LIST OF ABBREVIATIONS

CEPI	Central Environmental Pollution Index
СРСВ	Central Pollution Control Board
GDP	Gross Domestic Product
UNEP	United Nations Environment Programme
ICAR	The Indian Council of Agriculture Research
EIA	Environmental Impact Association
PM	Particulate Matter
DNA	Deoxyribonucleic acid
PGPR	Plant Growth Promoting Rhizobium
ACC	Acetyl-CoA carboxylase
IAA	Indole-3 acetic Acid
ROS	Reactive Oxygen Species
GSH	Reduced Glutathione
GSSG	Oxidized Glutathione
GGT	Gamma glutamyl Transpeptidase
GCS	Gamma glutamylcysteine synthetase
GS	Glutathione synthase
ATP	Adenosine triphosphate
PGPB	Plant Growth Promoting Rhizobium
LB	Luria Bertani
YEM	Yeast extract Mannitol
NAIMCC	National Agriculturally Important Microbial Culture Collection
pPAT	Plasmid Pushpa Akash Tanvi
C1	Consortium 1
C2	Consortium 2
SOD	Superoxide dismutase
GR	Glutathione reductase

CAT	Catalase
APX	Ascorbate peroxidase
NBT	Nitro blue tetrazolium
GMO	Genetically modified
H2O2	Hydrogen peroxide
MDA	Malondialdehyde
WT	Wild type
SEM	Scanning electron microscope
VP	Variable Pressure
XRD	X-ray diffraction
FTIR	Fourier-transform Infrared spectroscopy
CdS	Cadmium Sulphide
NP	Nanoparticles
Cr	Chromium
Hg	Mercury
Ni	Nickle
V	Vanadium
Se	Selenium
As	Arsenic
Cd	Cadmium
Cu	Copper
Zn	Zinc
Pb	Lead
ug	Microgram
mg	Milligram
kg	Kilogram
L	Litres
ml	Millilitres

List of Figures

Figure	Page no.
Figure 1.1 Intertwining interactions of Agriculture, Industries and humans	5
with Nature	
Figure 1.2 Arsenic contamination in India	11
Figure 1.3 Various methods of heavy metal remediation from soil	12
Figure 1.4 Schematic diagram for uptake, translocation and sequestration	13
of heavy metals by plants	
Figure 1.5 Schematic representation of the PGPR activities	14
Figure 1.6 Mechanisms employed by bacteria to neutralize heavy metal	15
stress	
Figure 1.7 Schematic representation of formation of metal sulphide by	16
bacterial cells exposed to heavy metal stress	
Figure 1.8 Schematic representation of symbiosis mechanism by	16
rhizobium	
Figure 3.1 FASTA sequence of <i>E. coli</i> DH10B <i>ybdK</i> gene	39
Figure 3.2 Agarose gel electrophoresis profile of ybdK gene amplicons	43
generated by gradient PCR.	
Figure 3.3 Schematic representation of <i>ybdK</i> gene amplicon	43
Figure 3.4 Schematic representation of an empty vector pBBR1MCS2	44
Figure 3.5 Agarose gel electrophoresis profile of the digested vector	45
(pBBR1MCS2) and amplicon (ybdK gene)	
Figure 3.6.a Schematic representation of digested vector pBBR1MCS2	45
Figure 3.6.b Schematic representation of digested <i>ybdK</i> gene amplicon	45
Figure 3.7 Agarose gel electrophoresis profile of a recombinant plasmid	45
pPAT	
Figure 3.8 Agarose gel electrophoresis profile of the validation of	46
recombinant plasmid by digestion.	
Figure 3.9 Schematic representation of pPAT plasmid	47
Figure 3.10 Transformation by electroporation	48
Figure 3.11 pPAT isolated from Rhizobial transformants	49

Figure 3.12 Validation of pPAT by PCR method	50
Figure 3.13 Growth curve of PGPR in YEM and M9 minimal medium	51-52
Figure 3.14.a Estimation of Total glutathione (intracellular) from different	53
PGPR	
Figure 3.14.b Estimation of Reduced glutathione (intracellular) estimation	53
from different PGPR.	
Figure 4.1.a Bacterial colony morphology under the influence of Arsenic	70
stress	
Figure 4.1.b Bacterial colony morphology under the influence of	70
Cadmium stress	
Figure 4.2.a Effect of Arsenic on radicle emergence in fenugreek seed	71
Figure 4.2.b Effect of Cadmium on radicle emergence in fenugreek seed	71
Figure 4.3.a Spot assay to determine bacterial sensitivity towards arsenic	72
induced stress	
Figure 4.3.b Spot assay to determine bacterial sensitivity towards	73
Cadmium induced stress	
Figure 4.4.a Growth of fenugreek seedlings treated with PGPR in Arsenic	75
stress (Top view)	
Figure 4.4.b Growth of fenugreek seedlings treated with PGPR in Arsenic	75
stress (Side view)	
Figure 4.4.c Seedlings morphology at 0 ppm arsenic stress	75
Figure 4.4.d Seedlings morphology at 30 ppm arsenic stress	75
Figure 4.4.e Shoot length of fenugreek seedlings treated with PGPR	76
growing in arsenic stress	
Figure 4.4.f Root length of fenugreek seedlings treated with PGPR	76
growing in arsenic stress	
Figure 4.4.g total length of fenugreek seedlings treated with PGPR	76
growing in arsenic stress.	
Figure 4.5.a Germination % of the seeds coated with PGPR in Arsenic	77
stress	

Figure 4.5.b SVI of seedlings treated with PGPR growing in Arsenic	77
contaminated soil	
Figure 4.6.a Fresh weight of seedlings treated with PGPR grown in	78
Arsenic contaminated soil	
Figure 4.6.b Dry weight of seedlings treated with PGPR grown in Arsenic	78
contaminated soil	
Figure 4.7.a Chlorophyll A content in the leaves of seedlings treated with	79
PGPR growing in arsenic contaminated soil	
Figure 4.7.b Chlorophyll B content in the leaves of seedlings treated with	79
PGPR growing in arsenic contaminated soil	
Figure 4.7.c Total Chlorophyll in the leaves of seedlings treated with	79
PGPR growing in arsenic contaminated soil	
Figure 4.7.d Carotenoids content in the leaves of seedlings treated with	79
PGPR growing in arsenic contaminated soil.	
Figure 4.8.a H2O2 estimation from the shoots of seedlings growing in	80
Arsenic contaminated soil.	
Figure 4.8.b H2O2 estimation from the roots of seedlings growing in	80
Arsenic contaminated soil.	
Figure 4.9.a MDA estimation from the shoots of seedlings growing in	81
Arsenic contaminated soil.	
Figure 4.9.b MDA estimation from the roots of seedlings growing in	81
Arsenic contaminated soil.	
Figure 4.10.a SOD activity in the shoots of seedlings growing in Arsenic	82
contaminated soil	
Figure 4.10.b SOD activity in the roots of seedlings growing in Arsenic	82
contaminated soil	
Figure 4.10.c CAT activity in the shoots of seedlings growing in Arsenic	82
contaminated soil	
Figure 4.10.d CAT activity in the roots of seedlings growing in Arsenic	82
contaminated soil	
Figure 4.10.e APX activity in the shoots of seedlings growing in Arsenic	82
contaminated soil	

Figure 4.10.f APX activity in the roots of seedlings growing in Arsenic	82
contaminated soil	
Figure 4.10.g GR activity in the shoots of seedlings growing in Arsenic	83
contaminated soil.	
Figure 4.10.h GR activity in the roots of seedlings growing in Arsenic	83
contaminated soil.	
Figure 4.11.a Growth of fenugreek seedlings treated with PGPR in	86
Cadmium stress (Top view)	
Figure 4.11.b Seedlings morphology at 0 ppm Cadmium stress	86
Figure 4.11.c Seedlings morphology at 50 ppm Cadmium stress	86
Figure 4.12.a Shoot length of fenugreek seedlings treated with PGPR	87
growing in Cadmium stress	
Figure 4.12.b Root length of fenugreek seedlings treated with PGPR	87
growing in Cadmium stress	
Figure 4.12.c Total length of fenugreek seedlings treated with PGPR	87
growing in Cadmium stress	
Figure 4.13.a Germination % of the seeds coated with PGPR in Cadmium	88
stress	
Figure 4.13.b SVI of seedlings treated with PGPR growing in Cadmium	88
Figure 4.13.b SVI of seedlings treated with PGPR growing in Cadmium contaminated soil	88
Figure 4.13.b SVI of seedlings treated with PGPR growing in Cadmiumcontaminated soilFigure 4.14.a Fresh weight of the seedlings treated with different PGPR	88
Figure 4.13.b SVI of seedlings treated with PGPR growing in Cadmiumcontaminated soilFigure 4.14.a Fresh weight of the seedlings treated with different PGPRgrown in cadmium contaminated soil	88
Figure 4.13.b SVI of seedlings treated with PGPR growing in Cadmium contaminated soilFigure 4.14.a Fresh weight of the seedlings treated with different PGPR grown in cadmium contaminated soilFigure 4.14.b Dry weight of the seedlings treated with different PGPR	88 89 89 89
Figure 4.13.b SVI of seedlings treated with PGPR growing in Cadmium contaminated soilFigure 4.14.a Fresh weight of the seedlings treated with different PGPR grown in cadmium contaminated soilFigure 4.14.b Dry weight of the seedlings treated with different PGPR grown in cadmium contaminated soil.	88 89 89 89
Figure 4.13.b SVI of seedlings treated with PGPR growing in Cadmium contaminated soilFigure 4.14.a Fresh weight of the seedlings treated with different PGPR grown in cadmium contaminated soilFigure 4.14.b Dry weight of the seedlings treated with different PGPR grown in cadmium contaminated soil.Figure 4.15.a Chlorophyll a content in the leaves of seedlings treated with	88 89 89 89 90
 Figure 4.13.b SVI of seedlings treated with PGPR growing in Cadmium contaminated soil Figure 4.14.a Fresh weight of the seedlings treated with different PGPR grown in cadmium contaminated soil Figure 4.14.b Dry weight of the seedlings treated with different PGPR grown in cadmium contaminated soil. Figure 4.15.a Chlorophyll a content in the leaves of seedlings treated with PGPR growing in cadmium contaminated soil 	88 89 89 90
 Figure 4.13.b SVI of seedlings treated with PGPR growing in Cadmium contaminated soil Figure 4.14.a Fresh weight of the seedlings treated with different PGPR grown in cadmium contaminated soil Figure 4.14.b Dry weight of the seedlings treated with different PGPR grown in cadmium contaminated soil. Figure 4.15.a Chlorophyll a content in the leaves of seedlings treated with PGPR growing in cadmium contaminated soil Figure 4.15.b Chlorophyll b content in the leaves of seedlings treated with 	88 89 89 90 90
 Figure 4.13.b SVI of seedlings treated with PGPR growing in Cadmium contaminated soil Figure 4.14.a Fresh weight of the seedlings treated with different PGPR grown in cadmium contaminated soil Figure 4.14.b Dry weight of the seedlings treated with different PGPR grown in cadmium contaminated soil. Figure 4.15.a Chlorophyll a content in the leaves of seedlings treated with PGPR growing in cadmium contaminated soil Figure 4.15.b Chlorophyll b content in the leaves of seedlings treated with PGPR growing in cadmium contaminated soil 	88 89 89 90 90
 Figure 4.13.b SVI of seedlings treated with PGPR growing in Cadmium contaminated soil Figure 4.14.a Fresh weight of the seedlings treated with different PGPR grown in cadmium contaminated soil Figure 4.14.b Dry weight of the seedlings treated with different PGPR grown in cadmium contaminated soil. Figure 4.15.a Chlorophyll a content in the leaves of seedlings treated with PGPR growing in cadmium contaminated soil Figure 4.15.b Chlorophyll b content in the leaves of seedlings treated with PGPR growing in cadmium contaminated soil Figure 4.15.b Chlorophyll b content in the leaves of seedlings treated with PGPR growing in cadmium contaminated soil Figure 4.15.c Total Chlorophyll content in the leaves of seedlings treated 	88 89 89 90 90 90

Figure 4.15.d Carotenoids content in the leaves of seedlings treated with	90
PGPR growing in cadmium contaminated soil.	
Figure 4.16.a H2O2 estimation from the shoots of seedlings growing in	91
Cadmium contaminated soil.	
Figure 4.16.b H ₂ O ₂ estimation from the roots of seedlings growing in	91
Cadmium contaminated soil.	
Figure 4.16.a MDA estimation from the shoots of seedlings growing in	91
Cadmium contaminated soil.	
Figure 4.16.b MDA estimation from the roots of seedlings growing in	91
Cadmium contaminated soil.	
Figure 4.17.a SOD activity in the shoots of seedlings growing in	93
Cadmium contaminated soil	
Figure 4.17.b SOD activity in the roots of seedlings growing in Cadmium	93
contaminated soil	
Figure 4.17.c CAT activity in the shoots of seedlings growing in	93
Cadmium contaminated soil	
Figure 4.17.d CAT activity in the roots of seedlings growing in Cadmium	93
contaminated soil	
Figure 4.17.e APX activity in the shoots of seedlings growing in	93
Cadmium contaminated soil	
Figure 4.17.f APX activity in the roots of seedlings growing in Cadmium	93
contaminated soil	
Figure 4.17.g GR activity in the shoots of seedlings growing in Cadmium	94
contaminated soil.	
Figure 4.17.h GR activity in the roots of seedlings growing in Cadmium	94
contaminated soil.	
Figure 4.18.a Growth of fenugreek seedlings treated with PGPR consortia	96
in As and Cd contaminated soil (5 days)	
Figure 4.18.b Growth of fenugreek seedlings treated with PGPR consortia	96
in As and Cd contaminated soil (25 days)	
Figure 4.18.c Morphology of the seedlings treated with PGPR consortia	97
growing in Arsenic stress	

Figure 4.18.d Morphology of the seedlings treated with PGPR consortia	97
growing in Cadmium stress	
Figure 4.19 a) Shoot length b) Root length c) Total length d) SVI of the	98
seedlings treated with PGPR consortium growing in Arsenic & Cadmium	
stress	
Figure 4.20 a) Fresh weight b) Dry weight of the seedlings treated with	100
PGPR consortium growing in Arsenic & Cadmium stress	
Figure 4.21 a) Chlorophyll a b) Chlorophyll b c) Total chlorophyll d)	102
Carotenoids levels in the seedlings treated with PGPR consortium	
growing in Arsenic& Cadmium stress	
Figure 4.22 H2O2 content in a) Shoot and b) Root, MDA content in c)	103
Shoot and d) Root of the seedlings treated with PGPR consortium	
growing in Arsenic & Cadmium stress	
Figure 4.23 SOD levels in a) Shoot and b) Root, GR levels in c) Shoot	104
and d) Root of the seedlings treated with PGPR consortium growing in	
Arsenic & Cadmium stress	
Figure 5.1 Biosynthesized nanoparticles deposited at the bottom of the	121
beaker.	
Figure 5.2 Nanoparticles collected after airdrying process	122
Figure 5.3 FTIR of CdS nanoparticles produced by a) M1 b) M2 c) M3 d)	123
M4 e) M5 bacteria to analyse the molecules attached to its surface.	
Figure 5.4 SEM analysis of the CdS nanoparticles produced by a) M1 b)	125
M2 c) M3 d) M4 e) M5	
Figure 5.5) XRD analysis of the CdS nanoparticles produced by a) M1 b)	127
M2 c) M3 d) M4 e) M5	

List of Tables

Tables	Page no.
Table 1.1 Causes of soil degradation in India	7
Table 1.2 Source of heavy metal pollution	8
Table 3.1 Bacteria used in this study	35-36
Table 3.2 Plasmids and Primers used in the study	36-37
Table 3.3 PCR protocol for amplification of E. coli DH10B ybdK gene	39
Table 3.4 Protocol for Sequential digestion of a Vector and the gene of	40
interest	
Table 3.5 BLASTN of ybdK gene insert from pPAT plasmid with <i>E. coli</i>	48
genome	
Table 3.6.a Estimation of extracellular glutathione from nutrient media	54
Table 3.6.b Estimation of extracellular glutathione from M9 media	54
Table 4.1 Soil Analysis	65
Table 4.2 Individual PGPG study groups	66
Table 4.3 PGPR consortium study groups	66
Table 5.1 Estimation of extracellular glutathione from nutrient media after	120
48 hours.	
Table 5.2 Mass of cadmium sulphide crystals formed from 50 ml	121
supernatant.	

<u>Abstract</u>

PGPR is one of the most important tools used in the modern agriculture practice. PGPR can be used as biofertilizers as well as biocontrol agents. Rhizobium is an important PGPR, which is has been used as biofertilizer for legumes since last two decades. Besides biofertilizers it has been also employed as bioremediation agent, for remediation of heavy metal polluted soil. Rhizobium is an important PGPR which is capable of symbiosis with legumes for nitrogen fixation, so it can work in soil as well as plant. Any genetic modification in rhizobium bacteria would have an amplified effect due to its ability to form nodules in the legume roots. A single nodule could contain ab out 10⁹ bacteria which is 100 times more than the entire rhizosphere of a single crop like fenugreek. Also, while living in non-symbiotic state, it can perform all the duties of any other PGPR. Because of this rhizobium especially is used in biofertilizer formulations for legumes.

Aim of our study was to check the effects of genetically modified rhizobium on the growth of fenugreek seedlings in Arsenic and Cadmium contaminated soil. *E. coli* DH10B *ybdK* gene, which encodes a carboxylate- amine ligase was cloned in a low copy number plasmid pBBR1MCS2 plasmid under a constitutive lac promoter, which yielded a 6.2 kb recombinant plasmid, pPAT. Since it is a carboxylate- amine ligase, it possesses the gamma glutamyl cysteine ligase activity. The *gshA* gee in bacteria encodes this enzyme which catalyses the first step in glutathione biosynthesis. Many studies have stated that the rhizobium devoid of *gshA* synthesizes very less glutathione, as well as loses the ability to form symbiotic nodules with legumes, but when complemented with *gshA* containing plasmid, it regains its ability to produce sufficient glutathione and symbiosis. Many studies have also reported the enhanced synthesis of glutathione synthesis by GMO rhizobium compared to the wild type rhizobium. It was observed that M3 and M5 accumulated significantly higher levels of glutathione compared to M2 and M4 respectively. M2 and M4 are the wild type counterparts of M3 and M5 respectively. This was observed in rich as well as minimal media.

To determine their effect on fenugreek seedlings, seeds of fenugreek were coated with M1-M5 bacteria and sown in Arsenic and Cadmium spiked soil. M1 was used as a control for all experiments. Seedlings were allowed to grow for 16 days and its morphology, growth

parameters, oxidative stress parameters and antioxidant enzyme profile was measured in order to check the effect of glutathione overproducing rhizobium on the growth of fenugreek. It was observed that M3 and M5 treated seedlings showed enhanced growth parameters, reduced oxidative stress and reduced antioxidant enzyme levels in shoots as well as roots compared to M2 and M4 treated seedlings respectively. Glutathione reductase GR showed increase in GMO bacteria treated seedlings which justifies that more glutathione is present in the tissue, despite of low antioxidant enzyme levels, which means that the source of glutathione is external. This concludes that the GMO rhizobium exhibits protective effect towards fenugreek growing in Arsenic and Cadmium polluted soil.

Similar experiments were performed with the bacterial consortia. Fenugreek seeds coated with C2 (M1+M3+M5) and C1 (M1+M2+M4) consortium were grown in Arsenic and Cadmium contaminated soil for 25 days. C2 bearing M3 and M5 is a GMO consortium. It was observed that C2 treated seedlings showed increased growth parameters, reduced oxidative stress and reduced antioxidant enzyme levels. Rather the interplay was more complex as the crosstalk between different bacterial species and plants differ in consortia compared to single bacteria. In our conclusion this GMO consortium also exhibits protective effect towards fenugreek growing in Arsenic and Cadmium polluted soil compared to wild type consortium.

PGPR employs varieties of methods to capture/detoxify heavy metals. They are known to form intracellular as well as extracellular nanoparticles. It is also established that glutathione has the capability to synthesize and stabilize the cadmium sulphide nanoparticles. In our study the ability of GMO rhizobium was checked for the *invitro* formation of extracellular cadmium sulphide nanoparticles. We observed that M3 and M5 produced significantly higher amount of CdS NPs compared to M2 and M4 respectively, due to higher secretion of glutathione in the growth media. Also, the NPs synthesized by GMO rhizobium showed smaller aggregation compared to wildtype rhizobium, which was confirmed by SEM. FTIR was performed to get an idea about the functional groups of the molecules attached to the surface of nanoparticles, to confirm the presence of glutathione on them. Amide I band in the FTIR spectra of CdS NPs produced by M3 and M5 showed reduced transmittance of the concerned peak compared to M2 and M4 respectively. Finally, XRD analysis was done to confirm that the material synthesized by bacteria were nanoparticles. Biosynthesized CdS nanoparticles were in cubic

phase which was confirmed by analysis of the prominent 2 theta peaks of diffractogram. Thus, GMO rhizobium are capable of biosynthesis of more extracellular CdS nanoparticles.

Therefore, clubbing the above observations, we can conclude that rhizobium has the ability to reduce the bioavailability of cadmium metal by converting it into nanoparticle aggregate. Both GMO as well as wild type of forming aggregates. But the only difference is that the GMO rhizobium are capable of formation of smaller aggregates, which was confirmed by SEM. Smaller aggregates have large surface to volume ratio which gives it better chance of detoxification by further modification by other PGPR present in the rhizosphere/vicinity. Thus, we conclude that GMO PGPR producing enhanced levels of glutathione could be used as a PGPR for fenugreek growing in Arsenic and Cadmium polluted soil.