LIST OF ABBREVIATIONS

NSCLC – Non- small cell lung cancer

SCLC - Small cell lung cancer

GLOBOCAN: Global Cancer observatory

ROS - Reactive oxygen species

Apaf-1 - Apoptotic protease-activating factor-1

PARP – Poly-ADP ribose polymerase

ADC – Adenocarcinoma

TK- Tyrosine kinases

EGFR – Epidermal growth factor receptor

PI3K/Akt - Phosphatidylinositol 3-kinase

FDA – Food and drug administration

VEGF - Vascular endothelial growth factor

Paclitaxel- PXT

Gemcitabine – GEM

DPPH - DPPH (2, 2-diphenyl-1-picrylhydrazyl) assay

MTT – (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

DMSO- Dimethyl sulphoxide

PEBE – Petroleum ether bark extract

CBE- Chloroform bark extract

PBS- Phosphate buffer saline

DCF-DA- 2', 7'-dichlorodihydrofluorescein diacetate

DAPI- 4',6-diamidino-2-phenylindole

AO- Acridine orange

EtBr- Ethidium bromide

TMRM- tetramethyl rhodamine

PE- Petroleum ether

CHL- Chloroform

EA- Ethyl acetate

MET- Methanol

MMP- mitochondrial membrane potential

TG- thermogravimetric analysis

DSC- Differential scanning calorimetry

FTIR- Fourier-transform infrared spectroscopy

GC-MS – Gas Chromatography mass spectrometry

TLC- Thin layer Chromatography

NMR - Nuclear magnetic resonance

FA- Fatty acids

OA- Oleic acid

PA- Palmitic acid

BSA- Bovine serum albumin

HPLC- High performance liquid chromatography

PFF3- Purified fraction F3

PFF4- Purified fraction **F4**

Rf- Retardation Factor

MDC – Monodansylcadaverine

PI- Propidium Iodide

Akt- protein kinase B

LIST OF FIGURES

Chapter 1	Page Nos.
Figure 1 Pie chart for 10 most prevalent cancer cases and deaths	3
Figure 1.1 Estimated cancer incidences in India according to ICMR	4
Figure 1.2 Estimated proportion of most common types of cancers in India by	5
sex	
Figure 1.3.a Cancer cell proliferation	5
Figure 1.3.b Key steps of Metastatic Cascade	5
Figure 1.4 Common risk factors for Lung Cancer	7
Figure 1.5 Global Cancer Observatory	8
Figure 1.6 Types of Lung cancer	9
Figure 1.7 Five-year survival rate of lung cancer incidences	11
Figure 1.8 Progress in treatments for lung cancer over the last five decades	13
Figure 1.9 Pathways of Apoptosis	17
Figure 1.10 Mechanism of EGFR signalling pathway in cancer progression	19
Figure 1.11 RAS pathway	20
Figure 1.12 The PI3K/Akt/mTOR Signalling Pathway	22
Figure 1.13 Chemical Structure of Paclitaxel	31
Figure 1.14 Chemical Structure of Gemcitabine	32
Chapter- 3	
Figure 3.1: a) Flower b) Leaf c) Bark of <i>Bauhinia variegata</i>	48
Figure 3.2 Percentage scavenging of DPPH free radical Bauhinia variegata	56
bark extracts	
Figure 3.3 The effect of <i>Bauhinia variegata</i> bark extracts against A549 cell	61
line for 24 h, 48 h and 72 h.	
Figure 3.4 Effect of PEBE treatment on morphology of A549 cells.	62
Figure 3.5. IC50 values of PEBE of <i>Bauhinia variegata</i> on A549 cells for 24	63
h, 48 h, and 72 h	
Figure 3.6 The effect of Bauhinia variegata bark extracts against H460 cell	64
line for 24 h, 48 h, and 72 h.	
Figure 3.7 Effect of CBE treatment on morphology of H460 cells.	65

Figure 3.8 IC50 values of crude chloroform bark extract of Bauhinia	65
variegata on H460 cells for 24 h, 48 h, and 72h	
Figure 3.9. In vitro assay to assess the anti- tumorigenic activity of the PEBE	66
on A549 cells	
Figure 3.10 In vitro assay to assess the anti-tumorigenic activity of the CBE	67
on H460 cells	
Figure 3.11 In vitro scratch test to assess effect of PEBE on cell migration of	68
A549 cells	
Figure 3.12 In vitro scratch test to assess effect of CBE on cell migration of	69
H460 cells	
Figure 3.13 DNA laddering in A549 cells	70
Figure 3.14 DNA laddering in H460 cells	71
Figure 3.15 Time - dependent changes in ROS levels of A549 cells at different	72
concentrations of PEBE	
Figure 3.16 Time - dependent changes in ROS levels of H460 cells at different	72
concentrations of CBE	
Figure 3.17 a, b, c) The effect of PEBE on apoptotic potential in A549 cells	73
was evaluated using DAPI staining	
Figure 3.17 d, e, f) The effect of CBE on apoptotic potential in H460 cells	73
was evaluated using DAPI staining	
Figure 3.18 a, b, c, d) A549 cells were stained by AO/EB and observed under	74
fluorescence microscope	
Figure 3.18 e, f, g) H460 cells were also stained by AO/EB and observed	75
under fluorescence microscope	
Figure 3.19.a Spectrophotometric estimation of caspase 3 activity from PEBE	76
treated A549 cells	
Figure 3.19.b Spectrophotometric estimation of caspase 3 activity from CBE	76
treated H460 cells	
Figure 3.20 Fluorescence microscopy after TMRM staining	77
Figure 3.21 Schematic representation of mechanism of anticancer activity of	78
PEBE and CBE on A549 and H460 respectively.	
Figure 3.22 a) TG curves for dried PEBE and b) CBE of <i>Bauhinia variegata</i>	80
Figure 3.23 a) DSC curves for dried PEBE and b) CBE of <i>Bauhinia variegata</i>	81

Figure 3.24 a) FTIR graph of PEBE of <i>Bauhinia variegata</i> and b) CBE of	82-83
Bauhinia variegata.	
Chapter- 4	
Figure 4.1 Setup for column chromatography	93
Figure 4.2 Setup for column chromatography (CBE)	94
Figure 4.3 TLC profiles of different combinations of PE: BZ: EA	95
Figure 4.4 TLC profiles of different combinations of CHL: EA: BZ	96
Figure 4.5 Identification of clear spots of PEBE fractions under UV 254 nm	97
and 365 nm	
Figure 4.6 Identification of clear spots fractions under UV 254 nm and 365	99
nm	
Figure 4.7 Effect of fractions of PEBE on A549 cell line	104
Figure 4.8 The FTIR profile of fraction P8 showed the wave number	106
corresponding to different compounds	
Figure 4.9 The effect of Oleic acid against A549 cell line for 24 h, 48 h and	107
72 h	
Figure 4.10 The effect of Palmitic acid against A549 cell line for 24 h, 48 h	109
and 72 h	
Figure 4.11 The effect of Heptadecanoic acid against A549 cell line for 24 h,	110
48 h and 72 h	
Figure 4.12 IC50 values of Oleic Acid on A549 cells at a) 24h, b) 48h and c)	111
72h	
Figure 4.13 Effect of Oleic acid on morphology of A549 cells	112
Figure 4.14 The effect of CBE fractions (F1to F9) against H460 cell line for	113
24 h, 48 h and 72 h	
Figure 4.15 IC50 values of PFF3 and PFF4 on H460 cells at a) 24h, b) 48h	114
and c) 72h	
Figure 4.16 Microscopic images of H460 cells treated with PFF3 at different	115
concentrations for 24 hours	
Figure 4.17 Microscopic images of H460 cells treated with PFF4 at different	115
concentrations for 24 hours	
Figure 4.18 The FTIR profile of PFF3 showed the wave number	116
corresponding to different compounds	

Figure 4.19 The FTIR profile of PFF4 showed the wave number	117
corresponding to different compounds	
Figure 4.20 Product ion spectrum stating the structure of the major	120
phytocomponents (by %) identified in purified fraction F3 (PFF3) by GC/MS	
and NIST Library in [A] n-Hexadecanoic acid [B] Palmitic acid [C]	
Alloisoimperatorin	
Figure 4.21 Product ion spectrum stating the structure of the major	124
phytocomponents (by %) identified in PFF4 by GC/MS and NIST Library in	
[A] Υ- Sitosterol [B] Friedelan-3-one [C] Lupeol	
Figure 4.22 a) 1H-NMR spectrum of PFF3. b) Enlarged regions of ¹ H NMR	126
Spectra of PFF3	
Figure 4.23 a) 1H-NMR spectrum of PFF4 of CBE of <i>Bauhinia variegata</i> . b)	127
Enlarged regions of 1H NMR Spectra of PFF4	
Figure 4.24 a) Chromatogram peak of PFF3 at 280nm. b) Standard HPLC-	128
DAD chromatogram peak at 280nm	
Figure 4.25 a) Chromatogram peak of PFF4 at 280nm.	129
Figure 4.26 a) Cell growth inhibitory effect of Paclitaxel (PXT) as	131
monotherapy on H460 cells. b) Combination Index (CI) and of Paclitaxel	
(PXT) and PFF3 in H460 cells was calculated by CompuSyn software, c)	
Normalized Isobologram for Combo; $CI < 1$ and $CI > 1$ indicate synergistic	
and antagonistic effects.	
Figure 4.27 Combination Index values and plot (Fa-CI plot) of interaction	133
between Paclitaxel and PPF4 in H460 cells plotted by CompuSyn software.	
Chapter-5	
Figure 5.1 In vitro scratch test to assess effect of OA on cell migration of	145
A549 cells; $n = 3$. (a) Wound healing assay to determine the effect of OA on	
A549 cell migration at different concentrations for 36h. (b) Quantitative	
analysis of wound size (µm) within 36 h.	
Figure 5.2 In vitro scratch test to assess effect of PFF3, PFF4 and combination	146
of PFF3 & PXT on cell migration of H460 cells (a) Wound healing assay to	
determine the effect of PFF3, PFF4 and combination of PFF3 & PXT on cell	
migration, at different concentrations for 30h. (b) Quantitative analysis of	
wound size (µm) within 30 h.	

Figure 5.3 Oleic acid promoted ROS generation in A549 cells in dose	147
dependent manner. a) Fluorescence microscopy (x 400). b) Statistical analysis	
of fluorescence intensity.	
Figure 5.4 PPF3 and PPF4 promoted ROS generation in H460 cells in dose	148
dependent manner. PPF3 & PTX combination synergistically increased ROS	
production in H460 cells than as single agents. a) Fluorescence microscopy	
graph.	
Figure 5.5 The effect of OA at different concentrations on apoptotic potential	149
in A549 cells was evaluated using DAPI staining for 24 h under by	
fluorescence microscope.	
Figure 5.6 The effect of PPF3, PPF4 and combination of PPF3 & PXT, at	150
different concentrations on apoptotic potential in H460 cells was evaluated	
using DAPI staining for 24 h under by fluorescence microscope.	
Figure 5.7 H460 cells were stained by AO/EtBr and observed under	151
fluorescence microscope.	
Figure 5.8 Apoptosis detection on staining H460 cells with Annexin V and PI	152
after treatment with different concentrations of PPF3 and PPF4 for 24 hr, by	
fluorescence microscopy.	
Figure 5.9 Oleic acid induced DNA damage in A549 cells. (a) Cells were	153
treated with different concentrations of OA for 48 hr and analysed by comet	
assay. Enlarged comet of OA IC50. (b) Quantification of comet length	
Figure 5.10 (a) The effect of different concentrations of PPF3, PPF4 and	154
combination of PPF3 & PXT at 24 hr was analysed by comet assay. (b)	
Quantification of comet length	
Figure 5.11 (a) Mitochondrial membrane potential induced by treatment of	155
OA for 48 h using fluorescent dye TMRM. (b) Quantification of fluorescent	
intensity	
Figure 5.12 (a) Mitochondrial membrane potential induced by treatment of	156
different concentrations of PPF3, PPF4 and combination treatment for 24 h	
using fluorescent dye TMRM. (b) Quantification of fluorescent intensity	
Figure 5.13 A549 cells were treated with different concentrations of OA to	157
detect autophagy by MDC staining.	

Figure 5.14 (a) Effect of Oleic acid on expression levels of apoptotic proteins	159
in A549 cells by western blot analysis. β -actin was used as a loading control.	
(b) Densitometric analysis analysed by Image J software	
Figure 5.15 Effect of PPF3, PPF4 and combination treatment on expression	159
levels of apoptotic proteins in H460 cells by western blot analysis.	

LIST OF TABLES

List of Tables	Page Nos.
Table 3.1 Qualitative analysis	52
Table 3.2 Percentage yield obtained from 42.8g of powdered bark	55
Table 3.3 Phytochemicals in bark extracts of Bauhinia variegata	55
Table 3.4 FTIR spectral peak values and type of groups obtained for thebark extract (in petroleum ether and chloroform bark extract solvents) ofBauhinia variegata	82
Table 3.5. Phytocomponents identified in the petroleum ether bark extract(PEBE) of <i>Bauhinia variegata</i> by GC-MS	83
Table 3.6 Phytocomponents identified in the chloroform bark extract(CBE) of <i>Bauhinia variegata</i> by GC-MS	83
Table 4.1 Fractionation of Petroleum ether extract of <i>Bauhinia variegata</i> by column chromatography	96
Table 4.2 Fractionation of Chloroform bark extract of <i>Bauhinia variegata</i> by Column Chromatography	98
Table 4.3 FTIR spectral peak values and type of groups obtained for theP8 fraction of PEBE of <i>Bauhinia variegata</i>	106
Table 4.4 Percentage profile of compounds found in the petroleum ether bark extract (PEBE) through GC-MS	106
Table 4.5 FTIR spectral peak values and type of groups obtained for the PFF3 of CBE of <i>Bauhinia variegata</i>	117
Table 4.6. FTIR spectral peak values and type of groups obtained for PFF4 of CBE of <i>Bauhinia variegata</i>	118
Table 4.7. Phytochemical constituents identified in the PFF3 using gas chromatography-mass spectrometry	118
Table 4.8. Phytochemical constituents identified in the PFF4 using gas chromatography-mass spectrometry	122

ABSTRACT

Bauhinia variegata Linn. commonly known as Kachnar or Mountain Ebony, is a plant that has been used in Ayurvedic medicines for centuries. Its use is well documented in ancient Ayurvedic texts such as Charaka Samhita, Sushruta Samhita, and Ashtanga Hridaya. In Ayurveda, various parts of the Kachnar tree are used for different medicinal purposes. Bauhinia *variegata* has been found to have several pharmacological properties like anti-inflammatory, antioxidant, antidiabetic and hepatoprotective properties. Its active compounds are responsible for these pharmacological effects. One of the most commonly used formulations that contain Kachnar is Kachnar Guggulu, which is used for the treatment of arthritis, gout, and other jointrelated problems. While Kachnar has a long history of traditional use in Ayurveda for its medicinal properties, there is currently no scientific evidence to support its effectiveness in treating lung cancer. Some preliminary studies show the anti-inflammatory properties of Kachnar and anti-cancer effect of crude extract on lymphoma. This study aims to investigate the potential anticancer effect of the phytocomponents found in the bark of *Bauhinia variegata* on lung cancer cell lines and aims to uncover the underlying biochemical mechanism involved in this process. The study analysed the phytochemical composition and antioxidant activity of Bauhinia variegata bark extracts. The results showed that the methanolic and water extracts had the highest antioxidant activity, as measured by DPPH radical scavenging. Furthermore, the study investigated the cytotoxic effects of the bark extracts on lung cancer cell lines. The Petroleum ether bark extract (PEBE) and Chloroform bark extract (CBE) were found to be most effective on A549 and H460 cells, respectively. Both PEBE and CBE induced apoptosis in the cancer cells through the activation of caspase-3 signalling cascade and mitochondrial cell death-mediated pathway. The isolation of phytocomponents of PEBE and CBE of Bauhinia variegata was done by column chromatography, followed by TLC and characterization of PEBE and CBE fractions was performed based upon GC/MS analysis. Oleic acid was found to be the most important factor with potent anticancer activity on A549 cells. Purified fraction F3 (PFF3) and Purified fraction F4 (PFF4) of CBE of Bauhinia variegata exhibited the most potent cytotoxic activity against H460 cells in a dose and time dependent manner. The synergistic anticancer effects of the combined treatment of PFF3 and Paclitaxel (PXT) on lung cancer cell lines (H460) is also elucidated. The study also found that treating A549 and H460 cells with specific phytocomponents of Bauhinia variegata increased ROS levels which could be the initiator of anticancer effect. Nuclear changes associated with apoptosis in both cell lines were studied using various dyes by fluorescent microscopy. The molecular pathways involved

in causing apoptosis were also explored by observing the changes in protein expression of apoptosis related proteins in lung cancer cell lines (A549 and H460).*The findings suggest the potential of these natural compounds in inducing programmed cell death in lung cancer cells, which could have implications for the development of new anti-cancer drugs.*