
Chapter 1

Introduction

This chapter starts with an overview of the celestial mechanics. Applications of Re-

stricted Three Body Problem (RTBP), its particular cases and different perturbing

forces affecting the motion of the infinitesimal body are reviewed. Equations of mo-

tion of the infinitesimal body, the methods of finding halo orbits and the procedure

for obtaining Poincaré Surface of Sections (PSS) are also described.

1.1 Overview of celestial mechanics

Celestial mechanics is a branch of astronomy which studies the motion of astronomical

bodies by applying the principles of classical mechanics for producing ephemeris data.

Orbital mechanics is a subfield of celestial mechanics which deals with the practical

problems concerning the motion of rockets and spacecrafts, and plays a pioneer role in

space mission design and control. In 1596, Kepler described the model of solar system

in the first edition of his book Mysterium Cosmographicum according to which planets

moved within spherical shells whose inner and outer surfaces had precise separations

determined by the circumspheres and inspheres of the regular polyhedra. He had con-

sidered six planets in his model. In Fig. 1.1, Kepler’s model for outer planets is shown

(Murray and Dermott (1999)). According to Kepler, the widths of these shells were

related to the orbital eccentricities. Kepler empirically tried to get the simple numer-

ical relationships between the orbital distances of the planets, but couldn’t succeed.

From the observations made by Tycho Brahe and using his empirical approach, Kepler

derived three laws of planetary motion which are

1. The planets move in elliptical orbits around the Sun with the Sun at one focus.

2. A radius vector from the Sun to a planet sweeps out equal areas in equal times.

3. The square of the orbital period of a planet is proportional to the cube of its

semi-major axis.
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Figure 1.1: Kepler’s planetary model for outer planets (Adapted from Murray
and Dermott (1999))

In the seventeenth century, Newton established that all motion in the solar system

results from the inverse square law of force. He could also show that Kepler’s three

laws of planetary motion can be derived as a consequence of this force and the re-

sulting motion can be described using conic sections. So, Newton unified the celestial

and terrestrial dynamics. In celestial mechanics, most of the results are derived by

considering the celestial bodies as point masses. Since the celestial bodies are assumed

to be spherical and the size of these objects are negligible compared to the distances

between them, it is possible to treat these objects as point masses. So, the study of the

motion of two spherical bodies under their mutual gravitational attraction reduces to

the study of the motion of two point masses under their mutual gravitation attraction.

This is called the two body problem. Newton was the first to solve the two body

problem. He obtained the solution using the geometric method. The analytic solution

was given by Bernoulli, which was investigated by Euler.

1.2 Restricted Three Body Problem

Two-body problem can be used to study the motion of two rigid bodies orbiting each

other under the influence of mutual gravitational attraction. For example, the motion

of a planet orbiting a star or motion of binary stars orbiting around their barycentre

can be analyzed using the two-body problem.
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After solving the two-body problem, Newton focused on more complex systems con-

taining three participating bodies but could not attain much success. After Newton,

many researchers tried to solve the three body problem. But no one could obtain a

closed form solution. In general, N–body problem does not have a closed form solu-

tion for N ⩾ 3. Different particular solutions of three body problem exist. One such

solution was suggested by Euler in 1765. He assumed the three masses to be collinear.

In the case of equal masses, two bodies rotate in circles around the third. For unequal

masses, each mass will travel in elliptical orbit around the center of mass. A drawback

of this model is that the orbit is unstable under small perturbations.

The model suggested by Lagrange in 1772 consists of three masses situated at the

vertices of an equilateral triangle. If the three masses are equal, all three bodies trace

the same circular orbit. If the masses are different, they will follow elliptical orbit still

remaining at the vertices of the equilateral triangle. If one of the masses completely

dominates the other masses, then the solution becomes stable. Another particular

solution, known as Figure-Eight solution, discovered by Christopher Moore in 1993

was a numerical solution which occurs only when the masses are equal. The center of

mass of the system being at the cross point. This model gives a stable solution. In

the Hill’s solution, two of the masses remain close to each other forming a binary and

they together orbit the third body which is farther away like Sun-Earth-Moon system.

Euler was the first one to propose restricted three body problem, a simplified three

body problem. The Restricted Three Body Problem (RTBP) deals with the motion

of an infinitesimal body which moves under the gravitational influence of two mas-

sive bodies called the primaries. The mass of the infinitesimal body is so negligible

compared to the masses of the primaries that it does not influence the motion of the

primaries. In solar system, the masses of many celestial bodies like natural satellites,

asteroids, comets, etc. are negligible compared to the masses of the planets and stars.

So, RTBP can be used to study the motion of such celestial bodies. Further, the

motion of planets around the Sun is almost circular which suggests the concept of Cir-

cular Restricted Three Body Problem (CRTBP), a particular case of RTBP, in which

the primaries move in circular orbits around each other. Another particular case of

RTBP is Elliptical Restricted Three Body Problem (ERTBP) in which the primaries

are assumed to move in elliptic orbits around their barycentre.
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Significant contributions in CRTBP came from the works of two great mathemati-

cians Lagrange and Jacobi. Lagrange discovered five equilibrium points known as La-

grangian points. Jacobi considered CRTBP in the synodic coordinate system and eval-

uated the first integral of equations of motion, which is the only constant in CRTBP.

This constant is known as the Jacobi constant.

In solar system, the infinitesimal body experiences forces other than the gravitational

force of the primaries. Such forces are called perturbing forces. Solar radiation pressure

force, force due to oblate primary, Poynting-Robertson force, atmospheric drag, etc.

are examples perturbing forces. The perturbations due to radiation and oblateness of

the primaries are considered in this study. In 1891, with the help of experiments the

Russian physicists Pyotr Nikolayevich Lebedev proved that light exerts a mechanical

pressure on material bodies and gave the following law (Pathak (2017)):

“The minute pressure exerted by radiation on bodies is inversely proportional to the

square of the distance between the light source and the illuminated body.”

Since then many researchers have considered the perturbing force due to radiation

of the primaries in the study of RTBP. The force due to radiation of the primary

can be divided into three components: the radiation pressure, the Doppler shift of

the incident radiation and the Poynting drag. Radzievskii (1950) showed that the

effect of the Doppler shift of the incident radiation and the Poynting drag is negligible

compared to the radiation pressure. The radiation pressure force (Fp) varies with the

distance in a similar way as the gravitational force (Fg) varies but acts in the opposite

direction. Then the resultant force exerted by the radiating body on the infinitesimal

body is

F = Fg − Fp =

(
1− Fp

Fg

)
Fg = qFg,

where q = 1− (Fp/Fg). The factor q reduces the effective mass of the radiating body,

hence it is called the mass reduction factor. If the primary is not radiating, then Fp = 0,

so q = 1. In the Sun-Planet systems, q ≈ 1 as Fg >> Fp. Researchers have computed

equilibrium points and studied their stability in the CRTBP and ERTBP by consid-

ering one or both the primaries as a source of radiation (Rabe (1973), Sharma (1987),

Meire (1981), Zimovshchikov and Tkhai (2004), Kumar and Narayan (2012), Narayan

and Kumar (2011), Narayan and Singh (2014), Singh and Narayan (2015), Rahoma et

al. (2019), Roberts (2002), Jorba-Cusco et al. (2021), and Singh and Tyokyaa (2023)).

In classical RTBP, the primaries are considered to be perfect spheres. But in solar
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system, many celestial bodies bulges out at equator and are flatted at the poles due to

rotation about their axis. An oblate spheroid provides good approximation for such

deformed celestial bodies. The oblateness coefficient of a celestial body is denoted by

A and it is defined as

A =
R2

e −R2
p

5R2
,

where Re and Rp, respectively, are the equatorial and polar radii of the object and R is

the distance between the primaries. Abouelmagd (2013) has considered the motion of

infinitesimal body in CRTBP by considering both the primaries radiating and oblate.

The author has considered different perturbed cases and analyzed the motion in each

case. Various authors have studied RTBP by considering oblateness of the primaries

(Sharma and Subba Rao (1979), Subba Rao and Sharma (1996), Markellos et al.

(1996), AbdulRaheem and Singh (2006), Abouelmagd et al. (2013), and Ansari et al.

(2019)).

1.3 Equations of motion

In this section, the equations of motion of an infinitesimal body in a dimensionless

synodic coordinate system in CRTBP and ERTBP framework are given. Suppose m1

and m2 (m1 > m2) are masses of primaries P1 and P2, respectively, and m is the mass

of the infinitesimal body. A schematic diagram of Restricted Three Body Problem is

given in Fig. 1.2. The mass factor or mass ratio of the primaries is denoted by µ and

it is defined as µ = m2/(m1 +m2).

Figure 1.2: Schematic diagram of RTBP in a dimensionless synodic coordinate
system
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1.3.1 Equations of motion in CRTBP framework

Suppose the primaries P1 and P2 are moving in circular orbits around their barycentre

and the infinitesimal body is free to move in space. Now, consider a sidereal coordinate

system XY Z such that its origin is at the barycentre of the primaries and its XY plane

coincides with the plane of motion of the primaries. Then the primaries P1 and P2 will

always remain in the XY plane. Suppose (X1, Y1, 0) and (X2, Y2, 0) are coordinates of

primaries P1 and P2, respectively, and the infinitesimal body is located at (X, Y, Z).

Here, both the primaries are assumed to be source of radiation and oblate spheroids.

Then the motion of the infinitesimal body in the sidereal system is given by

Ẍ =
∂U1

∂X
,

Ÿ =
∂U1

∂Y
,

Z̈ =
∂U1

∂Z
,

(1.1)

where

U1 =k
2

(
m1q1
R1

+
m1q1A1

2R3
1

+
m2q2
R2

+
m2q2A2

2R3
2

)
, (1.2)

R1 =
√

(X −X1)2 + (Y − Y1)2 + Z2,

R2 =
√

(X −X2)2 + (Y − Y2)2 + Z2. (1.3)

Here, an overhead dot denotes a differentiation with respect to time t∗, k2 is universal

gravitational constant, qi and Ai, respectively, are mass reduction factors and oblate-

ness coefficients of primaries, i = 1, 2 and Ri is the distance between the ith(i = 1, 2)

primary and the infinitesimal body. Now, the coordinate system XY Z is rotated

through an angle nt∗ about z-axis so that the primaries always lie on the X̃-axis of the

new coordinate system X̃Ỹ Z̃. The transformation between the two coordinate frames

is given by (Szebehely (1967, p.14))

X =X̃ cosnt∗ − Ỹ sinnt∗,

Y =X̃ sinnt∗ + Ỹ cosnt∗,

Z =Z̃.
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Then system (1.1) gets transformed to

¨̃
X − 2n

˙̃
Y =

∂U1

∂X̃
,

¨̃
Y + 2n

˙̃
X =

∂U1

∂Ỹ
,

¨̃
Z =

∂U1

∂Z̃
,

(1.4)

where U1 is as in (1.2) and

R2
i = (X̃ − X̃i)

2 + Ỹ 2 + Z̃2, i = 1, 2, (1.5)

X̃1 = − m2

m1 +m2

l, X̃2 =
m1

m1 +m2

l.

Here, l is the constant distance between the two primaries. Next, the synodic frame

X̃Ỹ Z̃ is transformed to a dimensionless synodic frame xyz using the transformations

(Szebehely (1967, p.16))

x =
X̃

l
, y =

Ỹ

l
, z =

Z̃

l
, x1 =

X̃1

l
, x2 =

X̃2

l
, r1 =

R1

l
, r2 =

R2

l
, t = nt∗,

µ =
m2

m1 +m2

, 1− µ =
m1

m1 +m2

.

Then in the coordinate system xyz, the primaries P1 and P2 always remain fixed

on the x-axis at (−µ, 0, 0) and (1 − µ, 0, 0), respectively, and equations of motion of

infinitesimal body are given by (Abouelmagd (2013))

ẍ− 2nẏ = Ω∗
x,

ÿ + 2nẋ = Ω∗
y,

z̈ = Ω∗
z,

(1.6)

where

Ω∗ =
1

2
n2(x2 + y2) +

(1− µ)q1
r1

+
(1− µ)q1A1

2r31
+
µq2
r2

+
µq2A2

2r32
(1.7)

and

n2 = 1 +
3

2
(A1 + A2),

r1 =
√

(x+ µ)2 + y2 + z2, (1.8)

r2 =
√

(x+ µ− 1)2 + y2 + z2. (1.9)

7



Chapter 1. Introduction

The quantity Ω∗ is pseudo potential; n is the mean motion and ri is the distance

between the ith(i = 1, 2) primary and the infinitesimal body.

1.3.2 Equations of motion in ERTBP framework

Assume that the primaries are moving in elliptic orbits around their barycentre and

the infinitesimal body can move in space. Consider a sidereal coordinate system XY Z

whose origin lies at the barycentre of the primaries and its XY plane is the plane

of motion of the primaries. The primaries P1 and P2 are located at (X1, Y1, 0) and

(X2, Y2, 0), respectively and the infinitesimal body is located at (X, Y, Z) in this side-

real system. Suppose both the primaries are source of radiation. Then the equations

of motion of the infinitesimal body are given by

Ẍ =
∂U2

∂X
,

Ÿ =
∂U2

∂Y
,

Z̈ =
∂U2

∂Z
,

(1.10)

where

U2 = k2
(
m1q1
R1

+
m2q2
R2

)
, (1.11)

R1 =
√

(X −X1)2 + (Y − Y1)2 + Z2,

R2 =
√

(X −X2)2 + (Y − Y2)2 + Z2. (1.12)

Here, an overhead dot denotes a differentiation with respect to time t∗, k2 is universal

gravitational constant, qi are mass reduction factors of primaries, i = 1, 2 and Ri is

the distance between the ith(i = 1, 2) primary and the infinitesimal body. Now, the

coordinate system is rotated through an angle θ, the true anomaly of P1, about Z

axis so that the primaries always lie on the new X-axis, X̃, in the rotating frame.

The relation between the old XY Z and the new X̃Ỹ Z̃ coordinate system is given by

(Szebehely (1967))

X =X̃ cos θ − Ỹ sin θ,

Y =X̃ sin θ + Ỹ cos θ,

Z =Z̃.
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Using above transformation in system (1.10), the equations of motion get transformed

to (Szebehely (1967) and Ammar (2008))

¨̃
X − 2

˙̃
Y θ̇ − θ̇2X̃ − θ̈Ỹ =

∂U2

∂X̃
,

¨̃
Y + 2

˙̃
Xθ̇ − θ̇2Ỹ + θ̈X̃ =

∂U2

∂Ỹ
,

¨̃
Z =

∂U2

∂Z̃
,

(1.13)

where U2 is as in (1.11) and

R2
i = (X̃ − X̃i)

2 + Ỹ 2 + Z̃2, i = 1, 2, (1.14)

X̃1 = − m2

m1 +m2

R, X̃2 =
m1

m1 +m2

R.

Here, R is the variable distance between the two primaries. Next, the synodic frame

X̃Ỹ Z̃ is transformed to a dimensionless pulsating synodic frame xyz using the trans-

formations (Szebehely (1967, p.16))

x =
X̃

R
, y =

Ỹ

R
, z =

Z̃

R
, x1 =

X̃1

R
, x2 =

X̃2

R
, r1 =

R1

R
, r2 =

R2

R
,

µ =
m2

m1 +m2

, 1− µ =
m1

m1 +m2

.

The equations of motion in the dimensionless pulsating synodic coordinate system are

(Szebehely (1967))

d2x

dθ2
− 2

dy

dθ
=

1

1 + e cos θ
Ωx,

d2y

dθ2
+ 2

dx

dθ
=

1

1 + e cos θ
Ωy,

d2z

dθ2
+ z =

1

1 + e cos θ
Ωz,

(1.15)

where

Ω =
1

2
(x2 + y2 + z2) +

(1− µ)q1
r1

+
µq2
r2
,

r1 =
√

(x+ µ)2 + y2 + z2,

r2 =
√

(x+ µ− 1)2 + y2 + z2.

(1.16)

Here, θ, the true anomaly of P1, is the independent variable instead of time t∗, Ω is

pseudo potential function, q1 and q2 are mass reduction factors of P1 and P2, respec-

tively and ri (i = 1, 2) are as defined earlier.
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Now, consider the eccentric anomaly, say E, corresponding to true anomaly θ. The

conservation of angular momentum h = R2θ̇ (Murray and Dermott (1999, p.25)) gives

dθ

dt
=

√
a(1− e2)

R2
, (1.17)

where R = a(1 − e cosE) is the variable distance between the primaries, a and e,

respectively, are semimajor axis and the eccentricity of the orbit of the primaries.

The differential relation between t and E are given by (Danby (1962, p.131))

dt = a3/2(1− e cosE)dE. (1.18)

Using equation (1.18) in (1.17), the differential relation between θ and E can be

obtained as

dθ =

√
a(1− e2)

R2
a3/2(1− e cosE)dE =

a
√
1− e2

R
dE

which can be expressed as
dE

dθ
=

ρ√
1− e2

, (1.19)

where ρ = R/a. Thus,
d(·)
dθ

=
dE

dθ

d(·)
dE

(1.20)

and

d2(·)
dθ2

=
d

dθ

(
d(·)
dθ

)
=

d

dE

(
dE

dθ

d(·)
dE

)
dE

dθ
,

=
ρ2

1− e2
d2(·)
dE2

+
ρ√

1− e2

[
d

dE

(
ρ√

1− e2

)]
d(·)
dE

which simplifies to

d2(·)
dθ2

=
ρ2

1− e2
d2(·)
dE2

+
ρ

1− e2
e sinE

d(·)
dE

. (1.21)
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Using expressions (1.20) and (1.21) in system (1.15), we get

x′′ +
e sinE

ρ
x′ − 2

√
1− e2

ρ
y′ =

∂Ω∗

∂x
,

y′′ +
e sinE

ρ
y′ +

2
√
1− e2

ρ
x′ =

∂Ω∗

∂y
,

z′′ +
e sinE

ρ
z′ =

∂Ω∗

∂z
,

(1.22)

where ′ denotes the derivative with respect to E,

Ω∗ =
1

ρ

[
1

2
(x2 + y2)− e

2ρ
(cosE − e)z2 +

(1− µ)q1
r1

+
µq2
r2

]
.

The pseudo potential function is an explicit function of eccentric anomaly. Averaging

Ω∗ with respect to E over the interval 0 to 2π, the averaged pseudo potential function,

Ω will be

Ω =
1

2π

∫ 2π

0

Ω∗ dE =
1√

1− e2

[
1

2
(x2 + y2) +

(1− µ)q1
r1

+
µq2
r2

]
, (1.23)

which does not contain independent variable explicitly. Averaging the coefficients of

the first equation of system (1.22),

1

2π

∫ 2π

0

(
x′′ +

e sinE

ρ
x′ − 2

√
1− e2

ρ
y′
)
dE

=
1

2π
x′′

∫ 2π

0

dE +
e

2π
x′
∫ 2π

0

e sinE

ρ
dE − 2

√
1− e2

2π
y′
∫ 2π

0

1

ρ
dE

= x′′ + 0− 2
√
1− e2

2π
y′
(

2π√
1− e2

)
= x′′ − 2y′.

Similarly, averaging the coefficients of the second and the third equations of system

(1.22), the new system governing the motion of infinitesimal body has following form:

x′′ − 2y′ =
∂Ω

∂x
,

y′′ + 2x′ =
∂Ω

∂y
,

z′′ =
∂Ω

∂z
,

(1.24)
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Figure 1.3: Lagrangian points in classical RTBP

where

Ω =
1√

1− e2

[
1

2
(x2 + y2) +

(1− µ)q1
r1

+
µq2
r2

]
, (1.25)

r1 =
√
(x+ µ)2 + y2 + z2,

r2 =
√

(x+ µ− 1)2 + y2 + z2.

Equations (1.24) represent the motion of infinitesimal body in a dimensionless synodic

coordinate system with eccentric anomaly as independent variable.

1.4 Lagrangian points

Lagrangian points or libration points are equilibrium points of RTBP. These are the

locations in the space where the infinitesimal body experiences the balance between

the gravitational pull of the primaries, centrifugal force and all other perturbing forces.

At Lagrangian points, the infinitesimal body has zero velocity and zero acceleration

and therefore, it can maintain its position without much fuel consumption. A RTBP

has five planar Lagrangian points which are denoted by L1, L2, . . . , L5. Out of these

five Lagrangian points, three Lagrangian points, L1, L2 and L3 lie on the line joining

the primaries and they are called collinear Lagrangian points. The Lagrangian point

L1 lies between the two primaries, L2 lies on the right side of the second primary P2

and L3 lies on the left side of the primary P1 and always remains hidden behind it.

Remaining two Lagrangian points are called triangular Lagrangian points and they lie

on the opposite sides of the line joining the primaries. In the classical RTBP, these

two points form equilateral triangles with the primaries which are shown in Fig. 1.3.
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1.4.1 Computation of collinear Lagrangian points in CRTBP

Location of Lagrangian points can be obtained by solving three simultaneous equations

Ω∗
x = 0, Ω∗

y = 0, Ω∗
z = 0.

From equations (1.6), we get,

(1.26)n2x− (1− µ)q1(x+ µ)

r31
− 3(1− µ)q1A1(x+ µ)

2r51

− µq2(x+ µ− 1)

r32
− 3µq2A2(x+ µ− 1)

2r52
= 0,

y

[
n2 − (1− µ)q1

r31
− 3(1− µ)q1A1

2r51
− µq2

r32
− 3µq2A2

2r52

]
= 0, (1.27)

z

[
(1− µ)q1

r31
+

3(1− µ)q1A1

2r51
+
µq2
r32

+
3µq2A2

2r52

]
= 0. (1.28)

From equation (1.28), we get z = 0 which shows all Lagrangian points lie in a plane.

For getting collinear Lagrangian points, we must have y = z = 0 in (1.26). Suppose

the Lagrangian point Li is located at (xi, 0, 0), i = 1, 2, 3 and γ is the distance between

the Lagrangian point and the nearest primary.

Location of L1

In this case, P2 is the nearest primary to L1. Then since P1 is located at (−µ, 0, 0)
and P2 is located at (1− µ, 0, 0), from Fig. 1.4,

r1 = x1 + µ, r2 = 1− µ− x1.

Since γ is the distance between L1 and P2 and the distance between the primaries is

unity, we have

x1 = 1− µ− γ, r1 = 1− γ, r2 = γ. (1.29)

Using equation (1.29) in (1.26), we get

n2(1− µ− γ)− (1− µ)q1
(1− γ)2

− 3(1− µ)q1A1

2(1− γ)4
+
µq2
γ2

+
3µq2A2

2γ4
= 0
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Figure 1.4: Notation for computation of L1

which simplifies to

2n2γ9 − 2n2(5− µ)γ8 + 4n2(5− 2µ)γ7 − 2[10n2 − 6n2µ− (1− µ)q1 + µq2]γ
6

+ 2[5n2 − 4n2µ− 2(1− µ)q1 + 4µq2]γ
5

− [2(1− µ)(n2 − q1)− 3(1− µ)q1A1 + 3µq2(4 + A2)]γ
4

+ 4µq2(2 + 3A2)γ
3 − 2µq2(1 + 9A2)γ

2 + 12µq2A2γ − 3µq2A2 = 0. (1.30)

Solving equation (1.30) for positive real roots of γ, the location of L1 is obtained as

(1− µ− γ, 0, 0).

Location of L2

Figure 1.5: Notation for computation of L2

In this case, the Lagrangian point L2 lies on the right side of P2 and it is located at

(x2, 0, 0). Then from Fig. 1.5,

r1 = x2 + µ, r2 = x2 + µ− 1.

Since P2 is the nearest primary to L2, we have, r2 = γ and

x2 = 1− µ+ γ, r1 = 1 + γ. (1.31)

14



Chapter 1. Introduction

Using (1.31) in (1.26), we get

n2(1− µ+ γ)− (1− µ)q1
(1 + γ)2

− 3(1− µ)q1A1

2(1 + γ)4
− µq2

γ2
− 3µq2A2

2γ4
= 0

which simplifies to

2n2γ9 + 2n2(5− µ)γ8 + 4n2(5− 2µ)γ7 + 2[10n2 − 6n2µ− (1− µ)q1 − µq2]γ
6

+ 2[5n2 − 4n2µ− 2(1− µ)q1 − 4µq2]γ
5

+ [2(1− µ)(n2 − q1)− 3(1− µ)q1A1 − 3µq2(4 + A2)]γ
4

− 4µq2(2 + 3A2)γ
3 − 2µq2(1 + 9A2)γ

2 − 12µq2A2γ − 3µq2A2 = 0. (1.32)

Then L2 is located at (1−µ+ γ, 0, 0), where γ is the positive real root of the equation

(1.32).

Location of L3

Figure 1.6: Notation for computation of L3

In the case of L3, P1 is the nearest primary to Lagrangian point. So, the distance

between L3 and P1 is γ and since L3 is located at (x3, 0, 0) and lies on the left side

of the origin, the distance between the Lagrangian point L3 and the origin O is −x3.
Then we have

r1 = −x3 − µ, r2 = 1− µ− x3.

From Fig. 1.6,

x3 = −µ− γ, r1 = γ, r2 = 1 + γ. (1.33)

Using (1.33) in (1.26), we get

n2(−µ− γ) +
(1− µ)q1

γ2
+

3(1− µ)q1A1

2γ4
+

µq2
(1 + γ)2

+
3µq2A2

2(1 + γ)4
= 0
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which simplifies to

2n2γ9 + 2n2(4 + µ)γ8 + 4n2(3 + 2µ)γ7 + 2[2n2(2 + 3µ)− (1− µ)q1 − µq2]γ
6

− 2[4(1− µ)q1 + 2µq2 − n2(1 + 4µ)]γ5

− [12(1− µ)q1 + 2µq2 + 3(1− µ)q1A1 + 3µq2A2 − 2n2µ]γ4

− 4(1− µ)(2 + 3A1)q1γ
3 − 2(1− µ)(1 + 9A1)q1γ

2

− 12(1− µ)q1A1γ − 3(1− µ)q1A1 = 0. (1.34)

Solving (1.34) for positive real root, the location of L3 is obtained as (−µ− γ, 0, 0).

1.4.2 Computation of collinear Lagrangian points in ERTBP

Equilibrium points of system (1.24) can be computed by solving three simultaneous

equations

Ωx = 0, Ωy = 0, Ωz = 0.

From (1.25), we get

1√
1− e2

[
x− (1− µ)q1(x+ µ)

r31
− µ(x+ µ− 1)q2

r32

]
= 0, (1.35)

1√
1− e2

[
1− (1− µ)q1

r31
− µq2

r32

]
y = 0, (1.36)

1√
1− e2

[
(1− µ)q1

r31
+
µq2
r32

]
z = 0. (1.37)

From (1.37), z = 0 which implies all equilibrium points are coplanar. Since collinear

Lagrangian points lie on the x-axis of dimensionless synodic frame, solution of (1.35)

should be obtained by considering y = 0 and z = 0. In this case also, suppose the

Lagrangian point Li is has coordinates (xi, 0, 0), i = 1, 2, 3 and γ is the distance

between the Lagrangian point and its nearest primary.

Location of L1

In this case also, values of x1, r1 and r2 are same as given in (1.29). Using these values

in (1.35), we get

(1− µ− γ)− (1− µ)q1
(1− γ)2

+
µq2
γ2

= 0

which simplifies to a quintic in γ given by

(1.38)γ5 − (3− µ)γ4 + (3− 2µ)γ3 − [µq2 + (1− µ)(1− q1)]γ
2 + 2µq2γ − µq2 = 0.

Solving (1.38) for positive real root of γ, the location of L1 is obtained as (1−µ−γ, 0, 0).
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Location of L2

For L2, values of x2, r1 and r2 are as in (1.31). Substituting these values in (1.35), we

get,

(1− µ+ γ)− (1− µ)q1
(1 + γ)2

− µq2
γ2

= 0.

Simplification leads to

(1.39)γ5 + (3− µ)γ4 + (3− 2µ)γ3 + [(1− µ)(1− q1)− µq2]γ
2 − 2µq2γ − µq2 = 0.

Using the positive real root γ of (1.39), location of L2 in ERTBP can be obtained as

(1− µ+ γ, 0, 0).

Location of L3

For L3, the values of x3, r1 and r2 are as in (1.33). Using these values in (1.35), we get

(−µ− γ) +
(1− µ)q1

γ2
+

µq2
(1 + γ)2

= 0

which simplifies to

γ5 + (2 + µ)γ4 + (1 + 2µ)γ3 − [(1− µ)q1

+µ(1− q2)]γ
2 − 2(1− µ)q1γ − (1− µ)q1 = 0. (1.40)

Then L3 is located at (−µ− γ, 0, 0) and γ is the positive real root of (1.40).

1.5 Solution techniques

In this section, different methods used for finding periodic orbits in two and three di-

mensions are described. Lindstedt-Poincaré method is an analytical method which is

useful for finding the initial state vector for planar Lyapunov orbits and three dimen-

sional halo orbits in CRTBP and ERBP framework. The initial condition obtained

using the Lindstedt-Poincaré method is revised with the help of numerical method of

Differential Corrections (DC) for getting more accurate solution.

Poincaré Surface of Sections (PSS) can be used for getting the initial conditions for

various planar periodic orbits. For getting a PSS, system (1.49) is solved using the

Runge-Kutta-Gill method with fixed step size and the point (x, x′) corresponding to

each solution for which y = 0 and y′ > 0 is plotted on a two–dimensional hyperspace of
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four dimensional phase space. Periodic orbits give rise to fixed points that are the cen-

tre of islands of stability and islands correspond to the quasi–periodic orbits librating

around the stable positions.

1.5.1 Lindstedt-Poincaré method

Systems (1.6) and (1.24) contain non-linear terms which change the frequency of the

linearized system and give rise to secular terms. The terms whose amplitude grow

with time are called secular terms. Lindstedt-Poincaré method is an analytical method

which uses the method of perturbations for removing the secular terms appearing in the

solution. For this, a new independent variable τ = ωt, where t is existing independent

variable and ω, called the frequency connection term, is considered. Then the systems

(1.6) and (1.24) are expressed in terms of new independent variable τ and the solutions

of these systems are assumed in the perturbation form as

X(τ) = ϵX1(τ) + ϵ2X2(τ) + ϵ3X3(τ) + ... , (1.41)

Y (τ) = ϵY1(τ) + ϵ2Y2(τ) + ϵ3Y3(τ) + ... , (1.42)

Z(τ) = ϵZ1(τ) + ϵ2Z2(τ) + ϵ3Z3(τ) + ... , (1.43)

and

ω = 1 + ϵω1 + ϵ2ω2 + ϵ3ω3 + ... . (1.44)

Here, the aim is to select the values of ωi, i = 1, 2, 3, . . . , in such a manner that terms

giving rise to secular terms are avoided from the equations of motion. To accomplish

this aim, the solutions (1.41)-(1.44) are substituted in the systems (1.6) and (1.24)

and the coefficients of nth powers of ϵ are equated to get the nth order approximate

solution, n = 1, 2, 3, . . . . Usually, the series in equations (1.41)-(1.44) are terminated

after three or four or five terms giving the third or fourth or fifth order approximate

solution. Computation of halo orbits using Lindstedt-Poincaré method is described in

detail in Chapter 2 for CRTBP framework and in Chapter 4 for ERTBP framework.

1.5.2 Differential Correction method

The numerical method of differential corrections (DC) or multi-dimensional Newton-

Raphson’s method is useful for modifying the state vectors of trajectories having cer-

tain constraints. Halo orbits are three dimensional periodic orbits which are symmetric

about xz plane and intersect this plane perpendicularly. This characteristic makes the

computation of halo orbits similar to solving a two point boundary value problem. In

DC method, design variables are modified in such a manner that all given constraints
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are satisfied simultaneously. Suppose

X =


X1

X2

...

Xn


is a free variable vector with n independent design variables X1, X2, . . . , Xn. In most

of the cases, X contains the elements of state vector and integration time. The design

variables can be modified subject to m scalar constraint equations

F(X) =


F1(X)

F2(X)
...

Fm(X)

 = 0.

In most of the cases, constraints are position, time of flight and velocity. Consider

an initial guess X0 for determining a free variable vector X∗ such that F(X∗) = 0.

Expanding the constraint vector in a Taylor series about initial guess X0,

F(X) = F(X0) +
∂F(X0)

∂X0
(X−X0) + . . . .

Now, denoting ∂F(X0)/∂X0, an m× n Jacobian matrix of partial derivatives of con-

straint vector as DF(X0) and truncating the Taylor series to first order gives

F(X) = F(X0) +DF(X0)(X−X0). (1.45)

Since for a solution F(X) = 0, equation (1.45) in an iterative update form can be

written as

F(Xj) +DF(Xj)(Xj+1 −Xj) = 0 (1.46)

where Xj is the current iteration of the free variable vector, Xj+1 is the next iteration

of the free variable vector, and F(Xj) is the value of the current constraint vector

as evaluated after propagating the equations of motion from the initial condition Xj.

The value of DF(Xj) can be obtained with the help of Xj and F(Xj). Equation (1.46)

represented in the form

Xj+1 = Xj −DF(Xj)
−1
F(Xj) (1.47)
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is used as an update equation until ∥F(Xj+1)∥2 < 10−12. In most of the cases, desired

accuracy is reached within 10 iterations.

The initial state vector of halo orbit obtained using the Lindstedt-Poincaré method is

modified using the DC method. Since halo orbits are symmetric about xz plane, we

must have y = 0 at half period and also, these orbits intersect xz plane perpendicularly

so at half period, we must have ẋ = ż = 0. Then the free variable vector for revising

the state vector of halo orbit is

X =

 x

ẏ

T/2


and the constraint vector is

F(X) =

yẋ
ż

 = 0

with the Jacobian matrix

DF(X) =

[
O I3

U K

]
,

where

U =

Ωxx Ωxy Ωxz

Ωyx Ωyy Ωyz

Ωzx Ωzy Ωzz

 , K =

 0 2 0

−2 0 0

0 0 0

 , (1.48)

and Ω is pseudo potential, the matrix O is 3×3 null matrix and I3 is 3×3 identity

matrix. Here, (x, y, z) is position vector, (ẋ, ẏ, ż) is velocity vector and T is period of

halo orbit. In this case, the z coordinate of the position vector is not considered in

the free variable vector so its value will remain unchanged throughout the correction

scheme. Further, it is possible to keep x coordinate of position vector fixed by removing

it from the free variable vector and inserting z coordinate instead.

1.5.3 Runge-Kutta-Gill method

Runge-Kutta-Gill (RKG) method is a numerical method useful for solving first order

Initial Value Problems (IVPs) numerically. The algorithm for solving an autonomous

IVP consisting m ODEs using RKG method with fixed step size is given below:

Consider the Initial Value Problem containing m ODEs

y′j =
dyj
dx

= fj(y1, y2, y3, . . . , ym), yj(x0) = y0j , j = 1, 2, . . . ,m.
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1. Select the step size h.

2. Find the quantity: k1j = hfj(y
i
1, y

i
2, y

i
3, . . . , y

i
m).

3. Update yij as y
i,1
j = yij + 0.5k1j .

4. Calculate k2j as k2j = hfj(y
i,1
1 , y

i,1
2 , y

i,1
3 , . . . , y

i,1
m ).

5. Further update yij as y
i,2
j = yi,1j + 0.5k1j (−1 +

√
2) + k2j (1− 0.5

√
2).

6. Compute the quantity: k3j = hfj(y
i,2
j , y

i,2
2 , y

i,2
3 , . . . , y

i,2
m ).

7. Update yij as y
i,3
j = yi,2j −

[
k2j√
2
+ (1 + 1√

2
)k3j

]
.

8. Evaluate the quantity: k4j = hfj(y
i,3
1 , y

i,3
2 , y

i,3
3 , . . . , y

i,3
m ).

9. Then, the new iterate of yij, y
i+1
j , can be obtained as

yi+1
j = yi,3j +

1

6
[k1j + (2−

√
2)k2j + (2 +

√
2)k3j + k4j ], i ≥ 0.

This process is repeated till the desired accuracy is obtained. Our aim is to obtain

periodic orbits in planar ERTBP by considering the more massive primary as a source

of radiation. In this case, we shall denote q1 by q, the mass reduction factor of the

second primary, q2 = 1 and system (1.24) gets transformed to

x′′ − 2y′ =
∂Ω

∂x
,

y′′ + 2x′ =
∂Ω

∂y
,

(1.49)

where

Ω =
1√

1− e2

[
1

2
(x2 + y2) +

(1− µ)q

r1
+
µ

r2

]
, (1.50)

r1 =
√

(x+ µ)2 + y2,

r2 =
√

(x+ µ− 1)2 + y2.

Since system (1.49) contains second order differential equations, it is converted into

equivalent first order system and then RKG method is applied to a system of four first

order equations with step size h = 0.001.
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1.5.4 Poincaré Surface of Sections

The study of a complex dynamical system can be simplified by reducing its dimen-

sion. Poincaré map is one such useful tool which effectively reduces the dimension of

the dynamical system and converts a continuous system into a corresponding discrete

system. The technique of Poincaré map was introduced by Henri Poincaré in 1881

in which the crossing of a trajectory to a particular hyperplane is recorded. First,

a particular value of Jacobi constant or energy constant is selected for the numeri-

cal propagation. RKG method with fixed step size is used commonly for numerical

propagation of system (1.49). Jacobi constant is given by

C =
1√

1− e2

[
x2 + y2 +

2(1− µ)q

r1
+

2µ

r2

]
− x′2 − y′2. (1.51)

Equation (1.51) shows selecting a particular value of C reduces the degree of freedom

and hence the orbits will lie in three dimensional subspace C(x, y, x′, y′) = C embed-

ded in a four dimensional phase space. Further, by specifying a hyperplane, three

dimensional subspace is projected onto a two dimensional (x, x′) plane (Murray and

Dermott (1999)). In most of the cases, the plane y = 0 is considered as hyperplane

and it is further assumed that at initial time, the infinitesimal body lies on the x axis

and there is no velocity in the x direction. Then the velocity in the y direction can be

obtained from

y′ =

√
1√

1− e2

(
x2 +

2(1− µ)q

r1
+

2µ

r2

)
− C. (1.52)

The equations (1.51) and (1.52) corresponding to CRTBP can be obtained by putting

e = 0.

1.6 Objective of present works

There are two major objectives of present works: The first objective is to refine and

modify the existing technique of obtaining halo orbits to do more precise orbit deter-

mination. For this purpose, the existing fourth order Lindstedt-Poincaré approximate

solution in CRTBP framework is extended to fifth order approximate solution. The

separation between the third and fourth, and fourth and fifth order solutions decrease

which shows as the order of the solution increases, more accurate solution is obtained.

The fifth order approximate solution is used to study the effects of mass factor of

primaries on various parameters of halo orbits. The second objective is to extend the

method of Poincaré Surface of Sections from CRTBP to ERTBP and compute different

planar resonant periodic orbits in ERTBP framework. With the help of PSS, f -family
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orbits and first order interior as well as exterior resonant orbits in Sun-Saturn ERTBP

are computed, and effects of eccentricity of primaries’ orbit on parameters of resonant

periodic orbits are analyzed.

1.7 Organization of Thesis

This thesis is divided into eight chapters. Chapter 1 is introduction in which the

motivation for the study and different mathematical tools and techniques used in the

study of CRTBP and ERTBP are presented. At the end, summary of subsequent

chapters is given.

In Chapter 2, computation of halo orbits around L1, L2 and L3 using the analytic

and numerical method in CRTBP framework is given. By considering the perturbation

due to radiation pressure and oblateness of both the primaries, analytic solution for

computing halo orbits upto fifth order approximation using Lindstedt-Poincaré tech-

nique is obtained. Using this analytic solution as a first guess in DC scheme, halo

orbits around L1 and L2 of the Sun-Earth system are computed numerically for dif-

ferent solar radiation pressure and oblateness of Earth. Also, the third and fourth

order analytical solutions were used for finding halo orbits for analyzing the accuracy

of the solutions. It was observed that the separation between halo orbit decreases as

the order of solution increases. So, fifth order initial solution provides more precise

initial guess than third or fourth order solution.

Further, the effects of perturbing forces due to radiation pressure and oblateness on

location, size, period, frequency correction term and other parameters of halo orbits

around L1, L2 and L3 are studied. (Tiwary and Kushvah (2015)) computed fourth or-

der analytic solution for halo orbits in the photogravitational Sun-Earth CRTBP with

oblateness. Variation in parameters of halo orbits around L1 and L2 due to variation in

q1 and A2 was similar to observations of Tiwary and Kushvah (2015). Due to increase

in solar radiation pressure, halo orbits around L3 shrink and move towards the more

massive primary. Further, period of these orbits decrease. Oblateness of second pri-

mary shifts orbits around L3 towards the more massive primary and decreases period.

To study the effect of oblateness of more massive primary on halo orbits around L1

and L2, the Earth-Moon system with actual oblateness of the Earth is considered. It

is observed that due to increase in A1, halo orbits around L1 and L2 both elongate

and move towards the second primary, and period decreases. Radiation pressure of

second primary shrinks halo orbits around L1 and enlarges halo orbits around L2. A

decrease in q2 shifts orbits around L1 towards m2 and orbits around L2 towards m1,

and period of orbits around L1 increase while around L2 decreases.
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Chapter 3 analyzes the effects of mass ratio µ = m2/(m1+m2) on parameters of halo

orbits around L1, L2 and L3 in CRTBP framework. Different random values of µ in

the interval [10−8, 0.5] are considered. Starting with 10−8, value of µ is increased with

a fixed step size of 10−6 until µ = 0.5. It is observed that as the value of µ increases,

Lagrangian point L1 and halo orbits around it shift towards the more massive primary

while Lagrangian point L2 and corresponding halo orbits recede from second primary

till µ0 = 0.17894 and for µ > µ0, orbits move towards the second primary. For verifying

these results, Sun-Mars, Sun-Earth, Sun-Earth+Moon, Sun-Saturn and Sun-Jupiter

systems are considered and halo orbits around all three collinear Lagrangian points

are computed. It is observed that as the value of µ increases, Lagrangian point L3 and

corresponding orbits move towards the more massive primary. Suppose Ax, Ay and Az

represent the amplitudes of halo orbits in the x, y and z direction, respectively. For a

halo orbit, Ay is a multiple of Ax, and Ax and Az are related by amplitude constraint,

it is enough to study the variation in either Ax or Az. For Az = 3.25 × 10−4, corre-

sponding value of Ax is obtained using amplitude constraint relation for µ ∈ [10−8, 0.5].

It is found that µ and Ax are inversely proportional for orbits around L1 while they are

directly proportional for orbits around L2. For analyzing the variation in amplitude of

halo orbits around L3, Ax = 0.045 was considered for finding corresponding Az value.

Study shows that Az increases with the increase in µ. Period of halo orbits around L1

and L3 decreases while it increases for orbits around L2 with the increase in µ. The

size, initial distance from origin and initial velocity of orbits are also affected by the

value of µ. The analysis shows orbits around L1 and L2 both elongate as µ increases.

Further, with the increase in the value of µ, halo orbits around L1 come close to the

origin and orbits around L2 move away from the origin. The initial velocity of space-

craft in orbits around L1 as well as L2 increase with the increase in mass ratio.

In Chapter 4, computation of halo orbits around L1, L2 and L3 in the photogravi-

tational Sun-Mars ERTBP is given. Szebehely (1967) has discussed the motion of an

infinitesimal body in a dimensionless synodic pulsating coordinate system in ERTBP

framework which is a non-autonomous system with true anomaly as independent vari-

able. This non-autonomous system has been converted into an autonomous system

by averaging the system with respect to new independent variable as the eccentric

anomaly E of the second primary. Computation of locations of collinear equilibrium

points in this system shows that due to solar radiation pressure, location of equilibrium

points vary. The location of Lagrangian points do not change with the change in the

eccentricity of the orbit of the primaries. Computation of the third order approximate

solution using Lindstedt-Poincaré method is described and the procedure of finding

halo orbits using differential correction method is given. Monodromy matrix is the
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State Transition Matrix (STM) evaluated at one period of halo orbit. The eigenval-

ues of monodromy matrix are used for analyzing the stability of periodic orbits and

finding bifurcations. If λi (i = 1, 2, . . . , 6) are eigenvalues of monodromy matrix, then

the stability index is defined as νi = (λi + 1/λi)/2. Since eigenvalues of monodromy

matrix are always in reciprocal pairs, there are three stability indices corresponding to

a periodic orbit. Further, two eigen values of monodromy matrix are always unity and

hence the stability index, say ν2, corresponding to this pair is always unity (Zimovan

(2017)). Halo orbits are obtained as tangent bifurcation from planar Lyapunov orbits

when the out-of-plane stability index ν3 crosses the line ν3 = 1. A periodic orbit is

stable if all stability indices have value between -1 and 1 (Vutukuri (2018)). Due to

solar radiation pressure of the Sun, the separation between the halo and axial bifurca-

tion increases. This holds true for orbits around L1 and L2 both. Halo orbits around

L1 shrink, move towards the Sun and periods of orbits increase due to increase in solar

radiation pressure. But orbits around L2 enlarge, move towards the Sun and their

periods decrease due to increases in solar radiation pressure. The effect of solar radi-

ation pressure on halo orbits around L1 and L3 were found to be similar. A graphical

comparison of size of halo orbits show that due to non-zero eccentricity of the orbit of

the primaries, halo orbits shrink.

Chapter 5 contains evolution of f -family orbits in the photogravitational Sun-Saturn

ERTBP framework. The technique of PSS is extended from CRTBP to ERTBP for

exploring periodic orbits. Variations in parameters of f -family orbits due to variation

in eccentricity of the orbit of the primaries, solar radiation pressure and Jacobi con-

stant are observed. The existence of energy integral puts a constraint on the value of

Jacobi constant. So, it is necessary to find the maximum value of C, say CM , corre-

sponding to each pair (q, e) such that for C ≤ CM , v2 ≥ 0, where v is the velocity

of the infinitesimal body. For e ∈ [0, 0.1] and q = 0.98, 0.99 and 1 computation of

CM shows that a quadratic polynomial in e provides the curve of best fit for approxi-

mating CM for q = 0.98, 0.99 and 1. Further, it has been observed that the excluded

region shifts towards the second primary due to increase in eccentricity of orbit of the

primaries. Analysis shows f -family orbits shift towards the more massive primary and

their diameters and periods increase with an increase in the value of e. An increase in

solar radiation pressure decreases the value of CM and expands the excluded region of

motion for a satellite. Regression analysis shows that the functional relation between

the length of excluded region and e depends on solar radiation pressure of the Sun as

well. Since solar radiation pressure is a repulsive force, orbits move towards the sec-

ond primary and their diameter decreases. Due to perturbing force of solar radiation

pressure, the value of C and the difference of energy levels at separatrices decreases
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and variation in size and shape of islands and f -family orbits is also observed. By con-

sidering different values of Jacobi constant C in the interval [2.77, 3.017], variations

in parameters of f -family orbits are analyzed and the results agree with Pathak and

Thomas (2016) for CRTBP framework.

Chapter 6 is devoted to the study of first order exterior resonant periodic orbits in

the photogravitational Sun-Saturn ERTBP framework. Using the numerical technique

of PSS, 1:2, 2:3, 3:4, 4:5 and 5:6 resonant periodic orbits are obtained and the effects

of eccentricity of the orbit of the primaries (e), solar radiation pressure (q) and Jacobi

constant (C) on location, period, eccentricity (es) and semi-major axis (as) of these

periodic orbits are studied. For an exterior resonance, in the ratio p : p+ s, p denotes

number of loops in the orbit of a spacecraft and s denotes the order of resonance. It is

observed that the first order exterior resonant orbits lie on the right side of f -family

orbits. For observing the effects of variation in e on parameters of resonant periodic

orbits, e is varied in the interval [0, 0.1]. The observations show that the orbits move

towards the Sun due to increase in the value of e. Further, an increase in period

and a decrease in semi-major axis of orbits is observed due to non-zero value of e.

The variation in es is not similar for all orbits. The eccentricity es of 1 : 2 resonant

orbits decreases with the increase in e while es increases with the increase in e for

p : p+1, p ∈ {2, 3, 4, 5} resonant orbits. Effects of solar radiation pressure and Jacobi

constant are similar in CRTBP and ERTBP framework.

In Chapter 7, analysis of first order interior resonant orbits is performed. These

orbits lie on the left side of f -family orbits. In this case, the resonance ratio is of the

form p+ s : p in which s denotes the order of resonance and p+ s denotes the number

of loops in the orbit of spacecraft. The number of islands corresponding to a p+ s : p

resonant orbit denotes the order of resonance. For distinct values of e ∈ [0, 0.09],

2:1, 3:2, 4:3 and 5:4 resonant periodic orbits are computed. The study shows that

these orbits recede from the Saturn and advance towards the Sun. Further, with the

increase in e, the period, semi-major axis (as) and eccentricity (es) of these orbits

increase. The analysis of size and shape of these orbits revels that orbits shrink while

their loops enlarge due to increment in the value of e. Due to solar radiation pressure,

orbits advance towards the Saturn and period, semi-major axis (as) and eccentricity

(es) decrease. Further, orbits enlarge while the loops of these orbits shrink due to

solar radiation pressure. By considering five different values of Jacobi constant in the

interval [2.88, 2.92], the effects of Jacobi constant C on parameters of resonant orbits

are analyzed.

Chapter 8 contains conclusions and a brief overview of future scopes for research in
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this field and is followed by list of publications and bibliography. Lengthy expressions

involved in Chapter 2 and Chapter 4 are given in Appendices A and B, respectively.
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