-O
O 1s 531.17 20.03 -OH
O 1s 532.640 33.9 531.66 39.09 532.57 29.07 C=0
O 1s 533.05 20.41 533.76 12.68 C-0-C
Table 5.A4: Fe 2p XPS
Element 1I0-DTPA Pd@I10O-DTPA Pd@IO-DTPA(R6) | Interpretation
Peak (ev) | Area% Peak (ev) | Area% Peak (ev) | Area%
Fe 2p3/2 710.25 17.21 710.12 17.34 Fe®* octahedral
Fe 2p3/2 | 711.568 67.0 711.96 15.21 711.05 17.60 Fe®* octahedral
Fe 2p3/2 713.94 13.06 713.92 12.13 Fe®* Tetrahedral
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Fe 2p3/2 717.43 9.99 717.58 10.07 Fe?* octahedral
Fe 2p3/2 720.44 9.67 720.52 7.78 Satellite peak
Fe 2p1/2 723.25 8.61 723.12 8.67 Fe3* octahedral
Fe 2p1/2 724.360 33.0 724.96 7.61 724.85 8.80 Fe®* octahedral
Fe 2p1/2 726.94 6.53 726.92 6.07 Fe3* Tetrahedral
Fe 2p1/2 729.51 6.54 729.73 8.28 Fe?* octahedral
Fe 2p1/2 733.36 5.59 733.48 3.26 Satellite peak

Table 5.A5: Pd 3d XPS
Element | Pd@IO-DTPA Pd@IO-DTPA (R6) Interpreatation
Peak (eV) Area% Peak (eV) Area%
Pd 3d5/2 334.11 12.52 Pd (0) (higher electron density)
indication aggregation of Pd nano
Pd 3d5/2 33541 25.30 Pd (0)
Pd 3d5/2 | 336.35 21.72 335.58 28.89 Pd (2+)
Pd 3d5/2 338.58 12.98 338.32 5.92 PdO
Pd 3d3/2 338.92 19.89 Pd (0)
Pd 3d3/2 340.51 16.87 Pd (0)
Pd3d3/2 |341.45 14.48 341.29 19.76 Pd (2+)
Pd 3d3/2 | 342.82 8.65 342.36 13.02 PdO

XPS data interpretation of PA@Ni@I1O-DTPA

Table 5.A6: C 1s XPS

Element Ni@lO-DTPA Pd@Ni@1O-DTPA Pd@Ni@IO-DTPA Interpretation
Peaks Area% Peaks (eV) | Area% | Peaks (ei/R)m) Area%
Cls 2(221/)5 65.13 284.5 74.21 284.5 56.50 C-C/IC-H
C1s 285.48 17.19 285.7 15.68 285.59 30.27 C-0-C/C-0O
Cls 286.34 10.28 286.49 4.71 286.83 7.97 C-N
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Cls 288.23 6.68 287.99 5.39 288.20 5.26 -COOH
Table 5.A7: N 1s XPS
Element Ni@lIO-DTPA Pd@Ni@IO-DTPA Pd@Ni@10-DTPA (R10) Interpretation
Peaks Area% Peaks (V) | Area% | Peaks (V) Area%
(eV)
N 1s 398.59 61.73 397.65 57.56 397.37 36.06
N 1s 399.55 25.74 399.26 29.42 399.24 15.68
N 1s 400.97 12.53 401.01 12.83 401.04 48.27 C-Ni-C
Table 5.A8: O1s XPS
Element | Ni@1O-DTPA Pd@Ni@IO-DTPA Pd@Ni@IO-DTPA Interpretation
(R10)
Peaks (eV) Area% | Peaks (eV) Area% | Peaks (eV) Area%
O1s 530 56.81 530.03 79.79 529.93 15.75 Bulk Fe-O, Pd-O
O1s 531.12 21.20 531.40 16.30 531.22 20.69 -OH
O1s 532.65 21.99 532.52 3.91 532.99 41.11 C=0
O1s 534.06 22.45 C-O-C
Table 5.A9: Fe2p XPS
Element Ni@lO-DTPA Pd@Ni@IO-DTPA Pd@Ni@IO-DTPA Interpretation
(R10)
Peaks (eV) | Area% | Peaks (eV) | Area% | Peaks (eV) | Area%
Fe2p3/2 709.98 33.94 709.99 24.06 709.97 20.59 Fe3+ octahedral
Fe2p3/2 711.71 15.50 711.60 16.47 711.96 16.66 Fe3+ octahedral
Fe2p3/2 713.37 4.37 713.49 11.08 713.9 9.56 Fe3+ Tetratahedral
Fe2p3/2 714.69 4.24 Fe®* octahedral 2p3/2
Fe2p3/2 716.69 6.15 717.07 10.77 Fe2+ octahedral
Fe2p3/2 718.35 7.13 Fe®* 2p3/2
Fe2p3/2 719.39 7.56 720.02 7.34 Satellite peak of
Fe3+ 2p3/2
Fe2pl/2 722.98 16.97 722.99 12.03 722.97 10.30 Fe3* octahedral
Fe2pl/2 724.71 7.75 724.60 8.24 724.96 8.33 Fe®* octahedral
Fe2pl/2 726.37 2.18 726.49 5.54 726.9 4.78 Fe®* Tetratahedral
Fe2pl/2 727.69 2.12 Fe?* octahedral 2p3/2
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Fe2pl/2 729.17 3.73 729.12 6.09

Fe2pl/2 732.74 5.80 732.83 5.14 732.96 5.57

Table 5.A10: Ni2p XPS

Element | Ni@IO-DTPA Pd@Ni@IO-DTPA | PA@Ni@IO-DTPA | Interpretation
(R10)
Peaks (eV) | Area% | Peaks (eV) | Area% Peaks (eV) | Area%
Ni2p3/2 | 852.61 852.59 27.40 852.62 Ni metal
Ni2p3/2 | 854.40 12.55 853.98 15.19 854.26 29.07 NiO
Ni2p3/2 | 855.39 28.84 855.14 9.92 855.99 6.89
Ni2p3/2 | 857.53 8.88 856.49 6.26 857.09 16.11
Ni2p3/2 | 859.04 6.69 858.85 15.37 859.21 491 Ni(OH)2
Ni2p3/2 | 861.01 13.94 860.60 5.88 860.24 17.71 Satellite (Ni metal)
Ni2p3/2 | 862.58 16.61 863.14 6.58 861.60 14.60 satellite (higher
oxidation state of Ni
Ni2p3/2 | 864.57 1.97 863.90 3.23 862.77 6.06 satellite
Ni2p3/2 864.97 2.91
Ni2p3/2 | 866.72 8.73 866.68 5.72 satellite ( NiO)
Ni2p3/2 867.46 1.55

Table 5.A11: Pd 3d XPS

Element Pd@Ni@IO-DTPA Interpretation Pd@Ni@lO-DTPA (R10) Interpretation
Peaks (eV) Area% Peaks (eV) Area%

Pd3d5/2 335.13 17.77 Pd(0) 334.9 19.47 Pd(0)

Pd3d5/2 335.96 3.52 Pd(Ni) 336.37 27.47 Pd?*

Pd3d5/2 338.88 27.10 Pd-O/Pd-N 338.26 20.36 Pd-O/Pd-N

Pd3d5/2 339.94 21.03

Pd3d3/2 340.39 11.18 Pd(0) 339.28 9.39 Pd(0)

Pd3d3/2 341.22 2.35 Pd(Ni) 341.38 18.13 Pd?*
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Pd3d3/2

344.14 18.07

PdO/Pd-N

342

5.17 Pd-O/Pd-N

GC-MS spectra of optimization of Suzuki coupling reaction catalysed by Pd@10-DTPA

GC MS spectra during screening of solvent for the reaction between lodobenzene and
phenylboronic acid (Figure 5.A1 (A-O))

Use of DMF and toluene gave very low conversions (Table S5.12 entry 4). Alcohols such as
EtOH, i-PrOH were found to be poor solvents (Table S5.12 entries 2&3). But THF (Table 2 entry

5) as well as alcohols with water in different ratios (Table S5.12 entries 6-9) gave good catalytic

conversion
Entry  Solvent Temp (°C) Time (h) GC-MS Yield

1.  Water 80 12 100
2. Ethanol 30- 80 12 0
3. Isopropanol 30-80 12 0-Trace
4.  DMF, Toluene 30-100 12 0
5. THF 30 12 0
6. THF 80 12 88.5
7.  Ethanol: Water (9:1, 7:3,1:1) 80 12 O-trace
8.  Isopropanol: Water (9:1) 80 12 100
9.  Isopropanol: Water (9:1) 30 12 75.14
10. Isopropanol: Water (7:3, 3:7,1:1) 30-80 12 100

Table 5.A12: Optimization of solvent, Recation condition: lodobenzene (1.59 mmol),

Phenylboronic acid (1.59 mmol), catalyst dose:1 mg, solvent(10 ml), TLC (n-hexane), GC-MS
(HPLC grade chloroform), Base- K.COs (2 equi.)

Optimization of Solvent
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Figure 5.Al: GC-MS spectra of the product for Pd@10-DTPA catalysed reaction between

iodobenzene and phenylboronic acid performed using K2COs In different solvents.
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GC MS spectra during screening of catalyst amount, base, amount of base and
temperature for the reaction between lodobenzene and phenylboronic acid (Figures 5.A2,

5.A3, 5.A4)

Entry  Catalyst (mg)

Base

1. 1-50 mg (0.0037 - 0.18 K2CO3(2equi.)

mol% Pd)
2. 1 (0.0037 mol% Pd)
3. 1 (0.0037 mol% Pd)

4. 1(0.0037 mol% Pd)

5. 1
6. 1
7. 1
8. 1
9. 1
10. 1
11. 1
12. 1
13. 1

K2CO3 (2 equi.)
K2CO3 (2 equi.)
Triethyl amine (TEA) (2 equi.)
Na2COs (2 equi.)
KOH (2 equi.)

KOH (2 equi.)

NaOH (2 equi.)
NaOH (2 equi.)
K2CO3 (0.2- 1.5 equi.)
K2COs3 (0.1 equi.)

No base

K2COz (1 equi.)

Temp
(§(®)

100

60

30
30-100
30-100
100

30

100

30

100
100
100

30-100

Time

(h)
12

12
12
12
12
12
12
12
12
12
12
12

12

GC-MS
Yield

100

100
100
100
100
100
78.45
100
57.45
100
79.79
0%

100

Table 5.A13: Optimization of Base and Temperature, Reaction conditions: lodobenzene (1.59
mmol), Phenylboronic acid (1.59 mmol), Water (solvent) (10 ml), TLC (n-hexane), GC-MS

(HPLC grade chloroform), Yields were obtained by GC-MS analysis
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Figure 5.A2: GC-MS spectra of the product for Pd@1O-DTPA catalysed reaction between

iodobenzene and phenylboronic acid performed using K.COz and water as a solvent
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Figure 5.A3: GC-MS spectra of the product for Pd@IO-DTPA catalysed reaction between

iodobenzene and phenylboronic acid performed using different base and water as a solvent
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Figure 5.A4: GC-MS spectra of the product for Pd@I1O-DTPA catalysed reaction between
iodobenzene and phenylboronic acid performed using different amount of base and water as a

solvent
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Time study of Pd@10-DTPA catalysed reaction between iodobenzene and phenyl boronic acid

performed at 35°C and at 100 °C. It was observed that reaction takes 7 hours for completion

(Figures S5.8(A-G))

Entry

9.

9

Catalyst
(mg)

1

1

1

Solvent

Water
Water
Water
Water
Water
Water
Water
Water

Water

Base

K2CO3 (1 equi.)
K2COs (1 equi.)
K2COz (1 equi.)
K2COs (1 equi.)
K2COs (1 equi.)
K2COz (1 equi.)
K2COs (1 equi.)
K2COz (1 equi.)

K2COs (1 equi.)

Temp (°C) Time (h)
30 12

30 8

30 7

30 6

30 5

30 4

30 3

30 2

30 1

GC-MS
Yield

100
100
100
88.9
72.3
71.7
60.8
49.5

33.23

Table 5.A14: Optimization of time, Reaction conditions:

lodobenzene (1.59 mmol),

Phenylboronic acid (1.59 mmol), Water (solvent) (10 ml), TLC (n-hexane), GC-MS (HPLC grade

chloroform), Yields were obtained by GC-MS analysis
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Figure 5.A5: GC-MS spectra of the product for Pd@10-DTPA catalysed reaction between

lodobenzene and phenyl boronic acid performed at 35 °C in the time range 1 to 7 hours
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GC-MS spectra of optimization of Suzuki coupling reaction catalysed by PAd@Ni@I10-

DTPA
Table 5.A15: Optimization of Suzuki coupling reaction
Sr. No. Catalyst (mg) Solvent Base Temp  Time GC-MS
(°C) (h) Yield (%)
Optimization of Solvent

1. 1 Ethanol K2COs (2 equi.) 80 12 61.77
2. 1 Isopropanol K2COs (2 equi.) 80 12 13.29
3. 1 DMF K2COz (2 equi.) 100 12 20.66
4. 1 THF KoCOs (2 equi) 80 12 0.07
5 1 Toluene K2COs (2 equi.) 100 12 0

6. 1 Ethanol: Water (1:1) K2COs (2 equi.) 80 12 75.86
7. 1 Ethanol: Water (7:3) K2COs (2 equi.) 80 12 100
8 1 Isopropanol: Water (9:1) K>COz (2 equi.) 80 12 100
9. 1 Isopropanol: Water (3:7)  K2COs (2 equi.) 80 12 100
10. 1 Isopropanol: Water (1:1) K>COz (2 equi.) 80 12 100
11. 1 Water K2COs (2 equi.) 80 12 100
12. 1 Water K2COs (2 equi.) 100 12 100
13. 1 Water K2COs (2 equi.) 80 12 100
14. 1 Water K2COs (2 equi.) 60 12 100
15. 1 Water K2CO3 (2 equi.) 40 12 100
16. 1 Water K2COs (2 equi.) 30 12 100
17. 1 Water Na,COs3 (2 equi.) 30 12 100
18. 1 Water NaOH (2 equi.) 30 12 100
19. 1 Water KOH (2 equi.) 30 12 100
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20. 1 Water TEA (2 equi.) 30 12 18.49
21. 1 Water K>CO3 (2 equi.) 30 12 100
22. 1 Water K2COs3 (1.0 equi.) 30 12 100
23. 1 Water K2>CO3 (0.5equi.) 30 12 100
24. 1 Water K2CO3 (0.3 equi.) 30 12 91.17
25. 1 Water K2CO3 (0.1 equi.) 30 12 70.34
26. 1 Water K2COs (1 equi.) 30 12 100
27. 1 Water K2COz (1equi.) 30 10 100
28. 1 Water K2COs (1 equi.) 30 8 100
29. 1 Water K2CO3 (1 equi.) 30 6 100
30. 1 Water K2COs (1 equi.) 30 5 100
31. 1 Water K2COs (1 equi.) 30 3 66.65
32. 1 Water K2COs (1 equi.) 30 1 47.01
33. 1 (with 1.59 mmol Water K2CO3 (2 equi.) 30 5 100

starting material

(0.00704 mol% Pd)
34. 1 mg (with 2 mmol Water K2COs (2 equi.) 30 5 100

starting  material)

(0.0056 mol% Pd)
35. 1 mg Ni@lO- Water K2COs (2 equi.) 100 12 0

DTPA
36. No catalyst Water K2COs (2 equi.) 100 12 0
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Figure 5.A6: GC-MS spectra of Solvent optimization study of the product for PdA@Ni@10-DTPA

catalysed reaction between (1.59 mmol) lodobenzene and (1.59 mmol) Phenylboronic acid

performed using (2 equivalent) K;COz and at 30°C
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Optimization of temperature

1 ze7 1525 - 2071525
245 245
- At 100 °C rawaz Al . At 30°C e B
o5 =5
=0 Y
e &
£ E
= T
) L]
3 &5

Feolatin Abuncarce
]

o 40

35 35

' E

S ]

o mn

15 15

10 10

5] 3B 345 435 4T sa7 E:m Yo TES a2 a4 (| 958 08 s 1213 1243 1374 1453 1454 5] 305 381 492 am 585 B3 BBl 70 S &M S5 03T 072 HEE 202 4349 1374 1485 1454
PEE T ;z’m 5311 3503 14034 11308 6732 485 \"17:}‘.5 5142 15456 ‘4&"5'%'? 14516 770 9‘?‘7 27 2w o7 oz | ssiETiMeame sxm aTal 713 STA4 TAAZ STA2  STAT STAT  STA0 14308 5743 0104
3 H s B 7 s H 10 " 2 I " 15 3 + s & L 4 1 10 " I I " 15

Timamin) Timamin

Figure 5.A7 GC-MS spectra of Temperature optimization study of the product for PA@Ni@10-
DTPA catalysed reaction between (1.59 mmol) lodobenzene and (1.59 mmol) Phenylboronic

acid performed using 2 equivalent of K.COz and at 30°C and 100 °C
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Figure 5.A8: GC-MS spectra of Base optimization study of the product for PA@Ni@10-DTPA
catalysed reaction between (1.59 mmol) lodobenzene and (1.59 mmol) Phenylboronic acid

performed using 2 equivalent of different bases and at 30°C.
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Figure 5.A9: GC-MS spectra of

amount of base optimization study of the product for
Pd@Ni@IO-DTPA catalysed reaction between (1.59 mmol) lodobenzene and (1.59 mmol)

Phenylboronic acid performed using different amount of K2COz and at 30°C.
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Figure 5.A10: Pd@Ni@I10-DTPA catalysed reaction between (1.59 mmol) lodobenzene and
(1.59 mmol) Phenylboronic acid performed using 0.5 equivalent of K.COsand at 30°C.
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Figure 5.A11: GC-MS spectra of Temperature optimization study of the product for
Pd@Ni@IO-DTPA catalysed reaction between lodobenzene and Phenylboronic acid performed
using 0.5 equivalent of K2COsand at 30°C
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Figure 5.A12: GC-Ms spectra of crude product (Biphenyl) synthesized From lodobenzene at
RT, 60°C and 100 °C
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Figure 5.A13: GC-Ms spectra of
RT, 60°C and 100 °C
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Figure 5.A14: NMR spectra of column purified (Biphenyl) synthesized From lodobenzene
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Figure 5.A15: GC-Ms spectra of crude product (4-methyl-7,7-Biphenyl) synthesized at RT,
60°C and 100 °C
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Figure 5.A16: GC-Ms spectra of crude product (4-methyl-/, 7 -Biphenyl) synthesized at 30, 60
and 100 °C
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Figure 5.A17: NMR spectra of column purified (4-methyl-1, 1 -Biphenyl)
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Figure 5.A18: GC-Ms spectra of crude product (2-methyl-7,7-Biphenyl) synthesized at RT,
60°C and 100 °C
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Figure 5.A19: GC-Ms spectra of crude product (2-methyl-/, 7 -Biphenyl) synthesized at 30, 60
and 100 °C
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Figure 5.A20: NMR spectra of column purified (2-methyl-1,1’-Biphenyl)
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Figure 5.A21: GC-MS spectra of crude product ([1,1'-biphenyl]-2-carbaldehyde) synthesized
at RT, 60°C and 100 °C
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Figure 5.A22: GC-MS spectra of crude product ([1,1 -biphenyl]-2-carbaldehyde) synthesized

at 30°C, 60°C and 100 °
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Figure 5.A23: NMR spectra of column purified ([1,1'-biphenyl]-2-carbaldehyde)
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Figure 5.A24: GC-Ms spectra of crude product ([1,1'-biphenyl]-4-carbaldehyde) synthesized at
RT, 60°C and 100 °C
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Figure 5.A25: GC-Ms spectra of crude product ([1,1°-biphenyl]-4-carbaldehyde) synthesized at
30°C, 60°C and 100 °C
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Figure 5.A26: NMR spectra of column purified ([1,1'-biphenyl]-4-carbaldehyde
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Figure 5.A27: GC-MS spectra of crude product (Biphenyl) synthesized From Bromobenzene at
RT, 60°C and 100
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Figure 5.A28: GC-MS spectra of crude product (Biphenyl) synthesized From Bromobenzene at
30°C, 60°C and 100 °C
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Figure 5.A29 NMR spectra of column purified Biphenyl synthesized From Bromobenzene
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Figure 5.A30: GC-Ms spectra of crude product (Biphenyl) synthesized From Chlorobenzene at

RT, 60°C and 100 °C
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Figure 5.A31: GC-Ms spectra of crude product (Biphenyl) synthesized From Chlorobenzene at

RT, 60°C and 100 °C
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Figure 5.A32: NMR spectra of column purified Biphenyl synthesized From Chlorobenzene
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Hot filtration test

Pd/Ni-Pd NPs Stabilized on 10 NPs Capped with DTPA

A hot filtration test was performed under optimized condition to investigate the heterogeneous
nature of the catalysts (Pd@Ni@IO-DTPA). After 2 h the catalyst was separated and the reaction

was then continued further for 10 h. Products were isolated and analysed with GC-MS
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Figure 5.A33: GC-Ms spectra of Hot filtration test for PdA@10-DTPA
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Figure 5.A34: GC-MS spectra of product obtained during Hot filtration test (Pd@Ni@IO-

DTPA)

Recycling of catalyst
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Figure 5.A35: GC-MS spectra of the product for Recycled catalyst (Pd@10-DTPA) catalysed

reaction between lodobenzene and phenyl boronic acid performed at 100 °C
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Figure 5.A36: GC-MS spectra of product obtained during Recycling cycle 13, 14, 15, and 16.

238




Chapter 5

Reaction with Ni@1O-DTPA
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Figure 5.A37: GC-MS spectra of the product for Ni@IO-DTPA catalysed reaction between

lodobenzene and Phenylboronic acid performed using 1 equivalent of K,COzand at 100°C
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