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Abstract 

 

PGPR is one of the most important tools used in the modern agriculture practice. PGPR can be 

used as biofertilizers as well as biocontrol agents. Rhizobium is an important PGPR, which is 

has been used as biofertilizer for legumes since last two decades.  Besides biofertilizers it has 

been also employed as bioremediation agent, for remediation of heavy metal polluted soil. 

Rhizobium is an important PGPR which is capable of symbiosis with legumes for nitrogen 

fixation, so it can work in soil as well as plant. Any genetic modification in rhizobium bacteria 

would have an amplified effect due to its ability to form nodules in the legume roots. A single 

nodule could contain ab out 109 bacteria which is 100 times more than the entire rhizosphere 

of a single crop like fenugreek. Also, while living in non-symbiotic state, it can perform all the 

duties of any other PGPR. Because of this rhizobium especially is used in biofertilizer 

formulations for legumes. 

 Aim of our study was to check the effects of genetically modified rhizobium on the growth of 

fenugreek seedlings in Arsenic and Cadmium contaminated soil. E. coli DH10B ybdK gene, 

which encodes a carboxylate- amine ligase was cloned in a low copy number plasmid 

pBBR1MCS2 plasmid under a constitutive lac promoter, which yielded a 6.2 kb recombinant 

plasmid, pPAT. Since it is a carboxylate- amine ligase, it possesses the gamma glutamyl 

cysteine ligase activity. The gshA gee in bacteria encodes this enzyme which catalyses the first 

step in glutathione biosynthesis. Many studies have stated that the rhizobium devoid of gshA 

synthesizes very less glutathione, as well as loses the ability to form symbiotic nodules with 

legumes, but when complemented with gshA containing plasmid, it regains its ability to 

produce sufficient glutathione and symbiosis. Many studies have also reported the enhanced 

synthesis of glutathione by cloning gshA gene using plasmid. Similarly, our study also reported 

enhanced glutathione synthesis by GMO rhizobium compared to the wild type rhizobium. It 

was observed that M3 and M5 accumulated significantly higher levels of glutathione compared 

to M2 and M4 respectively. M2 and M4 are the wild type counterparts of M3 and M5 

respectively. This was observed in rich as well as minimal media. 

To determine their effect on fenugreek seedlings, seeds of fenugreek were coated with M1-M5 

bacteria and sown in Arsenic and Cadmium spiked soil. M1 was used as a control for all 

experiments. Seedlings were allowed to grow for 16 days and its morphology, growth 
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parameters, oxidative stress parameters and antioxidant enzyme profile was measured in order 

to check the effect of glutathione overproducing rhizobium on the growth of fenugreek. It was 

observed that M3 and M5 treated seedlings showed enhanced growth parameters, reduced 

oxidative stress and reduced antioxidant enzyme levels in shoots as well as roots compared to 

M2 and M4 treated seedlings respectively. Glutathione reductase GR showed increase in GMO 

bacteria treated seedlings which justifies that more glutathione is present in the tissue, despite 

of low antioxidant enzyme levels, which means that the source of glutathione is external. This 

concludes that the GMO rhizobium exhibits protective effect towards fenugreek growing in 

Arsenic and Cadmium polluted soil.  

Similar experiments were performed with the bacterial consortia. Fenugreek seeds coated with 

C2 (M1+M3+M5) and C1 (M1+M2+M4) consortium were grown in Arsenic and Cadmium 

contaminated soil for 25 days. C2 bearing M3 and M5 is a GMO consortium. It was observed 

that C2 treated seedlings showed increased growth parameters, reduced oxidative stress and 

reduced antioxidant enzyme levels. Rather the interplay was more complex as the crosstalk 

between different bacterial species and plants differ in consortia compared to single bacteria. 

In our conclusion this GMO consortium also exhibits protective effect towards fenugreek 

growing in Arsenic and Cadmium polluted soil compared to wild type consortium. 

PGPR employs varieties of methods to capture/detoxify heavy metals. They are known to form 

intracellular as well as extracellular nanoparticles. It is also established that glutathione has the 

capability to synthesize and stabilize the cadmium sulphide nanoparticles. In our study the 

ability of GMO rhizobium was checked for the invitro formation of extracellular cadmium 

sulphide nanoparticles. We observed that M3 and M5 produced significantly higher amount of 

CdS NPs compared to M2 and M4 respectively, due to higher secretion of glutathione in the 

growth media. Also, the NPs synthesized by GMO rhizobium showed smaller aggregation 

compared to wildtype rhizobium, which was confirmed by SEM. FTIR was performed to get 

an idea about the functional groups of the molecules attached to the surface of nanoparticles, 

to confirm the presence of glutathione on them. Amide I band in the FTIR spectra of CdS NPs 

produced by M3 and M5 showed reduced transmittance of the concerned peak compared to 

M2 and M4 respectively. Finally, XRD analysis was done to confirm that the material 

synthesized by bacteria were nanoparticles. Biosynthesized CdS nanoparticles were in cubic 
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phase which was confirmed by analysis of the prominent 2 theta peaks of diffractogram. Thus, 

GMO rhizobium are capable of biosynthesis of more extracellular CdS nanoparticles.  

Therefore, clubbing the above observations, we can conclude that rhizobium has the ability to 

reduce the bioavailability of cadmium metal by converting it into nanoparticle aggregate. Both 

GMO as well as wild type of forming aggregates. But the only difference is that the GMO 

rhizobium are capable of formation of smaller aggregates, which was confirmed by SEM. 

Smaller aggregates have large surface to volume ratio which gives it better chance of 

detoxification by further modification by other PGPR present in the rhizosphere/vicinity. Thus, 

we conclude that GMO PGPR producing enhanced levels of glutathione could be used as a 

PGPR for fenugreek growing in Arsenic and Cadmium polluted soil. 

 

 

     

 

 

 

 


