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Chapter1:  

Introduction to Plant Responses to Touch 

1.1. ABSTRACT 

Perception of touch makes plant more sensitive to changes in the environment. 

Touch induced responses involve common players like calcium sensors, reactive oxygen 

species, nitric oxide, phytohormones and induce various morphological, biochemical and 

physiological changes. Touch induced cellular adaptations provides cross protection against 

biotic and abiotic stress. This chapter provides update of overall progress in research to 

understanding mechanical stress induced changes in plant. 
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1.2. TOUCH RESPONSE IN PLANT 
 

Animals have sensory organs to perceive fluctuations in their environment and under 

situation of threat, animals escape away from the threat using their mobile ability. Unlike 

animals, plants lack mobility and live sedentary life. Thus, they have evolved different 

alternate mechanisms to perceive changes in their environment. In nature, plants experience 

mechanical stress in many different forms. Biotic stress such as landing of insects, herbivory 

by pest or animal is sensed as mechanical stress. For example landing of adult moths on the 

leaf of tomato plant alters cellular gene expression in its trichomes (Peiffer et al 2009). 

Abiotic stress such as wind, rainfall, hailstorm exert mechanical stress on plants. At cellular 

level, the mechanical stress exerted on cell-wall due to turgor pressure, wound and damage 

to cell wall layers can also be sensed by plant cell as mechanical stress (Heil et al 2009). 

Recent studies indicates that plants can sense the touching of leaves and stems of plants in 

their vicinity (Markovic et al 2019). For all the above stimuli, plant immediately respond by 

changing the biochemical status and transcriptional profile of the cell. Interestingly, 

mechanical perturbations induce expression of many molecules which are also known to 

enhance plant immunity and tolerance to biotic and abiotic stress (Chehab et al 2012).   

Since 1880s, mechanical stress in the form of touch has been studied in plants. Charles 

Darwin had published his research about touch induced responses in insectivorous plants 

(Darwin C. 1880). During late 80s and early 90s extensive research was carried out on 

understanding the mechanism by which plants sense touch in the ‘touch-me-not plant’ - 

Mimosa pudica and carnivorous plants. In late 90s, the research was more diversified and 

aimed to understand touch induced cellular responses. This gave an insight to the molecules 

that are involved in touch induced responses (Braam & Davis 1990; Botella et al 1994; 

Botella et al 1996; Depege et al 1997). Mechanical stress induced morphological changes 
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has been studied in many other plants namely Arabidopsis, Cucurbita, Pisum, wheat, pine, 

beans, lettuce, cauliflower, Populus, celery, Carica papaya, Zea maize, Acacia koa and 

Nicotiana sp. (Jaffe 1973, Biddington and Dearman 1985, Pruyn et al 2000, Porter et al 

2009). In this chapter we have reviewed various systemic and cellular responses studied in 

plant system in response to mechanical stimuli. 

 

Figure 1.1: The response to mechanical stress varies from plant species to species but the figure 

here represents few observations that are most common in most species. 

1.3. RECEPTORS FOR TOUCH:  

Epidermal hairy structure, trichomes are sensitive to touch of insects and herbivores 

(Wagner 1991; Goertzen and Small 1993; Shepherd and Wagner 2007). Trichomes are 

present on the surface of aerial parts of plant like stem and leaves (Graham et al 1985; Peiffer 

et al 2009). Plant raises an early defense response just upon sensing touch of moth by 

increasing the number of glandular trichomes and enhancing the expression of proteinase 



5 
 

inhibitor-2 (PIN2) which would prevent further attack by the moth or its larvae that may be 

released later from its eggs. Touch in absence of wound is sensed by trichomes and an anti-

herbivore response is induced. Another example of plant sensors to touch is the touch 

sensitive hair-like leafy structures present on the surface of Venus-fly which helps them in 

catching their prey (Forterre et al 2005). The molecular receptor for touch, a mechanosensor 

at cellular level, is yet to be discovered. 

1.4. THIGMOMORPHOGENESIS: 

Regular touch treatment causes several morphological, physiological, biochemical 

and anatomical adaptations. Morphological changes observed in response to regular touch 

is termed as thigmomorphogenesis (Jaffe 1973). Mechanical stress leads to common 

morphological changes like suppressed shoot and root growth, shorter internode length and 

altered flowering period etc. (Braam 2005, Chehab 2009). Studies in Arabidopsis has shown 

that regular touch delays inflorescence development and further reduced the rosette diameter 

of leaves (Chehab et al 2012). The plant response after touch stimuli varies from species to 

species. Regularly touched papaya plants exhibited higher lignin deposition and reduced 

anthocyanin production in the petiole (Porter et al 2009). In tobacco, touching of stem 

increased vegetation (Anten 2005). Anatomical studies indicate increased compactness of 

cells, reduced cell size and enhanced lignin deposition in their petiole (Porter et al 2009, 

Meng et al 2006). These anatomical adaptations increase the mechanical strength of the 

plant and help the plant to withstand prolonged mechanical stress. Biochemical studies show 

that the chlorophyll ratio, plant hormones profile, calcium levels, and levels of the reactive 

oxygen species is altered upon mechanical stress (Biddington 1986, Allen et al 1999, Slesak 

2008). These anatomical, biochemical and morphological adaptations aid the plant to 

withstand and cope with the constant mechanical stress.   
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1.5. INTRACELLULAR SIGNALLING MOLECULES 

1.5.1. Reactive oxygen species (ROS) 

Reactive oxygen species (ROS) and nitric oxide (NO) are elevated in response to 

biotic and abiotic stress conditions (Leshem 1996; Gus-Mayer et al 1998; Durner and 

Klessig et al 1999; Van Breusegem et al 2001). ROS accumulates within few seconds of 

mechanical stimuli which may also be involved in regulation of early gene expression 

(Chehab et al 2009, Van breusegem 2001). It has been shown that mechanical stress or touch 

in tomato and soybean results in increase in levels of ROS (Yahraus et al 1995; Depege et 

al 2000). Herbivore attack on tomato leaves results in increase in levels of H2O2 which later 

induces expression of anti-herbivory protein, PIN2 in the trichomes (Peiffer et al 2009). 

Mechanical stress induced ROS can serve multiple functions. Elevated ROS promotes 

strengthening of plant cell wall and it is also involved in direct killing of pathogens. ROS  

also functions as signalling molecule which can indirectly alter gene expression profile of 

plant cell (Heath 2000; Lam et al 2001). Touch stimulated ROS production can lead to 

activation of calcium channels in plants triggering calcium mediated intracellular signalling 

(Mori et al 2004).  

 

1.5.2. Calcium: 

Under normal conditions, the cytoplasmic calcium levels are maintained low by 

sequestering the ions inside cellular organelles like endoplasmic reticulum (ER). In response 

to external stimuli, the sequestered calcium ions from ER or extracellular spaces are released 

out in the cytoplasm triggering a chain of cellular signal transduction. Calcium reflux is well 

studied in associated with induction of plant immune response during plant pathogen 

interaction (Blume et al 2000; Grant et al 2000). Mechanical stimuli to Arabidopsis roots 
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caused an increase in levels of intracellular calcium (Allen et al.1999). Transgenic plant, a 

calcium dependent bioluminescent protein, aequorin shows rapid and transient increase in 

the intracellular calcium levels upon mechanical stimulation (Knight et al., 1992). 

Mechanical stimuli can activate plasma membrane stretch induced calcium channels in plant 

(Hayashi et al., 2006). Moreover, in most living organism including animals, mechanical 

stimuli like touch and wound cause changes in cytoplasmic calcium (Cosgrove and Hedrich 

1991; Batiza et al 1996; Calaghan and White 1999). As many different stimuli induce 

increases in intracellular Ca2+ concentration, the plant may distinguish the signals in terms 

of frequency, duration, amplitude, and spatial distribution of the signal and then interpret 

into different stimuli specific responses (Webb et al. 1996). Ca 2+ signaling are generally 

mediated by calcium sensors; calmodulin (CaM) and calmodulin like-molecules (CML). 

The touch induced CaM and CML are termed as TCH genes (Braam and Davis 1990) 

 

1.5.3. Touch responsive gene (TCH) 

Expression of touch inducible genes (TCH) were first reported in 1990 (Braam and 

Davis 1990). Transcriptional profiling in Arabidopsis shows that expression of many CaM 

and CML molecules is induced within 30 min of touch stimulation (Braam and Davis 1990; 

Lee et al 2005). These involve calmodulin proteins, TCH1 (CaM2) and CML proteins like 

TCH2 and TCH3 respectively. In Arabidopsis, only TCH1 was found to be up-regulated out 

of seven CaM molecules found in the genome of this plant (Lee et al 2005). Likewise, 20 

CML genes were differentially expressed out of 48 CML encoded in the Arabidopsis 

genome. Similarly, in Acacia koa, mechanical stimuli induced expression of the genes for 

calcium signalling within 10-60 min after mechanical stress (Ishihara et al 2017). This 

signifies the importance of Calcium signalling in the mechanical stress mediated cellular 
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signalling. Studies done in Arabidopsis touch insensitive (ths1) mutant, indicates 

requirement of a gene VERNALIZATION INDEPENDENCE 3 (VIP3) which with other 

proteins cause chromatin remodelling (histone H3K36 trimethylation) at the AtTCH3 and 

AtTCH4 loci for fast touch-induced transcription of these two genes (Jensen et al 2017). 

TCH4 gene also known as XTH22 (xyloglucan endotransglucosylase/ hydrolase) is involved 

in cell wall modifications in Arabidopsis and is required for thigmomorphogenesis (Xu et 

al., 1995; Purugganan et al., 1997). This indicates that TCH genes may act as key upstream 

molecules in touch mediated cellular signalling.  

 

1.5.4. Plant hormones 

Various phytohormones like jasmonic acid (JA), ethylene (ET), abscisic acid (ABA), 

auxin, brassinosteroids and gibberellic acid (GA) are reported to be involved in touch 

induced plant response. Each of these plant hormones are involved in regulation of different 

developmental processes and stress responses. 

Jasmonic acid (JA) and its derivatives are involved in regulation of many different biotic 

and abiotic stress responses (Bennett and Wallsgrove 1994; McConn et al 1997).  The levels 

of JA and JA responsive genes are found to be elevated upon touch stimuli (Koo and Howe 

2009). The expression of Lipoxygenase, a JA biosynthetic enzyme is also found to be up 

regulated upon touch stimulation (Mauch et al 1997; Lee et al 2005).  Mechanical stress 

studies performed on Arabidopsis JA mutants confirm that the touch induced 

thigmomorphogenesis is JA dependent and involves JA-Isoleucine (JA-Ile) mediated 

signalling. It appears that plant triggers JA response over touch stimulation and gets ready 

for subsequent herbivore attack. Morphological changes observed after mechanical 

stimulations are similar to those observed after ethylene treatment in tomato (Jaffe and Biro,  
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Table 1.1: List of genes studied in detail in touch induced response. 

Genes Function Reference 

LOX (lipoxygenase) JA biosynthesis Mauch et al., 1997; Lee et al., 2005 

1-aminocyclopropane-1-

carboxylate synthase 

(ACS)  

ET biosynthesis Biro and Jaffe, 1984; Botella et al., 1995; 

Arteca and Arteca, 1999  

Pinoid (PID)  serine/threonine 

protein kinase  

Benjamins et al., 2003 

TCH1 (CaM2) Calcium binding 

protein 

Braam and Davis, 1990; Lee et al., 2005 

TCH2 (CML24)  Calcium binding 

protein 

Braam and Davis, 1990;   

TCH4 /xyloglucan 

endotransglucosylase/ 

hydrolase (XTH)  

Cell wall modification Xu et al., 1995; Purugganan et al., 1997  

Touch-Regulated 

Phosphoprotein1 

(TREPH1)  

Chromatin 

modification 

Wang et al 2018 

ZmCPK11 Calcium dependent 

protein kinase 
Szczegielniak et al 2012 

 

1979). Ethylene production was quantitated in beans and pine plants (Jaffe and Biro,1979; 

Telewski and Jaffe, 1986). However, studies indicate that ethylene could be involved quite 

later in the signalling event as ethylene mutant plants showed touch induced morphological 

changes. Cell size growth and elongation is regulated by GA hormone. The touch induced 

morphological changes are associated with reduced levels of GA. Recent studies indicate 
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that the touch induced suppression of growth is due to expression of a gene, AtGA2ox7, 

which codes for an enzyme involved in gibberellin breakdown in Arabidopsis (Lange and 

Lange 2015). Treatment of plants with BR induces expression of TCH4 genes in Arabidopsis 

(Xu et al., 1995; Iliev et al.,2002). Similarly, indirect evidences exist for involvement of 

auxin. PIN2 is a common molecule expressed after touch stimuli and auxin treatment 

(Chehab et al 2009). 

 

1.5.5. Other signalling molecules: 

With increasing interest in the research for understanding thimomorphogenesis, 

more and more molecules are being added to the list of touch induced molecules. In 

Arabidopsis, phosphoproteomic analysis after touch treatment shows 24 differentially 

phosphorylated polypeptides. Among these, TOUCH-REGULATED 

PHOSPHOPROTEIN1 (TREPH1) is rapidly phosphorylated after touch treatment and it is 

required for touch induced delay in flowering (bolting) in Arabidopsis (Wang et al 2018). 

Plant-plant communication occurs through release and perception of volatile organic 

compound. Touch experiments in maize plants shows that within minutes after touch the 

plant emits specific volatile compounds that primes neighbouring plants against herbivory 

(Markovic et al 2019).  
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Figure 1.2: Model for Plant perception of touch: 

Key words: CW: cell wall; PM: plasma membrane 

 

1.6. HOW DOES PLANT CELL PERCEIVE TOUCH? 

There are many hypotheses proposed for plant perception of touch. External pressure 

may change internal cytosolic pressure which is perceived by the cell (Morris and Homann, 

2001). Another hypothesis suggests that external pressure may alter the association between 

cell wall and plasma membrane structure leading to opening of ion channels (Jaffe et al 

2002). Research provides evidence that stretching of plasma membrane is recognised by 

membrane associated receptors. It is proposed that similar receptors may be involved in 

recognition of mechanical stress (Edwards and Pickard, 1987; Ding and Pickard, 1993; Ward 

and Schroeder, 1994). In figure 1.2 we have summarised the hypothesis. Perception of touch 

leads to calcium influx/ ROS and cascade of signalling events which ultimately leads to 
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change in gene expression. This change leads to physiological modifications which helps in 

adaptation to mechanical stress. 

 

1.7. Application of mechanical stress for tolerance to stress  

Current knowledge of morphological adaptations and gene expression analysis is 

being applied in agriculture and pest management. Mechanical stress induced morphological 

changes has been studied in many crop plants namely Cucurbita, Pisum, wheat, lettuce, 

cauliflower, Populus, celery, Carica papaya and Nicotiana (Jaffe 1973, Biddington and 

Dearman 1985, Pruyn et al 2000, Porter et al 2009). Thigmomorphogenesis is being studied 

in economically important plants with an aim to identify novel traits. For example, 

ornamental plants are maintained short for aesthetic value by giving regular mechanical 

stimuli (Börnke, F., & Rocksch, T. 2018). Regularly touched papaya plants exhibited higher 

lignin deposition and reduced anthocyanin production in the petiole (Porter et al 2009). In 

tobacco, touching of stem increased vegetation (Anten 2005). As mechanical stress induces 

expression of defense response genes, touch stimuli is also being studied for development 

of environment friendly techniques for pest/ disease control in plants (Catherine Coutand, 

2020). Regular touching enhanced resistance against necrotrophic fungi, Botrytis cineria in 

Arabidopsis and reduced feeding by cabbage looper pest, Trichoplusia ni on lettuce crop 

(Chehab et al 2012).  
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1.8. SCOPE OF PRESENT STUDY 

Interestingly, different plant species display different adaptations in response to 

mechanical stimuli, some of which are unique to particular plant species. In present study, 

we have made first attempt to identify morphological, anatomical, biochemical and 

physiological adaptations of a dicotyledon crop plant Cajanus cajan (Pigeon pea) and a 

monocotyledon crop plant Oryza sativa (rice) to regular mechanical stress in the form of 

touch. The touch induced phenotypes identified in present study can be used as marker for 

mechanical stress for future studies in both the crop species. This study lays foundation for 

our future field level research on effect of mechanical stress on productivity and yield of the 

crop. 
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