4. ANALYTICAL METHOD DEVELOPMENT

4.1 INTRODUCTION

Analytical method development is the process of finding a suitable approach for a certain application. It is often used to figure out a formulation's composition. It is the process of showing that an analytical method is suitable for measuring the concentration of future samples (1). The important parameters that may be considered during method development are linearity, range, accuracy, precision, Limits of Detection (LOD) and Limit of Quantitation (LOQ) (2).

4.2 ANALYSIS OF FULVESTRANT BY UV VISIBLE SPECTROSCOPY

4.2.1 Calibration plot of Fulvestrant in Acetonitrile

Standard stock solution was prepared by dissolving 100 mg of Fulvestrant in 100 ml of Acetonitrile (1000 μ g/ml). Consequent aliquots were prepared by dilutions accordingly to make different concentrations ranging from 25 – 300 μ g/ml. The absorbance of these solutions was measured using UV – Visible Spectrophotometer (UV – 1900, Shimadzu).

4.2.2 Calibration plot of Fulvestrant in Methanol

Standard stock solution was prepared by dissolving 100 mg of Fulvestrant in 100 ml of Methanol (1000 μ g/ml). Consequent aliquots were prepared by dilutions accordingly to make different concentrations ranging from 25 – 300 μ g/ml. The absorbance of these solutions was measured using UV – Visible Spectrophotometer (UV – 1900, Shimadzu).

4.2.3 Calibration plot of Fulvestrant in Tetrahydrofuran

Standard stock solution was prepared by dissolving 100 mg of Fulvestrant in 100 ml of Tetrahydrofuran (1000 μ g/ml) (3). Consequent aliquots were prepared by dilutions accordingly to make different concentrations ranging from 10 – 60 μ g/ml. The absorbance of these solutions was measured using UV – Visible Spectrophotometer (UV – 1900, Shimadzu).

4.2.4 Calibration plot of Fulvestrant in Acetate Buffer pH 5.5

Standard stock solution was prepared by dissolving 100 mg of Fulvestrant in 100 ml of 10% Methanolic acetate buffer pH 5.5 (1000 μ g/ml). Consequent aliquots were prepared by dilutions accordingly to make different concentrations ranging from 30 – 210 μ g/ml. The

absorbance of these solutions was measured using UV – Visible Spectrophotometer (UV – 1900, Shimadzu).

4.2.5 Calibration plot of Fulvestrant in Phosphate Buffer pH 7.4

Standard stock solution was prepared by dissolving 100 mg of Fulvestrant in 100 ml of 10% Methanolic phosphate buffer pH 7.4 (1000 μ g/ml). Consequent aliquots were prepared by dilutions accordingly to make different concentrations ranging from 30 – 210 μ g/ml. The absorbance of these solutions was measured using UV – Visible Spectrophotometer (UV – 1900, Shimadzu).

4.3 ANALYSIS OF FULVESTRANT by High Performance Liquid Chromatography

4.3.1 HPLC Conditions

Quantitative identification of Fulvestrant was done by HPLC as described in literature with slight modifications. The quaternary HPLC system (Thermo Scientific, Germany) composed of a Diode Array Detector (DAD). The separation was performed using a C18 HPLC column (Hypersil Gold, Fischer Scientific, Netherlands). A filtered and degassed mobile phase having Methanol: Acetonitrile: DDW (65:15:20) was used as mobile phase. The run time was 12 min, and the retention time was 5.7 min. The mobile phase was delivered at a flow rate of 1ml/min, the injection volume was 10 μ l and the effluent was monitored at Diode array Detector, wavelength 280 nm (4). Data processing was done using the Chromoleon 7.3 software (Thermo Scientific, Germany).

4.3.2 Preparation of standard stock solution

Standard stock solution was prepared by dissolving 10 mg of Fulvestrant in 10 ml of Methanol (1000 μ g/ml). From this stock solution, working standard of 100 μ g/ml was prepared by dissolving 1 ml of stock solution and marking up the volume up to 10ml. This solution was further used for preparation of dilutions (5).

4.3.3 Calibration plot of Fulvestrant in Mobile phase

Suitable aliquots were prepared by dilution of working standard to prepare the dilutions ranging from $0.2 - 10 \mu g/ml$ to get concentration in the range. These standards were analyzed by HPLC at the detection wavelength of 280 nm and the mobile phase flow rate of 1.0 ml/min. The calibration curve was plotted for the measured area against the drug concentration.

4.4 HPLC ESTIMATION OF FULVESTRANT IN RAT PLASMA

Rat Plasma was collected from the allotted animal under the protocol approved by IAEC committee, The Maharaja Sayajirao University of Baroda, Vadodara, India. Calibration plot of Fulvestrant in the range of 50 -500 ng/ml. The blank plasma 200 μ l was spiked with the stock solution prepared in acetonitrile (100 μ g/ml). The protein precipitation was conducted by addition of sufficient amount of acetonitrile. The samples were centrifuged at 5000 rpm, 10 min at 4°C, the supernant was filtered using 0.22 μ Millipore syringe filter. The sample was further injected into HPLC system by HPLC auto injector at 100 μ l volume (6).

The mobile phase consisted of methanol: acetonitrile: DDW (65:15:20). The run time was 12 min, and the retention time was 5.7 min. the mobile phase was delivered at a flow rate of 1 ml/min, the injection volume was 100 µl and the effluent was monitored at detection wavelength of 280 nm. Data processing was done using Chromoleon 7.3 software. The calibration curve was plotted between area and drug concentration.

4.5 ANALYSIS OF EXEMESTANE BY UV VISIBLE SPECTROSCOPY

4.5.1 Calibration plot of Exemestane in Acetonitrile

Standard stock solution was prepared by dissolving 100 mg of Exemestane in 100 ml of Acetonitrile (1000 μ g/ml). From this stock solution, working standard of 100 μ g/ml was prepared by dissolving 1 ml of stock solution and marking up the volume up to 10ml (7). This solution was further used for preparation of dilutions Consequent aliquots were prepared by dilutions accordingly to make different concentrations ranging from 3 – 30 μ g/ml. The absorbance of these solutions was measured using UV – Visible Spectrophotometer (UV – 1900, Shimadzu).

4.5.2 Calibration plot of Exemestane in Methanol

Standard stock solution was prepared by dissolving 100 mg of Exemestane in 100 ml of Methanol (1000 μ g/ml). From this stock solution, working standard of 100 μ g/ml was prepared by dissolving 1 ml of stock solution and marking up the volume up to 10ml. This solution was further used for preparation of dilutions Consequent aliquots were prepared by dilutions accordingly to make different concentrations ranging from 3 – 30 μ g/ml. The absorbance of these solutions was measured using UV – Visible Spectrophotometer (UV – 1900, Shimadzu).

4.5.3 Calibration plot of Exemestane in Tetrahydrofuran

Standard stock solution was prepared by dissolving 100 mg of Exemestane in 100 ml of Tetrahydrofuran (1000 μ g/ml). From this stock solution, working standard of 100 μ g/ml was prepared by dissolving 1 ml of stock solution and marking up the volume up to 10ml. This solution was further used for preparation of dilutions Consequent aliquots were prepared by dilutions accordingly to make different concentrations ranging from 3 – 30 μ g/ml. The absorbance of these solutions was measured using UV – Visible Spectrophotometer (UV – 1900, Shimadzu).

4.5.4 Calibration plot of Exemestane in Acetate Buffer pH 5.5

Standard stock solution was prepared by dissolving 100 mg of Exemestane in 100 ml of 10% Methanolic acetate buffer pH 5.5 (1000 μ g/ml). From this stock solution, working standard of 100 μ g/ml was prepared by dissolving 1 ml of stock solution and marking up the volume up to 10ml. This solution was further used for preparation of dilutions Consequent aliquots were prepared by dilutions accordingly to make different concentrations ranging from 5 – 40 μ g/ml. The absorbance of these solutions was measured using UV – Visible Spectrophotometer (UV – 1900, Shimadzu).

4.5.5 Calibration plot of Exemestane in Phosphate Buffer pH 7.4

Standard stock solution was prepared by dissolving 100 mg of Exemestane in 100 ml of 10% Methanolic phosphate buffer pH 7.4 (1000 μ g/ml). From this stock solution, working standard of 100 μ g/ml was prepared by dissolving 1 ml of stock solution and marking up the volume up to 10ml. This solution was further used for preparation of dilutions Consequent aliquots were prepared by dilutions accordingly to make different concentrations ranging from 5 – 40 μ g/ml. The absorbance of these solutions was measured using UV – Visible Spectrophotometer (UV – 1900, Shimadzu).

4.6 ANALYSIS OF EXEMESTANE by High Performance Liquid Chromatography

4.6.1 HPLC Conditions

Quantitative identification of Exemestane was done by HPLC as described in literature with slight modifications. The quaternary HPLC system (Thermo Scientific, Germany) composed of a Diode Array Detector (DAD). The separation was performed using a C18 HPLC column (Hypersil Gold, Fischer Scientific, Netherlands). A filtered and degassed mobile phase

having Methanol: Acetonitrile: DDW (65:15:20) was used as mobile phase (8). The run time was 10 min, and the retention time was 7.6 min. The mobile phase was delivered at a flow rate of 1ml/min, the injection volume was 10 μ l and the effluent was monitored at Diode array Detector, wavelength 243 nm. Data processing was done using the Chromoleon 7.3 software (Thermo Scientific, Germany).

4.6.2 Preparation of standard stock solution

Standard stock solution was prepared by dissolving 10 mg of Exemestane in 10 ml of Methanol (1000 μ g/ml). From this stock solution, working standard of 100 μ g/ml was prepared by dissolving 1 ml of stock solution and marking up the volume up to 10ml. This solution was further used for preparation of dilutions.

4.6.3 Calibration plot of Exemestane in Mobile phase

Suitable aliquots were prepared by dilution of working standard to prepare the dilutions ranging from 50 - 600 ng/ml to get concentration in the range. These standards were analyzed by HPLC at the detection wavelength of 243 nm and the mobile phase flow rate of 1.0 ml/min. The calibration curve was plotted for the measured area against the drug concentration.

4.7 HPLC ESTIMATION OF EXEMESTANE IN RAT PLASMA

Rat Plasma was collected from the allotted animal under the protocol approved by IAEC committee, The Maharaja Sayajirao University of Baroda, Vadodara, India. Calibration plot of Exemestane in the range of 50 -600 ng/ml. The blank plasma 200 μ l was spiked with the stock solution prepared in acetonitrile (100 μ g/ml). The protein precipitation was conducted by addition of sufficient amount of acetonitrile (9). The samples were centrifuged at 5000 rpm, 10 min at 4°C, the supernant was filtered using 0.22 μ Millipore syringe filter. The sample was further injected into HPLC system by HPLC auto injector at 100 μ l volume.

The mobile phase consisted of methanol: acetonitrile: DDW (65:15:20). The run time was 10 min, and the retention time was 7.6 min. the mobile phase was delivered at a flow rate of 1 ml/min, the injection volume was 100 µl and the effluent was monitored at detection wavelength of 243 nm. Data processing was done using Chromoleon 7.3 software. The calibration curve was plotted between area and drug concentration. Analytical method was validated for linearity, accuracy and precision as described in section 4.9.

4.8 ESTIMATION OF TOTAL PHOSPHOLIPID CONTENT BY STEWART METHOD

4.8.1 Principle

Through Stewart's Colorimetric Technique, phospholipid content can be measured. This approach for the identification of phospholipids is based on the ability of phospholipids to create a stable compound with ammonium ferro-thiocyanate. Ammonium ferro-thiocyanate is an inorganic, red-colored compound that appears to stay insoluble in chloroform. However, with phospholipids it can form stable complexes and those complexes are soluble in chloroform. Therefore, when at room temperature, a chloroform solution consisting of phospholipids were mixed with ammonium ferro-thiocyanate, a red-colored complex is formed which partitions and gets solubilized in chloroform phase. Via colorimetry, the absorption of the colored soluble complex in chloroform was calculated at 462 nm (10).

4.8.2 Preparation of ammonium ferro-thiocyanate solution:

In de-ionized distilled water, 27.03 g ferric chloride hexahydrate (FeCl3.6H2O) and 30.4 g ammonium thiocyanate (NH4SCN) were dissolved and made up to 1 litre volume to form ammonium ferro-thiocyanate solution.

4.8.3 Calibration plot of phospholipids:

The glass equipment used for the analysis were washed with chromic acid solution prior to use to evade the possible corrosion from surface active washing agents. The lipids used to prepare the stock solution were included with their respective molar ratios in the final optimized formulation, i.e., $105 \ \mu$ l SPC – 3, $15 \ \mu$ l of Phospholipon 90G, $12 \ \mu$ L DSPE-PEG2000. (The above lipid amount was taken from the separate stock lipid solution in chloroform with condensed lipids). Then 3 ml of chloroform was added. After 5 min, the biphasic mixture was completely mixed, and the lower chloroform layer of high density was removed using syringe. The optical density of the segregated chloroform layer was determined against pure chloroform as a blank at a wavelength of 462 nm. The average of optical densities obtained was studied and results were plotted in a graph against overall lipid concentration.

4.9 ANALYTICAL METHOD VALIDATION

4.9.1 Linearity

It is defined as its ability to elicit tests that directly, or by a well-defined mathematical transformation proportional to the concentration of analyte in samples within a given range. The linearity was determined by analyzing independent levels of calibration curve in the selected concentration range. Calibration curve of absorbance vs concentration was plotted and correlation coefficient and regression line equation for was determined.

4.9.2 Precision assay

It is defined as the degree of agreement among individual test results when the method is applied repeatedly to multiple sampling of a homogenous sample. The precision of assay was determined by repeatability (intraday), intermediate precision (interday) and reported as the % relative standard deviation (%RSD). %RSD of the data obtained were calculated with the formula:

$$\% RSD = \frac{Standard Deviation}{Average} \times 100$$

4.9.3 Accuracy

It is defined as the closeness of the test results obtained by that method to the true value. Accuracy was determined using following equation:

$$\% Accuracy = \frac{Mean \ observed \ concentration}{Actual \ concentration} \times 100$$

4.9.4 Limit of Detection (LOD)

The limit of detection (LOD) is the lowest amount of analyte in a sample that can be detected, but not necessarily quantified, under standard experimental condition.

LOD was calculated using the following formula:

$$LOD = 3.3 \ (\sigma / S)$$

Where, σ is the standard deviation of the y- intercept and S is the slope of the calibration curve.

4.9.5 Limit of Quantitation (LOQ)

The limit of quantification (LOQ) is the lowest amount of analyte in a sample that can be determined with acceptable precision and accuracy under standard experimental condition.

LOQ was calculated using the following formula:

$$LOD = 10 \left(\sigma \,/\, S \right)$$

Where, σ is the standard deviation of the y- intercept and S is the slope of the calibration curve.

4.10 RESULTS AND DISCUSSION

4.10.1 ESTIMATION OF FULVESTRANT BY UV SPECTROSCOPY

4.10.1.1 Calibration Curve in Acetonitrile

Fulvestrant in acetonitrile showed a characteristic spectrum when scanned in ultraviolet range between 200 – 400 nm. The absorption maxima (λ_{max}) were found at 280 nm in acetonitrile and Beer's law was obeyed between 25 – 200 µg/ml (Table 4.1). The overlay plot of Fulvestrant in acetonitrile is shown in figure 4.1. Regression analysis was performed on the experimental data. Regression equation for standard curve was y = 0.005 x - 0.004 and correlation coefficient (\mathbb{R}^2) was found to be 0.9983 signifying that a linear relationship existed between absorbance and concentration of the drug (figure 4.2).

Sr. No.	Concentration (µg/ml)	Absorbance	%RSD
1.	25	0.117±0.008	1.170
2.	50	0.256±0.013	0.773
3.	75	0.345±0.011	0.471
4.	100	0.501±0.013	0.694
5.	125	0.637±0.006	0.743
6.	150	0.750±0.014	0.942
7.	175	0.864±0.010	1.184
8.	200	0.995±0.0142	1.263

Table 4.1 Standard Calibration	ı data of Fulvestrant in Acetonitrile
---------------------------------------	---------------------------------------

Figure 4.1 Overlay plot of Fulvestrant in Acetonitrile

4.10.1.1.1 VALIDATION

The analytical method for estimation of Fulvestrant in acetonitrile was validated for different parameters of analytical method validation.

4.10.1.1.1.1 Linearity

Linear correlation was obtained as per Beer-Lambert law between absorbance and concentrations of Fulvestrant in concentration range of 25 to 200 μ g/ml for acetonitrile. The summarized parameters for regression equation and correlation are given in table 4.2.

Parameters	Results
λ_{\max}	280 nm
Linearity range	25 to 200 µg/ml
Regression equation $(y=a+bc)$	y = 0.005 x - 0.003
Correlation coefficient (R ²)	0.9983

 Table 4.2 Regression analysis of Fulvestrant in acetonitrile

4.10.1.1.1.2 Accuracy and Precision assay

The results of accuracy and precision are shown in Table 4.3. The results reveal that the proposed method is accurate and precise.

Standard concentration (µg/ml)		Precision (%RSD)		Accuracy
Actual	Observed	Interday	Intraday	(%)
25	24.87 ± 0.124	0.498	0.867	99.48
75	75.13 ± 0.186	0.247	0.368	100.17
150	149.94 ± 0.218	0.145	0.286	99.96

4.10.1.1.1.3 LOD and LOQ

The LOD and LOQ for Fulvestrant in acetonitrile was found to be 1.192 μ g/ml and 3.611 μ g/ml respectively.

4.10.1.2 Calibration curve of Fulvestrant in methanol

Fulvestrant in methanol showed a characteristic spectrum when scanned in ultraviolet range between 200 - 400 nm. The absorption maxima (λ_{max}) were found at 280 nm in methanol and Beer's law was obeyed between $25 - 200 \mu g/ml$ (Table 4.4). The overlay plot of Fulvestrant in methanol is shown figure 4.3. Regression analysis performed on the

experimental data. Regression equation for standard curve was y = 0.0049 x + 0.0073 and correlation coefficient (R²) was found to be 0.9996 signifying that a linear relationship existed between absorbance and concentration of the drug (figure 4.4).

Sr. No.	Concentration (µg/ml)	Absorbance	%RSD
1.	25	0.132±0.014	1.136
2.	50	0.261±0.019	1.076
3.	75	0.376±0.011	1.090
4.	100	0.499±0.013	1.257
5.	125	0.634±0.010	0.836
6.	150	0.748±0.015	1.253
7.	175	0.864±0.010	1.380
8.	200	0.987±0.018	1.809

Table 4.4 Standard Calibration data of Fulvestrant in methanol

Figure 4.3 Overlay plot of Fulvestrant in methanol

4.10.1.2.1 VALIDATION

The analytical method for estimation of Fulvestrant in methanol was validated for different parameters of analytical method validation.

4.10.1.2.1.1 Linearity

Linear correlation was obtained as per Beer-Lambert law between absorbance and concentrations of Fulvestrant in concentration range of 25 to 200 μ g/ml for methanol. The summarized parameters for regression equation and correlation are given in Table 4.5.

Parameters	Results
λ_{max}	280 nm
Linearity range	25 to 200 μg/ml
Regression equation $(y=a+bc)$	y = 0.0049 x + 0.0073
Correlation coefficient (R ²)	0.9996

Table 4.5 Regression analysis of Fulvestrant in methanol

4.10.1.2.1.2 Accuracy and Precision assay

The results of accuracy and precision are shown in Table 4.6. The results reveal that the proposed method is accurate and precise.

Standard concentration (µg/ml)		Precision (%RSD)		Accuracy
Actual	Observed	Interday	Intraday	(%)
25	24.97 ± 0.114	1.214	0.986	99.88
75	74.88 ± 0.206	0.628	0.719	99.84
150	150.34 ± 0.164	0.846	0.538	100.22

Table 4.6 Accuracy and Precision for Fulvestrant in methanol

4.10.1.2.1.3 LOD and LOQ

The LOD and LOQ for Fulvestrant in methanol was found to be 4.10 μ g/ml and 12.4 μ g/ml respectively.

4.10.1.3 Calibration curve of Fulvestrant in Tetrahydrofuran

Fulvestrant in tetrahydrofuran showed a characteristic spectrum when scanned in ultraviolet range between 200 – 400 nm. The absorption maxima (λ_{max}) was found at 280 nm in tetrahydrofuran and Beer's law was obeyed between 10 – 80 µg/ml (Table 4.7). The overlay plot of Fulvestrant in tetrahydrofuran is shown figure 4.5. Regression analysis performed on the experimental data. Regression equation for standard curve was y = 0.0116 x - 0.0156 and correlation coefficient (R²) was found to be 0.9953 signifying that a linear relationship existed between absorbance and concentration of the drug (figure 4.6).

Sr. No.	Concentration (µg/ml)	Absorbance	%RSD
1.	10	0.122±0.004	0.849
2.	20	0.204±0.006	0.596
3.	30	0.321±0.006	0.626
4.	40	0.437±0.007	0.779
5.	50	0.531±0.003	1.221
6.	60	0.684±0.010	1.216
7.	80	0.942±0.014	1.644

Table 4.7 Standard (Calibration data	of Fulvestrant in	Tetrahydrofuran
----------------------	------------------	-------------------	-----------------

Figure 4.5: Overlay plot of Fulvestrant in Tetrahydrofuran

4.10.1.3.1 VALIDATION

The analytical method for estimation of Fulvestrant in tetrahydrofuran was validated for different parameters of analytical method validation.

4.10.1.3.1.1 Linearity

Linear correlation was obtained as per Beer-Lambert law between absorbance and concentrations of Fulvestrant in concentration range of 10 to 80 μ g/ml for tetrahydrofuran. The summarized parameters for regression equation and correlation are given in Table 4.8.

Parameters	Results
λ_{\max}	280 nm
Linearity range	10 to 80 µg/ml
Regression equation $(y=a+bc)$	y = 0.0116 x - 0.0156
Correlation coefficient (R ²)	0.9953

Table 4.8 Regression analysis of Fulvestrant in tetrahydrofuran

4.10.1.3.1.2 Accuracy and Precision assay

The results of accuracy and precision are shown in Table 4.9. The results reveal that the proposed method is accurate and precise.

Fable 4.9 Accuracy	y and Precision	n for Fulvestrant i	n tetrahydrofuran
	/		•

Standard conce	entration (µg/ml)	Precision (%RSD)		Accuracy
Actual	Observed	Interday	Intraday	(%)
10	9.92 ± 0.141	1.068	1.607	99.20
30	30.16 ± 0.104	0.344	0.408	100.53
60	59.88 ± 0.114	0.190	0.223	99.80

4.10.1.3.1.3 LOD and LOQ

The LOD and LOQ for Fulvestrant in tetrahydrofuran was found to be 1.98 μ g/ml and 6.0 μ g/ml respectively.

4.10.1.4 Calibration curve of Fulvestrant in Acetate buffer pH 5.5

Fulvestrant in tetrahydrofuran showed a characteristic spectrum when scanned in ultraviolet range between 200 - 400 nm. The absorption maxima (λ_{max}) was found at 280 nm in 10% methanolic acetate buffer pH 5.5 and Beer's law was obeyed between $30 - 210 \mu g/ml$ (Table 4.10). The overlay plot of Fulvestrant in 10% methanolic acetate buffer 5.5 is shown figure

4.7. Regression analysis performed on the experimental data. Regression equation for standard curve was y = 0.0049 x + 0.0095 and correlation coefficient (R²) was found to be 0.9998 signifying that a linear relationship existed between absorbance and concentration of the drug (figure 4.7).

Table 4.10 Standard Calibration data of Fulvestrant in 10% methanolic acetate bufferpH 5.5

Sr. No.	Concentration (µg/ml)	Absorbance	%RSD
1.	30	0.161±0.0011	0.683
2.	60	0.310±0.0027	0.870
3.	90	0.447±0.0052	1.163
4.	120	0.598±0.0076	1.270
5.	150	0.737±0.0093	1.261
6.	180	0.885±0.0120	1.355
7.	210	1.033±0.0170	1.645

Figure 4.7 Standard calibration curve of Fulvestrant in 10% methanolic acetate buffer pH 5.5

4.10.1.4.1 VALIDATION

The analytical method for estimation of Fulvestrant in 10% methanolic acetate buffer pH 5.5 was validated for different parameters of analytical method validation.

4.10.1.4.1.1 Linearity

Linear correlation was obtained as per Beer-Lambert law between absorbance and concentrations of Fulvestrant in concentration range of 30 to 210 μ g/ml for 10% methanolic acetate buffer pH 5.5. The summarized parameters for regression equation and correlation are given in Table 4.11.

Table 4.11 Regression	analysis of Fulvest	rant in 10% methanol	ic acetate buffer pH 5.5
Tuble mill hegiession	analysis of Larest		ie accente sunter pri ele

Parameters	Results
$\lambda_{ m max}$	280 nm
Linearity range	30 to 210 µg/ml
Regression equation $(y=a+bc)$	y = 0.0049 x + 0.0095
Correlation coefficient (R ²)	0.9998

4.10.1.4.1.2 Accuracy and Precision assay

The results of accuracy and precision are shown in Table 4.12. The results reveal that the proposed method is accurate and precise.

Table 4.12 Accuracy and Precision	n for Fulvestrant in	10% methanolic acetate	e buffer pH

5.5

Standard conce	ntration (µg/ml)	Precision (%RSD)		Accuracy
Actual	Observed	Interday	Intraday	(%)
30	29.81 ± 0.131	0.439	0.802	99.36
90	89.86 ± 0.194	0.215	0.340	99.84
150	151.28 ± 0.536	0.354	0.688	100.85

4.10.1.4.1.3 LOD and LOQ

The LOD and LOQ for Fulvestrant in 10% methanolic acetate buffer pH 5.5 was found to be $6.40 \mu g/ml$ and $19.38 \mu g/ml$ respectively.

4.10.1.5 Calibration of Fulvestrant in Phosphate buffer pH 7.4

Fulvestrant in tetrahydrofuran showed a characteristic spectrum when scanned in ultraviolet range between 200 - 400 nm. The absorption maxima (λ_{max}) was found at 278 nm in 10% methanolic phosphate buffer pH 7.4 and Beer's law was obeyed between $30 - 210 \mu g/ml$ (Table 4.13). The overlay plot of Fulvestrant in 10% methanolic phosphate buffer 7.4 is shown figure 4.9. Regression analysis performed on the experimental data. Regression equation for standard curve was y = 0.0042 x + 0.0034 and correlation coefficient (R²) was found to be 0.9997 signifying that a linear relationship existed between absorbance and concentration of the drug (figure 4.8).

Table 4.13 Standard Calibration data of Fulvestrant in 10% methanolic phosphatebuffer pH 7.4

Sr. No.	Concentration (µg/ml)	Absorbance	%RSD
1.	30	0.126±0.0011	0.876
2.	60	0.258±0.0027	1.046
3.	90	0.384±0.0043	1.119
4.	120	0.513±0.0071	1.384
5.	150	0.637±0.0098	1.538
6.	180	0.767±0.0110	1.434
7.	210	0.876±0.0160	1.826

4.10.1.5.1 VALIDATION

The analytical method for estimation of Fulvestrant in 10% methanolic phosphate buffer pH 7.4 was validated for different parameters of analytical method validation.

4.10.1.5.1.1 Linearity

Linear correlation was obtained as per Beer-Lambert law between absorbance and concentrations of Fulvestrant in concentration range of 30 to 210 μ g/ml for 10% methanolic phosphate buffer pH 7.4. The summarized parameters for regression equation and correlation are given in Table 4.14.

Table 4.14 Regression analysis of Fulvestrant in 10% methanolic phosphate buffer pH

7.4

Parameters	Results
λ_{\max}	278 nm
Linearity range	30 to 210 µg/ml
Regression equation ($y=a+bc$)	y = 0.0042 x + 0.0034
Correlation coefficient (R ²)	0.9997

4.10.1.5.1.2 Accuracy and Precision assay

The results of accuracy and precision are shown in Table 4.15. The results reveal that the proposed method is accurate and precise.

Table 4.15 Accuracy and Precision for Fulvestrant in 10% methanolic phosphate bufferpH 7.4

Standard conce	ntration (µg/ml)	Precision (%RSD)		Accuracy
Actual	Observed	Interday	Intraday	(%)
30	30.31 ± 0.368	1.214	1.372	101.03
90	89.76 ± 0.514	0.572	0.699	99.73
150	148.78 ± 1.631	1.096	1.163	99.18

4.10.1.5.1.3 LOD and LOQ

The LOD and LOQ for Fulvestrant in phosphate buffer pH 7.4 was found to be 2.67 μ g/ml and 8.09 μ g/ml respectively.

4.10.2 HPLC METHOD DEVELOPMENT OF FULVESTRANT

4.10.2.1 Calibration curve of Fulvestrant in HPLC

The retention time of Fulvestrant was found to be 5.7 min. The standard plot of Fulvestrant in methanol is shown in Table 4.16. The overlay plot of HPLC chromatogram is shown in figure 4.11. Regression equation for standard curve was y = 82.066 x - 0.2363 and correlation coefficient (R²) was found to be 0.9995 signifying that a linear relationship existed between peak area and concentration of the drug (figure 4.10).

Sr. No.	Concentration	Peak Area	Retention time	%RSD
	(µg/ml)	(µAU*s)	(min)	
1.	0.2	16.23±0.158	5.72	0.973
2.	0.4	32.88±0.275	5.68	0.836
3.	0.6	49.17±0.471	5.74	0.957
4.	0.8	65.62±0.785	5.72	1.196
5.	1.0	81.59±1.096	5.71	1.343

6.	1.2	98.97±1.113	5.70	1.124
7.	10	846.32±9.356	5.72	1.105

Figure 4.9 Overlay RP – HPLC spectrum of Fulvestrant in methanol

Figure 4.10 Calibration plot of Fulvestrant by RP – HPLC

4.10.2.2 VALIDATION

The analytical method for estimation of Fulvestrant in RP – HPLC in methanol was validated for different parameters of analytical method validation.

4.10.2.2.1 Linearity

Linear correlation was obtained for Fulvestrant in concentration range of 0.2 to 10 (μ g/ml). The summarized parameters for regression equation and correlation are given in Table 4.17.

Parameters	Results	
λ_{max}	280 nm	
Linearity range	200 ng/ml to 10 µg/ml	
Regression equation $(y=a+bc)$	y = 82.066 x - 0.2363	
Correlation coefficient (R ²)	0.9995	
Mobile Phase	Methanol: Acetonitrile: Water (65:15:20)	

Table 4.17 Parameters from calibration plot of Fulvestrant in mobile phase

4.10.2.2.2 Accuracy

The percentage recoveries for lower, intermediate, and higher concentration are given in Table 4.18 in mobile phase using RP - HPLC. Their outcome indicates that the suggested analytical approach will reliably assess and predict any slight shift in the drug concentration in the solution.

Level	Expected	Observed Concentration	%Drug
	Concentration (µg/ml)	(µg/ml)	Recovered
80%	0.32	0.315±0.24	98.43%
100%	0.4	0.407±0.37	101.75%
120%	0.48	0.476±0.51	99.16%

Table 4.18 Accuracy of the method in mobile phase

4.10.2.2.3 Precision

The precision analysis for intraday and interday was conducted in the same operating condition. The number of RSD values obtained in the precision analysis was less than 2.0

percent, suggesting that these approaches have good accuracy and reproducibility. Percent RSD from Table 4.19 reveals that the method is reliable and there is no intraday and interday variability in the system.

Table 4.19 Intraday and Interday precision of Fulvestrant in mobile phase using RP –
HPLC

Concentration	Observed Concentration (µg/ml)		%F	RSD
(µg/ml)	Intraday	Interday	Intraday	Interday
0.3	0.304±0.002	0.297±0.004	0.157	0.207
0.5	0.507±0.008	0.495±0.006	0.213	0.256
1.0	0.992±0.010	1.02±0.016	0.251	0.310

4.10.2.2.4 Limit of detection and Limit of quantitation

Table 4.20 LOD and LOQ of Fulvestrant in mobile phase

Limit of Detection (ng/ml)	Limit of Quantitation (ng/ml)
10.04	31.80

4.10.3 Calibration plot of Fulvestrant by RP – HPLC in rat plasma

The Fulvestrant calibration plot was obtained in the 50 - 600 ng/ml range. The linear curve regression equation was found to agree with y = 106.50 x + 0.2217. It was noticed that the correlation coefficient for the system was 0.9999, meaning the presence of a linear relationship between the peak region and the drug concentration. There was a retention time of 5.71 minutes.

Table 4.21 RP – HPLC calibration curve values	s of Fulvestrant in Rat Plasma
---	--------------------------------

Sr. No.	Concentration	Peak Area	Retention time	%RSD
	(ng/ml)	(µAU*s)	(min)	
1.	50	5.53±0.097	5.72	1.754
2.	100	10.91±0.153	5.68	1.402
3.	200	21.86±0.322	5.74	1.473
4.	300	32.36±0.514	5.72	1.588

5.	400	42.39±0.646	5.71	1.523
6.	500	53.76±0.884	5.70	1.644
7.	600	63.99±0.495	5.72	1.208

Figure 4.11 Overlay chromatogram of Fulvestrant in rat plasma by RP – HPLC

Figure 4.12 Overlay chromatogram of Fulvestrant in rat plasma by RP – HPLC

4.10.3.1 VALIDATION

The analytical method for estimation of Fulvestrant in RP – HPLC in methanol was validated for different parameters of analytical method validation.

4.10.3.1.1 Linearity

Linear correlation was obtained for Fulvestrant in concentration range of 0.05 to 0.6 (μ g/ml). The summarized parameters for regression equation and correlation are given in Table 4.21.

Parameters	Results	
$\lambda_{ m max}$	280 nm	
Linearity range	50 to 600 ng/ml	
Regression equation $(y=a+bc)$	y = 106.52 x + 0.2217	
Correlation coefficient (R ²)	0.9999	
Mobile Phase	Methanol: Acetonitrile: Water (65:15:20)	

 Table 4.21 Parameters from calibration plot of Fulvestrant in mobile phase

4.10.3.1.2 Accuracy

The percentage recoveries for lower, intermediate and higher concentration are given in Table 4.22 in mobile phase using RP – HPLC. Their outcome indicates that the suggested

analytical approach will reliably assess and predict any slight shift in the drug concentration in the solution.

Level	Expected	Observed Concentration	%Drug
	Concentration (µg/ml)	(µg/ml)	Recovered
80%	0.24	0.237±0.24	98.75%
100%	0.30	0.296±0.37	98.66%
120%	0.36	0.365±0.51	101.36%

 Table 4.22 Accuracy of the method in mobile phase

4.10.3.1.3 Precision

The precision analysis for intraday and interday was conducted in the same operating condition. The number of RSD values obtained in the precision analysis was less than 2.0 percent, suggesting that these approaches have good accuracy and reproducibility. Percent RSD from Table 4.23 reveals that the method is reliable and there is no intraday and interday variability in the system.

Table 4.23 Intraday and Interday precision of Fulvestrant in rat plasma using RP – HPLC

Concentration	Observed Concentration (µg/ml)		%I	RSD
(µg/ml)	Intraday	Interday	Intraday	Interday
0.2	0.203±0.002	0.197±0.003	0.985	1.522
0.3	0.304±0.005	0.295±0.003	1.644	1.016
0.5	0.506±0.008	0.495±0.009	1.581	1.818

4.10.3.1.4 Limit of detection and Limit of quantitation

Table 4.24 LOD and LOQ of Fulvestrant in rat plasma

Limit of Detection (ng/ml)	Limit of Quantitation (ng/ml)
6.86	20.81

4.10.4 Estimation of total phospholipid content by Stewart method

As observed in Figure 4.16, the calibration plot of the total phospholipid blend in chloroform was calculated and plotted with regression coefficient value (R^2) of 0.9997 in the concentration range of 20 – 100 µg/ml, which shows that the phospholipids follow Beer's rule.

Sr. No.	Concentration (µg/ml)	Absorbance	%RSD
1.	0	0	0
2.	20	0.185±0.0012	0.648
3.	40	0.375±0.0028	0.746
4.	60	0.564 ± 0.0064	1.134
5.	80	0.765 ± 0.0083	1.084
6.	100	0.966±0.0122	1.262

Table 4.25 Calibration data for estimation of total phospholipid content

Figure 4.14 Calibration plot of total phospholipids mixture in chloroform

4.10.4.1 VALIDATION

4.10.4.1.1 Linearity

Linear correlation was obtained for Fulvestrant in concentration range of 20 to 100 μ g/ml. The summarized parameters for regression equation and correlation are given in Table 4.26.

Parameters	Results	
λ_{\max}	462 nm	
Linearity range	20 to 100 µg/ml	
Regression equation $(y=a+bc)$	y = 0.0097 x - 0.0072	
Correlation coefficient (R ²)	0.9997	
Solvent	Chloroform	

Table 4.26 Parameters from calibration plot of total phospholipid mixture

4.10.4.1.2 Accuracy

The percentage recoveries for lower, intermediate, and higher concentration are given in Table 4.27 with chloroform using UV–Vis spectrophotometry. Their outcome indicates that the suggested analytical approach will reliably assess and predict any slight shift in the drug concentration in the solution.

Level	Level Expected		%RSD	
	concentration	concentration		
	(µg/ml)	(µg/ml)		
80%	48	47.31±0.21	98.56	
100%	60	61.08±0.43	101.80	
120%	72	71.37±0.84	99.13	

 Table 4.27 Accuracy of the phospholipid mixture in chloroform

4.10.4.1.3 Precision

The precision analysis for intraday and interday was conducted in the same operating condition. The number of RSD values obtained in the precision analysis was less than 2.0 percent, suggesting that these approaches have good accuracy and reproducibility. Percent RSD from Table 4.28 reveals that the method is reliable and there is no intraday and interday variability in the system.

Concentration	Observed Concentration (µg/ml)		%RSD	
(µg/ml)	Intraday	Interday	Intraday	Interday
30	29.24±0.241	30.19±0.217	0.824	0.718
50	50.61±0.183	49.61±0.378	0.361	0.761
70	69.24±0.631	70.48±0.664	0.911	0.942

Table 4.28 Intraday and Interday precision for total phospholipid content in chloroform

4.10.4.1.4 Limit of Detection and Limit of Quantitation

Table 4.29 LOD and LOQ of total phospholipid content in chloroform

Limit of Detection (µg/ml)	Limit of Quantitation (µg/ml)
2.24	7.42

4.10.5 Analytical Interference study

Analytical interference studies are carried out to understand the potential interactions that can occur between drug and excipients which can lead to chemical as well as physical changes in drug's native state. The interaction cane be studied by different methods, mainly for chemical interaction UV visible spectroscopy is employed to check whether due to interaction is there any change in wavelength or the absorbance of drug. This provides the initial idea about chemical interaction which can be further confirmed by employing other analytical studies.

There was no peak observed for PLGA in the graph of UV analysis. Even mixture of Fulvestrant and formulation excipients shows almost overlaying peaks which suggest negligible interference of the excipients in the analysis of Fulvestrant using UV-Vis spectrophotometer. Reading of absorbance maxima did remain constant during analytical interference study which suggest no analytical interference of excipients with Fulvestrant.

Sr. No.	Name of Ingredients	Absorbance
1.	Fulvestrant	0.274±0.012
2.	PLGA	
3.	Fulvestrant + PLGA	0.281±0.019

 Table 4.30 Interference study Fulvestrant and Excipients

4.	Fulvestrant + PLGA + SPC-3 + DSPE	0.270±0.024
	PEG2000	
5.	Fulvestrant + PLGA + SPC-3 + DSPE	0.284±0.027
	PEG ₂₀₀₀ + Trehalose	

4.10.6 ESTIMATION OF EXEMESTANE BY UV SPECTROSCOPY

4.10.6.1 Calibration Curve in Acetonitrile

Exemestane in acetonitrile showed a characteristic spectrum when scanned in ultraviolet range between 200 – 400 nm. The absorption maxima (λ_{max}) was found at 243 nm in acetonitrile and Beer's law was obeyed between 25 – 200 µg/ml (Table 4.31). The overlay plot of Exemestane in acetonitrile is shown in figure 4.18. Regression analysis was performed on the experimental data. Regression equation for standard curve was y = 0.0403 x + 0.0085 and correlation coefficient (\mathbb{R}^2) was found to be 0.9999 signifying that a linear relationship existed between absorbance and concentration of the drug (figure 4.16).

Sr. No.	Concentration (µg/ml)	Absorbance	%RSD
1.	0	0	0
2.	3	0.133±0.0014	1.052
3.	6	0.256±0.0021	0.821
4.	9	0.375±0.0042	1.121
5.	12	0.494±0.0063	1.275
6.	15	0.613±0.0074	1.207
7.	18	0.732±0.0096	1.311
8.	21	0.854±0.016	1.873

Figure 4.15 Overlay plot of Exemestane in Acetonitrile

4.10.6.2 VALIDATION

The analytical method for estimation of Exemestane in acetonitrile was validated for different parameters of analytical method validation.

4.10.6.2.1 Linearity

Linear correlation was obtained as per Beer-Lambert law between absorbance and concentrations of Exemestane in concentration range of 3 to 30 μ g/ml for acetonitrile. The summarized parameters for regression equation and correlation are given in table 4.32.

Parameters	Results
$\lambda_{ m max}$	243 nm
Linearity range	3 to 30 µg/ml
Regression equation $(y=a+bc)$	y = 0.0403 x + 0.0085
Correlation coefficient (R ²)	0.9998

 Table 4.32 Regression analysis of Exemestane in acetonitrile

4.10.6.2.2 Accuracy and Precision assay

The results of accuracy and precision are shown in Table 4.33. The results reveal that the proposed method is accurate and precise.

Standard concentration (µg/ml)		Precision (%RSD)		Accuracy
Actual	Observed	Interday	Intraday	(%)
9	8.97 ± 0.124	0.658	1.082	99.66
12	12.06 ± 0.186	0.812	1.228	100.50
15	14.93 ± 0.218	1.216	1.546	99.33

4.10.6.2.3 LOD and LOQ

The LOD and LOQ for Exemestane in acetonitrile was found to be 0.69 μ g/ml and 2.11 μ g/ml respectively.

4.10.7 Calibration curve of Exemestane in methanol

Exemestane in methanol showed a characteristic spectrum when scanned in ultraviolet range between 200 - 400 nm. The absorption maxima (λ_{max}) was found at 243 nm in methanol and Beer's law was obeyed between $3 - 30 \mu g/ml$ (Table 4.34). The overlay plot of Exemestane in methanol is shown figure 4.20. Regression analysis performed on the experimental data.

Regression equation for standard curve was y = 0.0405 x + 0.0057 and correlation coefficient (R²) was found to be 0.9999 signifying that a linear relationship existed between absorbance and concentration of the drug (Figure 4.18).

Sr. No.	Concentration (µg/ml)	Absorbance	%RSD
1.	0	0	0
2.	3	0.128±0.0012	0.937
3.	6	0.254±0.0031	1.220
4.	9	0.371±0.0049	1.321
5.	12	0498±0.0062	1.224
6.	15	0.608±0.0074	1.217
7.	18	0.732±0.0110	1.502
8.	21	0856±0.0151	1.764

 Table 4.34 Standard Calibration data of Exemestane in methanol

Figure 4.18 Standard calibration curve of Exemestane in methanol

4.10.7.1 VALIDATION

The analytical method for estimation of Exemestane in methanol was validated for different parameters of analytical method validation.

4.10.7.1.1 Linearity

Linear correlation was obtained as per Beer-Lambert law between absorbance and concentrations of Exemestane in concentration range of 3 to 30 μ g/ml for methanol. The summarized parameters for regression equation and correlation are given in Table 4.35.

Table 4.35	Regression	analysis o	of Exemestane	in methanol
------------	------------	------------	---------------	-------------

Parameters	Results
λ_{max}	243 nm
Linearity range	3 to 30 µg/ml
Regression equation ($y=a+bc$)	y = 0.0405 x + 0.0057
Correlation coefficient (R ²)	0.9998

4.10.7.1.2 Accuracy and Precision assay

The results of accuracy and precision are shown in Table 4.36. The results reveal that the proposed method is accurate and precise.

Standard concentration (µg/ml)		Precision (%RSD)		Accuracy
Actual	Observed	Interday	Intraday	(%)
9	9.05 ± 0.114	0.986	1.259	100.55
12	11.93 ± 0.206	0.719	1.726	99.41
15	15.11 ± 0.164	0.538	1.087	100.73

Table 4.36 Accuracy and Precision for Exemestane in methanol

4.10.7.1.3 LOD and LOQ

The LOD and LOQ for Exemestane in methanol was found to be 0.46 μ g/ml and 1.41 μ g/ml respectively.

4.10.8 Calibration curve of Exemestane in Tetrahydrofuran

Exemestane in tetrahydrofuran showed a characteristic spectrum when scanned in ultraviolet range between 200 – 400 nm. The absorption maxima (λ_{max}) was found at 243 nm in tetrahydrofuran and Beer's law was obeyed between 3 – 30 µg/ml (Table 4.37). The overlay plot of Exemestane in tetrahydrofuran is shown figure 4.22. Regression analysis performed on the experimental data. Regression equation for standard curve was y = 0.0484 x - 0.0157 and correlation coefficient (\mathbb{R}^2) was found to be 0.9993 signifying that a linear relationship existed between absorbance and concentration of the drug (figure 4.20).

Table 4.37 Standard Calibration data of Exemestane in Tetrahydrofuran

Sr. No.	Concentration (µg/ml)	Absorbance	%RSD
1.	3	0.167±0.0012	0.718
2.	6	0.310±0.0027	0.871
3.	9	0.459±0.0043	0.937
4.	12	0.609±0.0075	1.231
5.	15	0.738±0.0097	1.314
6.	18	0.881±0.0136	1.534

Figure 4.19: Overlay plot of Exemestane in Tetrahydrofuran

Figure 4.20 Standard calibration curve of Exemestane in Tetrahydrofuran

4.10.8.1 VALIDATION

The analytical method for estimation of Exemestane in tetrahydrofuran was validated for different parameters of analytical method validation.

4.10.8.1.1 Linearity

Linear correlation was obtained as per Beer-Lambert law between absorbance and concentrations of Exemestane in concentration range of 3 to 30 μ g/ml for tetrahydrofuran. The summarized parameters for regression equation and correlation are given in Table 4.38.

Parameters	Results
λ_{\max}	243 nm
Linearity range	3 to 30 µg/ml
Regression equation $(y=a+bc)$	y = 0.0484 x - 0.0157
Correlation coefficient (R ²)	0.9993

 Table 4.38 Regression analysis of Exemestane in tetrahydrofuran

4.10.8.1.2 Accuracy and Precision assay

The results of accuracy and precision are shown in Table 4.39. The results reveal that the proposed method is accurate and precise.

Standard concentration (µg/ml)		Precision (%RSD)		Accuracy	
Actual	Observed	Interday	Intraday	(%)	
9	9.06 ± 0.101	1.114	1.556	100.66	
12	11.89 ± 0.124	1.042	1.314	99.08	
15	15.17 ± 0.143	0.942	1.229	101.33	

Table 4.39 Accuracy and Precision for Exemestane in tetrahydrofuran

4.10.8.1.3 LOD and LOQ

The LOD and LOQ for Exemestane in tetrahydrofuran was found to be 1.07 μ g/ml and 3.24 μ g/ml respectively.

4.10.9 Calibration curve of Exemestane in Acetate buffer pH 5.5

Exemestane in acetate buffer pH 5.5 showed a characteristic spectrum when scanned in ultraviolet range between 200 – 400 nm. The absorption maxima (λ_{max}) was found at 243 nm in 10% methanolic acetate buffer pH 5.5 and Beer's law was obeyed between 5 – 40 µg/ml (Table 4.40). The overlay plot of Exemestane in 10% methanolic acetate buffer 5.5 is shown figure 4.24. Regression analysis performed on the experimental data. Regression equation for standard curve was y = 0.0254 x - 0.0011 and correlation coefficient (R²) was found to be 0.9998 signifying that a linear relationship existed between absorbance and concentration of the drug (figure 4.21).

Table 4.40 Standard Calibration data of Exemestane in 10% methanolic acetate bufferpH 5.5

Sr. No.	Concentration (µg/ml)	Absorbance	%RSD
1.	5	0.120±0.0011	0.916
2.	10	0.252±0.0027	1.071
3.	15	0.386±0.0052	1.347
4.	20	0.508±0.0076	1.496
5.	25	0.636±0.0093	1.462
6.	30	0.767±0.0120	1.564
7.	35	0.882±0.0156	1.768

Parth J. Thakkar, Faculty of Pharmacy, The M.S. University of Baroda

Figure 4.21 Standard calibration curve of Exemestane in 10% methanolic acetate buffer pH 5.5

4.10.9.1 VALIDATION

The analytical method for estimation of Exemestane in 10% methanolic acetate buffer pH 5.5 was validated for different parameters of analytical method validation.

4.10.9.1.1 Linearity

Linear correlation was obtained as per Beer-Lambert law between absorbance and concentrations of Exemestane in concentration range of 5 to 40 μ g/ml for 10% methanolic acetate buffer pH 5.5. The summarized parameters for regression equation and correlation are given in Table 4.41.

Table 4.41	Regression	analysis o	of Exemestane in	10% methanolic	acetate buffer	pH 5.5

Parameters	Results
λ_{max}	243 nm
Linearity range	5 to 40 µg/ml
Regression equation $(y=a+bc)$	y = 0.0254 x - 0.0011
Correlation coefficient (R ²)	0.9998

4.10.9.1.2 Accuracy and Precision assay

The results of accuracy and precision are shown in Table 4.12. The results reveal that the proposed method is accurate and precise.

Table 4.42 Accuracy and Precision for Exemestane in 10% methanolic acetate bufferpH 5.5

Standard concentration (µg/ml)		Precision (%RSD)		Accuracy	
Actual	Observed	Interday	Intraday	(%)	
15	14.91 ± 0.181	0.757	1.213	99.40	
20	20.26 ± 0.234	0.868	1.154	101.30	
25	24.83 ± 0.336	0.761	1.353	99.32	

4.10.9.1.3 LOD and LOQ

The LOD and LOQ for Exemestane in 10% methanolic acetate buffer pH 5.5 was found to be $6.40 \mu g/ml$ and $19.38 \mu g/ml$ respectively.

4.10.10 Calibration of Exemestane in Phosphate buffer pH 7.4

Exemestane in tetrahydrofuran showed a characteristic spectrum when scanned in ultraviolet range between 200 - 400 nm. The absorption maxima (λ_{max}) was found at 245 nm in 10% methanolic phosphate buffer pH 7.4 and Beer's law was obeyed between $5 - 40 \mu g/ml$ (Table 4.26). The overlay plot of Exemestane in 10% methanolic phosphate buffer 7.4 is shown figure 4.9. Regression analysis performed on the experimental data. Regression equation for standard curve was y = 0.0231 x + 0.0062 and correlation coefficient (\mathbb{R}^2) was found to be 0.9994 signifying that a linear relationship existed between absorbance and concentration of the drug (figure 4.21).

Table 4.43 Standard Calibration data of Exemestane in	10% methanolic phosphate
buffer pH 7.4	

Sr. No.	Concentration (µg/ml)	Absorbance	%RSD
1.	5	0.130±0.0014	1.076
2.	10	0.246±0.0025	1.016
3.	15	0.345±0.0041	1.118
4.	20	0.463±0.0057	1.231
5.	25	0.581±0.0072	1.239
6.	30	0.706±0.0094	1.331
7.	35	0.827±0.0118	1.426

Figure 4.21 Standard calibration curve of Exemestane in 10% methanolic phosphate buffer pH 7.4

4.10.10.1 VALIDATION

The analytical method for estimation of Exemestane in 10% methanolic phosphate buffer pH 7.4 was validated for different parameters of analytical method validation.

4.10.10.1.1 Linearity

Linear correlation was obtained as per Beer-Lambert law between absorbance and concentrations of Exemestane in concentration range of 5 to 40 μ g/ml for 10% methanolic phosphate buffer pH 7.4. The summarized parameters for regression equation and correlation are given in Table 4.44.

Table 4.44 Regression an	alysis of Exemestane in	10% methanolic	phosphate buffer	r pH

7.4

Parameters	Results
λ_{\max}	245 nm
Linearity range	5 to 40 µg/ml
Regression equation $(y=a+bc)$	y = 0.0233 x + 0.0043
Correlation coefficient (R ²)	0.9993

4.10.10.1.2 Accuracy and Precision assay

The results of accuracy and precision are shown in Table 4.45. The results reveal that the proposed method is accurate and precise.

Table 4.45 Accuracy and Precision for Exemestane in 10% methanolic phosphate bufferpH 7.4

Standard concentration (µg/ml)		Precision (%RSD)		Accuracy
Actual	Observed	Interday	Intraday	(%)
15	15.11 ± 0.168	0.832	1.112	100.73
20	19.84 ± 0.214	0.704	1.078	99.20
25	25.28 ± 0.314	0.881	1.242	101.12

4.10.10.1.3 LOD and LOQ

The LOD and LOQ for Exemestane in phosphate buffer pH 7.4 was found to be 0.62 μ g/ml and 1.84 μ g/ml respectively.

4.10.11 HPLC METHOD DEVELOPMENT OF EXEMESTANE

4.10.11.1 Calibration curve of Exemestane in HPLC

The retention time of Exemestane was found to be 7.61 min. The standard plot of Exemestane in methanol is shown in Table 4.46. The overlay plot of HPLC chromatogram is shown in figure 4.28. Regression equation for standard curve was y = 580.74 x - 1.6983 and correlation coefficient (R²) was found to be 0.9999 signifying that a linear relationship existed between peak area and concentration of the drug (figure 4.23).

Table 4.46 Standard	l Calibration data for	r estimation of Exen	nestane in HPLC
---------------------	------------------------	----------------------	-----------------

Sr. No.	Concentration	Peak Area	Retention time	%RSD
	(ng/ml)	(µAU*s)	(min)	
1.	50	28.77±0.251	7.61	0.872
2.	100	54.41±0.387	7.57	0.710
3.	200	113.05±1.411	7.62	1.248
4.	300	170.90±1.829	7.55	1.070
5.	400	231.30±2.324	7.62	1.004

6.	500	289.55±2.718	7.61	0.938
7.	600	347.04±4.356	7.62	1.255

Figure 4.22 Overlay RP – HPLC spectrum of Exemestane in methanol

Figure 4.23 Calibration plot of Exemestane by RP – HPLC

4.10.11.1.1 VALIDATION

The analytical method for estimation of Exemestane in RP – HPLC in methanol was validated for different parameters of analytical method validation.

4.10.11.1.1 Linearity

Linear correlation was obtained for Exemestane in concentration range of 50 to 600 (ng/ml). The summarized parameters for regression equation and correlation are given in Table 4.47.

Parameters	Results
λ_{\max}	243 nm
Linearity range	50 to 600 ng/ml
Regression equation $(y=a+bc)$	y = 580.74 x - 1.6983
Correlation coefficient (R ²)	0.9999
Mobile Phase	Methanol: Acetonitrile: Water (65:15:20)

Table 4.47 Parameters from calibration plot of Exemestane in mobile phase

4.10.11.1.2 Accuracy

The percentage recoveries for lower, intermediate, and higher concentration are given in Table 4.48 in mobile phase using RP - HPLC. Their outcome indicates that the suggested analytical approach will reliably assess and predict any slight shift in the drug concentration in the solution.

Level	Expected	Observed Concentration	%Drug
	Concentration (µg/ml)	(µg/ml)	Recovered
80%	0.24	0.237±0.0024	98.75%
100%	0.30	0.306±0.0037	102%
120%	0.36	0.353±0.0051	98.05%

Table 4.48 Accuracy of the method in mobile phase

4.10.11.1.3 Precision

The precision analysis for intraday and interday was conducted in the same operating condition. The number of RSD values obtained in the precision analysis was less than 2.0

percent, suggesting that these approaches have good accuracy and reproducibility. Percent RSD from Table 4.49 reveals that the method is reliable and there is no intraday and interday variability in the system.

Table 4.49 Intraday and Interday precision of Exemestane in mobile phase using RP –
HPLC

Concentration	Observed Concentration (µg/ml)		%F	RSD
(µg/ml)	Intraday	Interday	Intraday	Interday
0.2	0.204±0.0014	0.197±0.0023	0.686	1.167
0.3	0.294±0.0027	0.307±0.0046	0.918	1.498
0.4	0.408±0.0043	0.393±0.0054	1.053	1.374

4.10.11.1.4 Limit of detection and Limit of quantitation

Table 4.50 LOD and LOQ of Exemestane in mobile phase

Limit of Detection (ng/ml)	Limit of Quantitation (ng/ml)
0.91	2.92

4.10.12 Calibration plot of Exemestane by RP – HPLC in rat plasma

The Exemestane calibration plot was obtained in the 50 - 600 ng/ml range. The linear curve regression equation was found to agree with y = 0.1998 x + 0.2168. It was noticed that the correlation coefficient for the system was 0.9999, meaning the presence of a linear relationship between the peak region and the drug concentration. There was a retention time of 7.61 minutes.

1 able 4.41 KP – HPLC calibration curve values of Exemestane in Kat Plasm	Table 4.41 RP	– HPLC calibration	curve values of F	Exemestane in	Rat Plasma
---	---------------	--------------------	--------------------------	---------------	-------------------

Sr. No.	Concentration	Peak Area	Retention time	%RSD
	(ng/ml)	(µAU*s)	(min)	
1.	50	10.24±0.097	7.61	0.947
2.	100	20.19±0.153	7.64	0.757
3.	200	40.18±0.322	7.63	0.801
4.	300	59.87±0.514	7.58	0.858

5.	400	81.03±0.646	7.62	0.797
6.	500	100.41±0.884	7.61	0.880
7.	600	119.43±1.495	7.58	1.251

Figure 4.24 Overlay chromatogram of Exemestane in rat plasma by RP – HPLC

Figure 4.25 Calibration plot of Exemestane by RP – HPLC in rat plasma

4.10.12.1 VALIDATION

The analytical method for estimation of Exemestane in RP – HPLC in methanol was validated for different parameters of analytical method validation.

4.10.12.1.1 Linearity

Linear correlation was obtained for Exemestane in concentration range of 0.05 to 0.6 (μ g/ml). The summarized parameters for regression equation and correlation are given in Table 4.51.

Parameters	Results
λ_{max}	243 nm
Linearity range	0.05 to 0.6 µg/ml
Regression equation $(y=a+bc)$	y = 0.1998 x + 0.2168
Correlation coefficient (R ²)	0.9999
Mobile Phase	Methanol: Acetonitrile: Water (65:15:20)

Table 4.51 Parameters from calibration plot of Exemestane in mobile phase

4.10.12.1.2 Accuracy

The percentage recoveries for lower, intermediate, and higher concentration are given in Table 4.52 in mobile phase using RP - HPLC. Their outcome indicates that the suggested analytical approach will reliably assess and predict any slight shift in the drug concentration in the solution.

Level	Expected	Observed Concentration	%Drug
	Concentration (µg/ml)	(µg/ml)	Recovered
80%	0.24	0.238±0.027	99.16
100%	0.30	0.307±0.037	102.33
120%	0.36	0.365±0.051	101.38

Table 4.52 Accuracy of the method in mobile phase

4.10.12.1.3 Precision

The precision analysis for intraday and interday was conducted in the same operating condition. The number of RSD values obtained in the precision analysis was less than 2.0

percent, suggesting that these approaches have good accuracy and reproducibility. Percent RSD from Table 4.53 reveals that the method is reliable and there is no intraday and interday variability in the system.

Table 4.53 Intraday and Interday precision of Exemestane in rat plasma using RP –
HPLC

Concentration	Observed Concentration (µg/ml)		%RSD	
(µg/ml)	Intraday	Interday	Intraday	Interday
0.2	0.203±0.0017	0.197±0.0023	0.837	1.167
0.3	0.305±0.0034	0.296±0.0043	1.114	1.452
0.4	0.407±0.0056	0.393±0.0069	1.375	1.775

4.10.12.1.4 Limit of detection and Limit of quantitation

Table 4.54 LOD and LOQ of Exemestane in rat plasma

Limit of Detection (ng/ml)	Limit of Quantitation (ng/ml)
3.58	10.85

References

Swartz ME, Krull IS. Analytical method development and validation: CRC press;
 2018.

2. Riley CM, Rosanske TW. Development and validation of analytical methods: Elsevier; 1996.

3. Wang J, Liang D, Liang G. A novel class of polymeric carriers based on PLA-MPEG for microsphere containing fulvestrant. Journal of polymer engineering. 2010;30(2):81-94.

4. Gumustas M, Sengel-Turk CT, Hascicek C, Ozkan SA. Optimization of a validated stability-indicating RP-LC method for the determination of fulvestrant from polymeric based nanoparticle systems, drugs and biological samples. Biomedical Chromatography. 2014;28(10):1409-17.

5. Dongala T, Palakurthi AK, Vytla Y, Katari NK. A novel UPLC-PDA isocratic method for the quantification fulvestrant in oil-based pre-filled syringe injection matrix formulations. Journal of Analytical Science and Technology. 2019;10(1):1-12.

6. Balaram VM, Parmar D, Teja BB, Rathnam S, Rao JV, Dasandi B. Sensitive and rapid high-performance liquid chromatography tandem mass spectrometry method for estimation of fulvestrant in rabbit plasma. Biomedical Chromatography. 2010;24(8):863-7.

7. Angalaparameswari S, Thiruvengadarajan VS, Kumar NA, Kutumbarao M, Ramkanth S, Madhusudhanachetty C. Analytical method development and validation of exemestane tablet by UV spectrophotometry. E-Journal of Chemistry. 2012;9(4):2068-73.

8. Mukthinuthalapati MA, Bukkapatnam V. A novel validated stability-indicating RP-HPLC method for the determination of Exemestane (steroidal aromatase inhibitor). Journal of Bioequivalence & Bioavailability. 2015;7(6):288.

9. Persiani S, Broutin F, Cicioni P, Stefanini P, Benedetti MS. Determination of the new aromatase inhibitor exemestane in biological fluids by automated high-performance liquid chromatography followed by radioimmunoassay. European journal of pharmaceutical sciences. 1996;4(6):331-40.

10. Stewart JCM. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Analytical biochemistry. 1980;104(1):10-4.