
Chapter 3

General Theory of Lattice Vibrations and Present 
Theoretical Models

3.1 Introduction

The study of phonon assisted vibrational properties is of fundamental significance in the 

theory of solid state physics. This is primarily because the interatomic interactions and types of 

chemical bonding govern number of physical properties of solids. Such as thermal and electrical 

conductivities, specific heat, Elastic, optic and dielectric constant etc. These properties depend 

on the dynamics of the atoms (or ions) in crystal and hence their study requires detailed 

information about the actual form of phonon frequency spectrum. This fact has led to the 

development of the various lattice dynamical theories, which in turn predict useful feature of 

materials required for the development of modem technology. Such theories are extremely 

important to understand phonon properties and structural phase transition in different class of 

solid state materials.

The dynamical properties of solid mentioned above can be qualitatively explained by 

using the concept that the atoms, which constitute the solid, are bound together by harmonic 

forces, generally termed as “Harmonic approximations”. The theoretical framework originally 

proposed by Bom and Von Karman [1] considers the crystals as perfect infinite assembly of 

atoms connected through harmonic force constants, free from any external stress, and that the 

dynamics of the solid can be solving their equations of motion. However since then, the field of 

phonon physics has witnessed wide and diversified developments starting from semi microscopic 

models to ab -intio theories, most of them having different ideas and physical significance and is 

important in their right. Some of these model theories which are common for any class of solids 

(ionic, insulating, semiconducting and superconducting etc.) are the rigid ion model (RIM) [2],
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Shell Model (SM) [3,4,5], deformation dipole model (DDM) [6], Breathing shell model (BSM) 

[7], double shell model [8], force constant model [9-11] and several others [12-13] which 

includes additional interactions or effects in the framework of the above theories. Several 

reviews are available in literature for ionic and semiconducting materials [14-18],which discuss 

the upto date development of model theories, their success in predicting properties of materials 

and future scopes in this direction. In addition to the model theories, several semi empirical and 

microscopic theories have been formulated and largely exploited for the semiconductors [19]. 

Such ab-intio theories however are found not to predict accurate description of the dynamics and 

structural properties of the solids at high pressure because of the approximations involved in 

solving the many body problems [20]. We will only refer to the literature, for such theoretical 

development without going into much detail.

In the present theoretical analysis, we have used two model theories namely rigid ion and 

deformation bond approximation model to describe the lattice vibrations in considered 

compound semiconductors having zinc blende structure. Therefore, we only describe the 

theories. However some other models relevant to the zinc blende semiconductors are also briefly 

described. In the following, we begin with the most general theory of lattice vibrations in solids, 

followed by their extensions to the ionic crystals and semiconducting compounds.

3.2 General theory of lattice vibrations

The general theory of lattice vibrations considers the solid to be comprised of discrete 

infinite atomic chains and was first proposed by Bom and Von Karman [1]. The development of 

such a theory is based on new approximations as outlined below.

3.2.1 The Cyclic boundary Condition

The propagations of phonons through a lattice can be considered by imposing suitable 

boundary conditions on the components of the displacement vectors of the constituting atoms. 

This can be achieved by proper normalizations of the number of models and ignoring the surface 

effects. In this approximation, one divides an infinite crystal into several macro crystals each of 

which contains N (= L x L x L) unit cells, where L is the dimensions of the side of the macro 

crystal. It is assumed that the equivalents atoms on the opposite faces move in phase i.e. the
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atomic displacements are periodic with the dimensions of the macro crystals such that 

u{lk)=u (/ + 1,&).

The cyclic boundary conditions therefore requires that,

iq.Lax _ iq.Lai _ icf.lM, +
Q* “* €? " ■ 6- — A ^ J ^

Where q is the phonon propagations and a; = (i = 1,2,3) are the lattice translational vectors 

respectively. Thus the cyclic boundary conditions allows a uniform distributions of the possible

Wave vectors in the Brillouin zone (BZ) of the lattice.

3.2.2 The Adiabatic Approximation

The adiabatic approximation allows the separations of the low energy lattice vibrations 

and the high energy electronic excitation from each other. In other words, it can be said that it 

separates the electronic and the nuclear motions in the solids. Since the mass of the nuclei is very 

large as compared to that of the electrons, therefore the nuclei can be considered to be practically 

at rest. Thus, this approximation allows the electrons to follow any displacement of the cores 

instantaneously by taking up a force free equilibrium configurations and hence the electronic 

coordinates can be eliminated.

3.2.2 I General Notations

The position vector of the 1th atom in the Kth unit cell in equilibrium is given by [1]

X{lk) = X{l) + X{k) (2)

Where,

X(l)-l^a\ +/2«2 +/3«3 (3)
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With /j, l2 and l3 as the integers, called cell indices and ax, az and as, as the basis vectors of 

the crystal lattice. The volume of a unit cell of a direct lattice is given as

V = a\-(a2Xa3) (4)

The vector distance between two ions (Ik) and (l’k’) will be given by

r(ik,Vk') = r(rk')-r(lk) (5)

In terms of Cartesian components, the position vectors will be represented by

Xa (lkJ'k')-Xa (l'k')-Xa (Ik) (6)

3.2.2 II The Hamiltonian in the Harmonic Approximation

The atoms in a crystal vibrate around their equilibrium position. The instantaneous 

position of the atom (lk) is given by

7(lk)=X(lk)+u(lk) (7)

Where W is a small displacement. The kinetic energy of the lattice can be written as

With mk as the mass of the kth atom and uak as the Cartesian component ofw„ (/k).

The potential energy being the function of instantaneous position vector, can be written as

® = p(r(M))=I©(x(/i)+!;(M))
IK IK

(9)
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For small displacements, the effective potential <J> can be expanded in terms of Taylor’s series in

powers ofUa{jk) as,

«> = HXa (/*))+ feVa (>k)"a (^) + { i!k^k>a {Jk)up (/’*')

+7 £ S Z <s>„Bv{ik,rk\rkn)ua{ik)uB{Vk')vAi"k")+...
6 IkaVk' prk"y aW P /

= ®0 +a>j +a>2 +<t>3 +••• (io)

Here <D0 is the static ( or equilibrium) potential energy of the crystal. ®, denotes the 

potential energy which is linear in displacement and vanishes in equilibrium when there is no net 

force on the atom and can be expressed as

®a(ft) = 0G>
duam.

(11)

In equilibrium, the coefficient $>a(lk) represents the negative of the force acting on the 

atom at X (lk) along a- direction. The symbol ‘o’ within the parenthesis signifies the 

equilibrium value. ®2 in equation (10) is quadratic in displacement and depends on the second 

derivative of the potential energy with respect to atomic displacement, such that,

S2<D

dua (Ik)dup (l' k')
(12)

These coefficients are often called as the force constants and satisfy the following conditions: 

(i) The force constants satisfy the symmetry conditions, i.e.

®ap(ik,i'k')=®j3a(rk\ik) and
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depends only on the vector difference (*(/)-*(/■)) and not on the individual

values and mostly they are denoted by <t>a^ (//, kk').

The terms beyond the third, one in equation (10) represents the anharmonic contributions 

to the crystal potential energy and they are generally neglected in the description of lattice 

dynamics. This restriction is said to be the harmonic approximation. In the harmonic 

approximation, therefore Hamiltonian is written as

The expression can be directly used to derive the equation of motion and dynamical 

matrix as outlined below.

3.2.2 III The Dynamical Matrix

The equation of motion of the atoms in the lattice can be written from equation (13) as

mk ua(lk) = - g (14)

This equation of motion represents an infinite set of simultaneous linear differential equations. 

The solutions can be sought in the form of plane wave,

h(/ k) = U V

,4,
exp(i(q.r(l k)..o(g)t)) (15)

Here, U represents the amplitude and is independent of 1. q is the wave vector and m(q) is
K9J

the angular frequency associated with wave. Substitution of equation (15) in (14) results in to a 

set of homogeneous linear equations

37



Chapter 33.2 Genera] Theory of Lattice Vibrations

a2 (q>a I A
rkk'^

\q) ~k'P ap V ? ) lP (16)

For each value of q. Here d is called the dynamical matrix of order (3n x 3n) whose
l <?

elements are given by

D kk'
5 ) -imkmk,) 1, kk *) e

-iqr(lk,l’k')
(17)

The equation (17) can be written in matrix notation as

a?Q)U(q)=D(q)UQ) (IS)

The condition for the non-trivial solution for the wave amplitude of 18 leads to the following 

characteristics equation

D(?)-e>2(i)m I =0 (19)

Where I is the unit matrix of order 3n and m is a (3n x 3n) diagonal matrix defined as

mafi^=mkSapSkk’ <2°)

The characteristics equation 19 is a (3n x 3n) determinant and it’s solution yields 3n values of 

Gif (?) .The relation given by,

(o = G>j{q), j = 1,2 ,3.....n (21)

is called the dispersion relation. It is found that out of 3n solutions for each wave vector<7, three 

frequencies go to zero as q tends to zero. Such modes are called acoustics mode. The remaining 

3(n-l) branches tend to finite frequencies as q approaches to zero. Such modes in binary crystals
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are found to interact strongly with photon and hence are called optic modes. However the choice 

of q is restricted by the cyclic boundary condition of the crystal, given by

_ h. b\ + h~ b2 + fh b3
9= -..........  A7 -- ...  (22)

here \, h2 and p are integer triplets and N is the number of unit cells, hi ( i~l,2,3) are the 

reciprocal lattice vectors. In terms of the Eigen vectors ~e , the equation 16 can alternatively
U’ J

be written as,

a>j2(q)et
a

rk } 
->J 

U .
z^DaB 
k/3 aP

V
~P

fk .I
~>J

U )
(23)

fk 'The Eigen vector e 4-, / satisfy the orthonormality and closure conditions
u

,1%
ka

fk .) (k )
—>J ea — *J

U ) U )
(24)

fk A fk .1
— J % -=->7u U )

~SapSkk' (25)

Thus the lattice dynamical problems revolve around the determination of the eigen values

fk '{(o{q)) and eigen vectors e , corresponding to the dynamical matrixD(q).
u

3.3 Present Model Theories

The physical properties of solids depends upon the constituent atoms (or ions) of the 

crystals and hence their study requires the knowledge of actual form of phonon frequency 

spectrum which can be achieved by means of theoretical models of lattice dynamics. Inspired by 

well known Einstein model of independent atomic oscillators [21, 22], Debye [23] and Bom and
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Von Karman [24] developed more meaningful models for coupled oscillators. While Debye 

theory considers the solid to be continuous that of BvK theory deals with a lattice and provides 

the foundation of modem theory. On account of its continuous background, the Debye model 

ignored dispersion, polarization, and anisotropy of the waves in the lattice. It also provided for an 

artificial cutoff frequency. The Debye theory held the field completely and eclipsed the BvK 

theory for about twenty five years till 1935, when the later was reviewed by Blackman [25-29] 

who showed qualitatively that the BvK theory provided complete answer to the deficiencies of 

the Debye theory. Blackman’s work gradually led to the development of the modem lattice 

theory.

3.3.1 Rigid Ion Model

In order to define the notations, we recall the basic formula from ref. [30]. We follow as 

closely as possible the conventions used by Maradudin et al. [31]. The zinc blende lattice is 

defined by the elementary translations

^=-§(0,1,1), (26)

a2=|(1,0,1), (27)

(28)

and basis vectors *(£ = 1) = 0, x(k = 2) = ~ (1,1,1).

3

(29)

Here a stands for lattice spacing and the unit cell volume is va =—

Cation occupies the sites with k =1, anion the sites with k = 2.

=(/*,/-*■)[ 31],

The short range interactions
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0(1,2):

ABB 
BAB 
B B A

0(1,1) =

Ci

A C,

-E, A J1

0>(2,2):

C2 D2 

d2 c2
e2 e2

Zn and S are the sites.

x(Zn -) - x(| (1,1,0), 1) = 0; x(S) - x(0,2) = -J (1,1,1)

Zn’ and S’ are abbreviations for the lattice sites.

x(Z«')Sjr(|(U, 0),1)-|(1,U)

x(Sr)^x(°{l,\,0),2) = “ (3,3,1)

OP)

(31)

(32)

(33)

(34)

(35)

(Second neighbors). This implies that the “C-type” dynamical matrix [31].

fkk'

aP l K Z, Ok, Vk •) exp {ik(x(l1 k ) - x(!k))} (36)

Mi is the mass of the atom k and K is the wave vector.

The choice of the phase factor in all the k-space matrices used in this work is the same as in 

equation (36).
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The static ionic charge on cation is

ea^k~X)~Z\Sap (37)

And the opposite on anion, k=2. The deformabilities are

m(l,2) =
~r3 -'3

^"3 ~y\ -r3

~?3 ~?3 ~ri

(38)

Short range part of the dynamical matrix defined by equation (36) with the force parameters,

Clf ]=-lVhc,(2^(C ))tft(l-C C )
K

(39)

-,sr
'ap

fW_ - 4Mkl\DkS2a S2„+( l)kiEkS2r(C2a C2g) (40)

rsrLaa l,Aj = + 4(M1M2) 2 A(CaCpCy -iSaSpSy) (41)

1cap fh|] =^4(M1M2) 2 B( SaSpCy + iCaCJJSy) (42)

Cj2 “ cos
ak,a C2 a =cos f*a'

V 2 j
; Sa ssin

V 4 j
; S2a s sin

ak.« I.

k -\,2;{a,p,/} = {l,2,3}

(43)

(44)

m( 2;1)
+r2 +r4 +r4 

+r4 +r2 +r4 

+r4 +r4 +r2

(45)
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The local electric polariziabilities

a2 0 0
a(l; 1) = 0 «2 0

0 0 «2
(46)

And the non local ones

on, 0.4 a4
a( 1;2)= <24 tag a4

a4 a4 «3
(47)

With equation 37 - 47 the dipole induced at the site (lk) reads

Where Eeff(lk) is the effective field on the site (lk).

The matrix m with blocks m (lk, l’k’) is not symmetric in (lk) <-»(/'&') but its blocks 

satisfy the condition of translational invariance [31]. The matrix a with blocks a ( lk, Fk’) is 

symmetric but does not obey the translational invariance. The Fourier transform N(k) and a(k) of 

these two matrices are defined by the equation analogous to equation (36)

The same phase factors were also chosen in the matrix of coulomb coefficients, which 

given as [31] and [32].

(49)

(50)
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4s k<*kp 

aP l K J va v-2

f-*2H
1-exp

G r\k + T(h) l2^ 
4 R2

va K* 

exp (r(h)(x(k) - x(k')))

~T(ka+ra(h)){k0+r0(h) 
vaK h^O ' "

(51)

+ ■* 3I Ha/} (R(x(i '*■))- *(*))) exp(*(x(/ 'iV x(k)))

(the regular part) and
kk’
Y

4n kak(l 

vo k2 (52)

(matrix including the divergent microscopic field). Some authors use for coulomb coefficients 

the notations cofj 0^ j meaning just as equation 1 lb but with opposite sign C = - B. In the above

formula t{K) = hpx +h2b2 +h3b$,aie the reciprocal lattice vectors, R is the convergence 

parameter, G and H are defined by G(x) = exp (-x) lx.

aP'"' dxadxp //(]xj); with 2 1 00 ,2 H(x) = -r-le-* 
■4s x x

dt (53)

In the sums over h (reciprocal space) we omit the term h = (0, 0, 0); in the sum over 1 (direct 

space), if simultaneously 1 = (0,0,0) and k=k’, we replace in the corresponding term the function

Hafi{x) by (x) defined as (x) =

The total dynamical matrix is given by

-I -i
C(k) = Csr(k)-M 2(e+N+)(I-Ba)~1B(e+N)M 2, (54)

(With I standing for unit matrix) and we find it’s eigen frequencies and eigen vectors by 
solving the eigen problem

iC{k)-(o2I)v = 0 (55)
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For each wave vector k we obtain 6 Eigen frequencies (QAk), where j — i, 2,3,....6 and each

eigen frequency belongs an eigen vectorva 

satisfy orthogonality and closure relations.

. The Eigen vector can be chosen so that they

* (
1% T- 
ka \kj

'k'

va \kJ'j sn

Xva
J hiV'y / \hij

lSkk'Sa/3
(56)

The atomic displacement in the mode kj is then given as

-1
V(X I \

ua (^) =—j..=■■■■■■■■■1J exp (-ies • (k)t + ik x(lk) j
4Mkx ’

From the known Eigen vectorsv, we can determine the dipole amplitudes pa
(
\kij as

(57)

p = {I-aBYl (e+N)M 2v 

and from the dipoles on lattice sites

( k\ , X
Pa(lk)-Pa 7T exP(-*»,• (k)t + ikx{lk)J

K’yj

If the deformabilities and polarizabilities vanishes

ma/3(lk;l'k') = 0, aap(lk;l'k')=0,

(58)

(59)

(60)

Then the deformation dipole model becomes the rigid ion model. The dynamical matrix 

(equation 17) is in this case simplified:

-I -I
C{k)^Csr(k)-M 2 eBeM 2 (61)

45



3.3 Present Model Theories Chapter 3

3.3.2 Shell Model

The most widely used among the different lattice dynamical models of interatomic 

interactions in ionic crystals and compound semiconductors has been the well known shell model 

of Dick and Overhauser [3] and Cohran [4]. In this model, the ions are assumed to be polarizable 

and mechanically deformable and the atomic vibrations are described as the motion of the system 

of cores and massless charged electron shells, bound to the respective cores by harmonic force 

constants. The-dynamicaTmatrix corresponding to the shell model is given as [5].

D(q) = (« + ZCZ) (T + ZCY) (S + K + YCY)~l (62)

Where R, T and S are the short range core-core, core-shell and shell-shell interaction matrices of 

order (3n x 3n). Z, Y and K are the diagonal matrices representing ionic and shell charges and 

core shell force respectively.

The shell model has been found quite successful in describing the phonon spectra and 

other dynamical properties of a wide class of solids in general. However, some of the additional 

features in the phonon dispersion curves, which results from many body effects, deformation of 

the electronic charge and bonds, breathing motion of the electron shells etc. could not be 

accounted by the shell model [20]. Several extension of the shell model have been made to 

incorporate the above effects in both RIM and SM for better predictions of phonon properties. In 

the present thesis, we are however mostly concerned about the successful extension of RIM to 

incorporate the special features of phonon properties of ionic and semiconducting compounds 

which are rich in covalency. Therefore to incorporate these effects the model deformation bond 

approximation, which is the simplified version of deformation dipole model.

3.3.3 Deformation Dipole Model

The development of the deformation dipole model (DDM) is based on the postulate 

given by Hardy and his collaborators [6,18, 33-38] according to which some types of short range 

polarization mechanism is considered to explain the values of Szigeti effective charge [39,40] in 

binary crystals. Thus, the overlap between the neighbouring ions alters when they are relatively 

displaced. This alteration in charge distribution in the overlap region is described formally in
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terms various multipoles, of which only the dipoles are retained in DDM and are considered on 

the ions themselves.

An examination of the framework of DDM reveals that there are three types of dipole 

moments. One of them, which this method considers is the displacement dipole produced as a 

result of the displacement of ion as a rigid sphere. This type of dipoles gives rise to the Coulomb

potential^r], which has already been discussed by Kellerman [41], The second type is the

polarization dipole moment, which owes to origin to the deformation of the electronic charge 

cloud of an ion (lk) caused by the external electric field, E that corresponds to an effective 

electric field. Finally, the dipoles of third kind are produced due to slight distortion in the 

electron cloud about a given ion by its overlap with the charge distributions of the neighbouring 

ions. Hence the total dipole induced at the site (lk) can be expressed as [42,43,44,45]

Pam = Zeafi(k)up(lk)+ ^aap{ltJ'k')Ef (/'£') (63)

Where Eejf is the effective field on the site (l’k’). In equation (63), the first term is due to static

ionic charge on cation and the interaction is of Coulomb type. This matrix is contributed by the 

displacement dipole. The matrix m with blocks m (lk, l’k’) is not symmetric in (lk) —» (/'&') but 

it satisfies the condition of translational invariance. This matrix is contributed by the ionic 

deformabilities and is defined as [44,45].

m(l;2) =
-Yl -Y3 -Y3

-y3 -Yj -y3

-y3 -y3 -Yj

m(2;l) = 1
Y2 y4 y4 

y4 y2 y4

U4 ?4 *2.

where (y —1,4) are the deformability parameters [46].

(64)

(65)
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The last term is due to the electric polarizabilities and the matrix a with blocks a (lk; l’k’) 

is symmetric but does not obey the translational invariance. The local electric polarizabilities are 

defined as

a(l;l)=

dj 0 0

0 ctj 0

0 0 Oj

a(2;2) =

(*2 0 0

0 a2 0

0 0

and the non local ones

(66)

(67)

a(l;2) =
“3 “4 a4 

a4 a3 a4 

a4 a4 a3
(68)

3.3.4 Deformation Bond Approximation Model

The rigid ion model can in some cases provide a valid interpretation scheme: if it uses a 

sufficient number of parameters and if the latter are sagaciously fitted. Not physical meaning, 

however can be ascribed to these quantities because the model, instead of taking into account the 

polarization of electronic orbitals with core displacements, only simulates it’s effect by 

extending the description of the short range forces. It was seen in [44] that the deformation 

dipole model, if formulated with sufficient generality, is formally equivalent to the shell model in 

the case of ionic and semi-ionic crystals. However, two simple assumptions, which in general do 

not affect the generalities of the model, make it simpler and handy. The simplification consists:

(i) to reduce the number of independent “deformabilities” and

(ii) to neglect the “non local electric polarizabilities”.
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The above two general assumptions on the general deformation-dipole model are called 

the deformable bond approximations (DBA) [44]. In the case of Zinc blende structure, it 

represents a model with 15 independent parameters: “static ionic charge”, two “deformabilities”, 

two “local electric polarizabilities”, and 10 short range coupling parameters extending to second 

neighbors.

As a consequence of the T(j symmetry, the matrices of short range coupling coefficients 

take the form

®0;2)=

(!;!’) =

®(2;2') =

ABB 
BAB; 
B B A

C1 D1 E1

D1 C1 E1 5

-E1 -E1 Fl„

C2 D2 -E 2
d2 c2 -E 2
e2 E2 F2

(69)

(70)

(71)

The electric polarizability tensor turns out to be

a^v (Zn; Zn) — a^8~v a^v (S;S) = (72a and 72b)

(local polarizabilities) and

a3 a4 a4
a(l;2) = a4 a4 (72c)

°4 a4 a3.

(non local polarizabilities); the mechanical polarizability or deformability is
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m(l;2)=I
'?3 "^3 

-Y3 -Tj -Y3 '

;Y3 -Y3 "Yj

m(2;l)=I
+Y2 ^4 +^4

+Y4 +Y2 ^4 ’ 

n4 +Y4 +y2_

(73)

(74)

and tensor of the static ionic charge is reduced to a scalar:

efj,v (Zn) = + (S) = — q^p (75)

These 19 parameters (69) to (75) define the deformation dipole model for a crystal of a Zinc 

blende structure. In all numerical calculation of the present work we will impose on them 

assumptions

a3= a4 =0, 

Y3=Y], Y4 ~ Y2

(76 & 77)

Calling equation (5 and 6) deformable bond approximation.

The assumption (76 and 77) was inspired by work of Von Hippie [46] and Birman [47]; Von 

Hippie suggested considering the crystal as a lattice of dipoles associated with chemical bonds, 

Birman added the hypothesis that every dipole follows the instantaneous direction of the bond 

and that it’s magnitude depends only on the actual distance of the atom at it’s ends. To elucidate 

this, let us consider a diatomic molecule AB, it’s dipole moment can be written

P = p(r) x
(78)

In equilibrium, it is r = r<>, and we can define the static ionic charge q through the equilibrium 

dipole moment of the molecule:
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If the atoms A and B are displaced from the equilibrium by a small amount u,

r r„ u( B) u(.)). (80)

We develop p(r) in to series,

P (r) — P \'() ]
dp

Or)
(81)

and define coefficient 7 as

dr "0

Expressing r and — as a function of r0 and u ,the equation (78) takes the form
r

(82)

, ,r ^ r.[r.(u(^)-u(fl))]

p = p{r )j-|+</u(,tH/u(«)+ r-----------—2------------ (83)

The dipole moment of a molecule AB may thus be interpreted as composed of its permanent or 

equilibrium moment, of that created by the displacements of punctual charges +q, and of the 

dipole created by the deformation of the charge distribution. The parameter 7 can be interpreted 

as mechanical polarizability of the bond. And it is natural split it into two components 

7 = 7l +72- Thereby, situating the corresponding parts of equation at the sites A and B. On

expressing the last term of equation (82) in the DDM formalism it is found that the deformability 

matrix for molecule AB has the form of equation (74) and simplified by the condition in 

equation ( 76 and 77). In other words, the assumption in equation (76 and 77) means that only 

that part of the bond has been taken in to account, which is parallel with the equilibrium 

directions of the bond. The dynamical matrix corresponding to DDM therefore can be written as,
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1Cp) = C” p)-M 2 (e + N+)(I-Ba)-1 (e + N)M (84)

Where, I stands for unit matrix. CSR ^ j is the short range matrix and defined as

C ' (<?)=-J=L= Y <t>aP (Ik; l'k') exp F iq. (x(I'k*) - x(Ik))
4MkMk, ft L V (85)

The matrices N and a are the Fourier transform of the deformability and polarizability matrices, 

respectively are written as

N.
'kk^ =X m“p (lk; 1'k") exp [^- (x^ 'k'y *w)]

and

a.
kk'

. q )
^a^dkil’k^exp 

t-r
iq- (x(rk ’) - x(/&) j J

(86)

(87)

respectively. The matrix B in the dynamical matrix (equation 84) is the contribution to the 

Coulomb coefficient. The Eigen frequencies can be obtained by solving the Eigen value problem

(88)

For each wave vector, q we obtain 6 eigen frequencies [wj (q), j~h 2,3... 6^

From the phonon band structure m (q), it is straight forward to find the corresponding

density of states as it gives the information of phonons in whole Brillouin zone (BZ). In order to 

obtain the information about the whole phonon spectrum, Brillouin-zone scanning is necessary.

Such a scanning consists in Daa\ -matrix diagonalization over the three dimensional net of
kk’J
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wave vector =
* * =t=a b c 

n ’ n ’ n
, at n2, Hj = - TV,...., TV. In total, this includes Nt = (2iV + l)3

U 2 3J

points in Brillouin zone. The phonon density of states (DOS) is determined by summation over 

all the phonon states and is defined by

sH = D'/ E--J BZ - j -
CO- -<».(?) dq ■ iy f Ed Bz jp

ft)
J

dq (89)

Where, BZ corresponds to the Brillouin zone, D' is a normalization constant such 

that |g(ft))cfe) =1; that is, g(co)dco is the fraction of phonons which have energies within a range

from ft) to © + d<u. ’'p' is the mesh index characterizing tqi in the discretized irreducible Brillouin 
zone and dqp provides the weighting factor corresponding to the volume of ptb mesh in q-space. 

Partial atomic density of state (PDOS) shows the contribution of different atoms to phonon 

density of states (DOS) and therefore, it essentially helps in understanding the atomic level 

contribution to the total phonon DOS. It is defined as

g^D^s{co-aj(q)) ^ (90)

a ^f*)
jp

For a solid at a temperature T, the mean number of phonons with energy Hcoj (g) is given by the
T-l

Bose-Einstein distribution, rtjq{T) exp (M»))kbt
1 . The mean square displacement of a

, \ ( n vsingle quantum mechanical harmonic oscillator, (w2)=|----- n+— can easily be generalized
' ' \mcoA 2)

to that of a single atom in the direction i as

v c
.2 7C~

h • dq (91)
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It can be seen from the above expression that light atoms vibrating at low frequencies exhibit

large zero point motions. The off-diagonal elements ^ u ^ u ^ j can calculated in a similar

way. The thermal and zero point motion of the atoms are often described using the matrix of 

anisotropic temperature factors, B. For an atom k, it is defined by

(92)

The theory of lattice dynamics described above allows us to determine the phonon 

frequencies in the harmonic approximation. Anharmonie effects are relatively small at low 

temperature in most crystals and become more important at high temperatures. The 
thermodynamic properties of a crystal may be calculated in the quasiharmonic approximations1'3. 

In quasiharmonic approximation the vibrations of atoms at any finite temperature are in 

principle, assumed to be harmonic about their mean positions appropriate to that temperature. 

The free energy, in three dimensional cases, is a function of temperature T and the volume V and 

the equation of state is given by

d£
dVJ

(93)

Where, (94)
t JP

fi(0j(qp) , ,
Here, p. =—■ ■ '. The quantity Tmj\qpJ is the phonon energy and, h = h/2n with h and (ty(qp)

2KgT

as Planck constants and phonon branch at qp respectively. Kg is Boltzmann’s constants and T is 

temperature. The internal energy U and the entropy S are given by the relations

U = F-T\^-\ =F + TS. 
ydTJy

(95)
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Here, S{T)=^-J^fijp coth^)-ln^sinh^)).

' JP
(96)

2
The Heat capacity is defined by C(t) = — ^ •

jp _
2sinh (pJp)

JP (97)

The relations (eq. (94), (96), and (97)) concern with the specific values per unit cell. However, 

the specific heat Cy (7) can also be expressed as

Where g(co) is the phonon density of states. Since the experimental measurements usually 

provides CP value, which differs from Cy value at elevated temperature, the following 
corrections is required: Cp = Cy + B^VmT, where B is the bulk modulus expressed as

B = - F(dP/dF)ro, P is the thermal expansion coefficient and Vm is the molar volume at 

equilibrium.

3.3.4 (a) Acoustic response: The Elastic Constants

It is well known that in the long wavelength limits -+oj, the velocity of sound is 

independent of frequency. Thus, according to continuum theory of elastic waves, we find that the

which is related to the elastic constants (Cij). The dynamical matrix, defined by the equations 

(84), gets simplified due to the deformable bond approximation, which then can be solved to 

derive the elastic properties. The derived constants are [47]

(98)

elastic vibrational frequencies tend to zero in such a way that attains a definite limit
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„ _ A + 4(Cj+C2) , q2(u-r)
Ml ~ ^ 2

a ra
(99)

„ _ A-2B+2(C, +C2)-4(D, +D2)+2(F, + F2) , q2 (w+S-v-t)
C)2 _ + 2

a it a
(100)

„ _ A + 2(C1+C2)+2(F1+F2) ,
'■'44 * +

(v-s)(l-za)q2 -p2q2a-4jiy ziry
T"

a ir2a(l-za)

2ttB(1 -za) + q, 3pq + 2z7ty 4A(l-za) + zq*2 J x [Va(l-za)J

(101)

and the piezoelectric constant is

Cl4=2q* 2jrB(l-za) + q. 3pq + 2ziq 4A(l-za) + zq* j^Tta2 (1-za)]

6pqa+4jryr 2J^jra2 (1-za)]
(102)

with A, B, Ck, Dk, Ek, Fk, (k=l,2) as the short range parameter, 7=71+72 and

15.7985

„ 9.36
V =------ , w =

V.

6.398 
. V. !

10.581 43.45
: V. :

8.84

V.
16.1 

: v. :
4p

3VT

with Va as the volume of the unit cell are the numerical coefficient which results from the 

derivatives of the Coulomb coefficients.

3.3.4 (b) The Optical Response: Dielectric properties

The long wave optical response of DDM-DBA can be understood by solving the secular 

equation in the ^~o,o| direction in the long wavelength limit (i.e.^-»o) )■ This yields two distinct

optical vibrational frequencies. The first one correspondence to the longitudinal optical (LO) and 

another to transverse optical modes (TO) modes. Their relevant expressions are
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and

, 1 
O' = —

.2

-4A +---- —
p V

a + 3
Bar

(103)

(104)

The high frequency dielectric constant is given as

£' -8.ap
Wg+ 8^(0, +g2)
3Fa-8 7r(al+a2)

(105)

the quantity a = + a 2) may be identified with the electronic polarizability of the

macroscopic theory. The combination

e*=ei(7]+72) (106)

3

has the meaning of effective charge of Szigeti. The DDM-DBA has been successfully used by 

Kune et. al. [42] to calculate the phonon dispersion curves of several III-V compound 

semiconductors. In the present work, this model theory alongwith the rigid ion model for 

phosphides and antimonide has been used to calculate the phonon properties of some 

semiconducting compounds under compression.

3.4 Many Body Interactions Theories

In this section, we briefly describe some other model theories which have been found 

useful to describe the phonon properties in the semiconductors. Despite the remarkable success 

of SM and other theories, they are subject to some in adequacies. In view of theory of elastic
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constants these models have common deficiency as they lead to fulfillment of the Cauchy 

relations (C]2 = C44). This is because the polarizabilities of ions as introduced in these models,

has no effect on the elastic constants and hence the LO (L) branch along {q,q, q,^j direction. The

reasons for such shortcomings in these theories have been clearly traced by Cowley et al. [48] 

and Singh [20]. Also none of them gives good agreement between theoretical and experimental 

results on strain derivatives of dielectric constants and photoelastic constants [49].

Most of the above inadequacies are believed to arise in SM because its energy expression 

excludes the many body interactions. Indeed, attempt have been made to incorporate many body 

interaction effects in the framework of SM and they have led to several models such as 

deformation shell model (DSM) [50], breathing shell model (BSM) [7] and three body force 

shell model (TSM) [51] which take account of both deformation and displacement of the electron 

shell.

These model theories, as their names imply, consider additional interactions due to 

charge density deformations (DSM) [50] and breathing motion of the electronic shells (BSM) [7] 

of the ions. These effects are short range (SR) in nature and localized upto nearest neighbor only 

and therefore in principle, modify the SR repulsive interaction matrix R. The other model theory, 

three body force shell model (TSM) [51], includes the effects of charge transfer when the nearest 

neighbor ions overlap. Such an effort not only modifies the repulsive interaction matrix R of 

shell model, but also adds an additional term to the coulomb interaction matrix C. This effect 

also modifies the core and shell charges. All these effects are many body types in nature and 

have been proved to be useful in understanding the greater complexity and diversity of the 

phenomenon of lattice vibrations in non metallic solids. In the following, we discuss the silent 

features of DSM and BSM, including their elastic and optical response in the long wavelength 

limit in order to understand the effect of pressure on the lattice vibrational properties of non 

metallic solids and some semi-magnetic semiconductors three body force shell model (TSM) will 

be used. The salient features of three body force shell model will be discussed later.

In this chapter, we have discussed the model theories at length, which we use for the 

study of lattice vibrational properties of Ill-nitrides, Ill-phosphides and antimonide 

semiconducting compounds under compression. In the next two chapters, we bring out detailed
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discussion on determination of the model parameters and it’s applications to explain phonon 

properties under pressure. In chapter 6 we describe the details of the three body force model 

which takes an account of many body interactions. This model is used here to describe the 

structural properties of some diluted magnetic semiconductors under high pressure.
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