
Chapter 2

Fifth order solution of halo orbits

in CRTBP for Sun-Earth and

Earth -Moon systems

2.1 Introduction

The existence of equilibrium points of CRTBP was established by Euler and Lagrange

in the 18th century but its first application was suggested in 1950 by Arthur C. Clarke.

He proposed that for relaying radio and TV broadcasts from the Earth to colonists on

the far side of the Moon, the Earth-Moon L2 point would be an ideal place. In 1966,

Robert Farquhar identified trajectories around Earth-Moon L2 in which a communica-

tion satellite could be positioned to maintain a constant connection between the Earth

and the far side of the Moon (Farquhar (1966)). He called these orbits as halo orbits

because from the Earth, these orbits appeared to be a halo around the Moon.

Halo family is a family of three dimensional periodic orbits around collinear Lagrangian

points which arise as a bifurcation from the planar Lyapunov orbits. A satellite placed

in a halo orbit can serve many scientific purposes. In any Sun-Planet system, the

Lagrangian point L1 lies between the Sun and the planet. A satellite placed in a halo

orbit around L1 remains in direct contact with the Sun without any occultation or

eclipse. The space weather is constantly influenced by the radiation, solar wind and

magnetic fields of the Sun. The solar wind along with other explosive events like Coro-

nal Mass Ejection (CME) affects the space weather and the nature of magnetic field

and it also changes charge particle environment near the planet. Since the atmosphere

and magnetic field of a planet like Earth acts as a protective shield, many particles and

fields do not reach the surface of the planet. So, the study of such particles, magnetic

field and space weather near a planet can be done from the space. For accomplishing

such scientific goals, halo orbits are very useful. International Sun-Earth Explorer-3
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(ISEE-3) was the first halo orbit mission. It was placed in a halo orbit around the

Sun-Earth L1 for collecting data on solar wind conditions upstream from Earth. Solar

and Heliospheric Observatory (SOHO) is another famous halo orbit mission around

the Sun-Earth L1. The aim of this mission was to study the internal structure, outer

atmosphere as well as the solar wind blown by the Sun.

Indian Space Research Organisation (ISRO) has planned Aditya L1 mission to study

the Sun. It is the first space based observatory class Indian solar mission to study the

Sun. It will be placed in a halo orbit around the Sun-Earth L1. The major objectives

of this mission are (https://www.isro.gov.in/Aditya_L1.html):

� To understand the coronal heating and solar wind acceleration.

� To understand initiation of Coronal Mass Ejection (CME), flares and near Earth

space weather.

� To understand the coupling and dynamics of the solar atmosphere.

� To understand the solar wind distribution and temperature anisotropy.

Aditya L1 mission carries seven scientific payloads which are all indigenous.

A satellite placed in a halo orbit around Sun-Earth L2 can be used for space based

observations. James Webb Space Telescope (JWST) is the most recent Sun-Earth L2

halo orbit mission (https://www.esa.int/ESA_Multimedia/Images/2022/03/The_

orbits_of_Gaia_and_Webb). The major objectives of this mission are (https://

nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2021-130A):

� To study the earliest phases of the universe.

� To study how galaxies were formed.

� To study how stars and protoplanetary systems develop.

� To observe planets in our own as well as other solar systems.

JWST was launched on December 25, 2021 and it is planned to operate for 10 years.

It carries four science instruments: a Near-IR Camera (NIRCam), a Near-IR Spectro-

graph (NIRSpec), a Near-IR Tunable Filter Imager (TFI) and a Mid-IR Instrument

(MIRI). The near IR instruments operate in the wavelength from 0.6 to 5.0 microns

and the mid-IR instruments operate in the wavelength from 5.0 to 29.0 microns.

As indicated by Farquhar, the Earth-Moon L2 halo orbit can be used for placing a

communication satellite for establishing connection with the far side of the Moon.
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In 2018, China National Space Administration (CNSA) launched Queqiao, a com-

munication relay satellite for its Chang’s-4 lunar far side mission. Queqiao entered

in a halo orbit around the Earth-Moon L2 on June 14, 2018 and established com-

munications between Chang’e-4 lander on the far side of the Moon and the Earth

(https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=QUEQIAO).

In 1980, Richardson (1980) gave an approximate third order analytical solution using

Lindstedt-Poincaré method for finding halo orbits in the classical CRTBP. Recently,

Tiwary and Kushvah (2015) derived an analytical guess for halo orbits around L1

and L2 in the photogravitational Sun-Earth system with oblateness by considering the

fourth order approximate solution using Lindstedt-Poincaré technique. In this chapter,

fifth order approximation using Lindstedt-Poincaré method is computed and it is used

for obtaining a first guess for halo orbits around L1, L2 and L3 by considering both the

primaries as source of radiation as well as oblate spheroids. This analytical solution is

revised using the numerical method of differential correction for getting more precise

initial state vector for halo orbits. Also, the effects of perturbations due to radiation

pressure and oblateness of the primaries on parameters of halo orbits are studied.

2.2 Computation of halo orbits

For finding halo orbits, the origin of the coordinate system is shifted to the corre-

sponding Lagrangian point from the barycentre of the primaries and the equations of

motion in the vicinity of the Lagrangian point are obtained. Also, in the translated

system, new coordinates are normalized by dividing them with the quantity γ, the

distance between Li (i = 1, 2, 3) and the nearest primary. For L1 and L2, γ is the

distance between Li (i = 1, 2) and P2 and for L3, γ is the distance between L3 and P1.

Then the new coordinates (x̃, ỹ, z̃) are (Koon et al. (2011))

x̃ =


1

γ
(x+ µ− 1± γ), for L1 and L2

1

γ
(x+ µ+ γ), for L3

ỹ =
1

γ
y,

z̃ =
1

γ
z.

(2.1)

In the first equation, the upper sign corresponds to L1 and the lower sign corresponds

to L2. Since the variables are normalized in the new coordinate system, the distance
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between the Lagrangian point and the nearest primary is unity.

Using transformation (2.1) into system (1.6) , the equations of motion get transformed

to

¨̃x− 2n ˙̃y =
1

γ2
Ωx̃,

¨̃y + 2n ˙̃x =
1

γ2
Ωỹ,

¨̃z =
1

γ2
Ωz̃,

(2.2)

where

Ω =
n2

2

[
(γx̃+ 1− µ∓ γ)2 + (γỹ)2

]
+

(1− µ)q1
R1

+
(1− µ)q1A1

2R3
1

+
µq2
R2

+
µq2A2

2R3
2

(2.3)

and

R1 =
√

(γx̃+ 1∓ γ)2 + (γỹ)2 + (γz̃)2, (2.4)

R2 =
√

(γx̃∓ γ)2 + (γỹ)2 + (γz̃)2, (2.5)

for L1 and L2. For L3,

Ω =
n2

2

[
(γx̃− µ− γ)2 + (γỹ)2

]
+

(1− µ)q1
R1

+
(1− µ)q1A1

2R3
1

+
µq2
R2

+
µq2A2

2R3
2

, (2.6)

R1 =
√
(γx̃− γ)2 + (γỹ)2 + (γz̃)2, (2.7)

R2 =
√

(γx̃− γ − 1)2 + (γỹ)2 + (γz̃)2. (2.8)

Suppose d denotes the distance between the two points (x̃, ỹ, z̃) and (A,B,C) in Eu-

clidean space. Then

d =
√

(x̃− A)2 + (ỹ −B)2 + (z̃ − C)2 (2.9)

which gives

1

d
=

1√
(x̃− A)2 + (ỹ −B)2 + (z̃ − C)2

,

=
1√

(A2 +B2 + C2) + (x̃2 + ỹ2 + z̃2)− 2(Ax̃+Bỹ + Cz̃)
,

=
1

√
A2 +B2 + C2

√
1− 2

(
Ax̃+Bỹ+Cz̃
A2+B2+C2

)
+

(
x̃2+ỹ2+z̃2

A2+B2+C2

) . (2.10)
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The generating function for the classical Legendre polynomials is (Rainville (1961,

p.130)):

(1− 2xt+ t2)−1/2 =
∞∑

m=0

Pm(x)t
m, (2.11)

where |t|< 1 and x ∈ R.

The multiple of (A2+B2+C2)−1/2 in (2.10) may be compared with (1− 2xt+ t2)−1/2,

where

x =
Ax̃+Bỹ + Cz̃√

x̃2 + ỹ2 + z̃2
√
A2 +B2 + C2

, t =

√
x̃2 + ỹ2 + z̃2

A2 +B2 + C2
.

With these choices, it turns out to be the generating function of the Legendre polyno-

mials Pm(x). Thus,

1

d
=

1√
A2 +B2 + C2

∞∑
m=0

Pm

(
Ax̃+Bỹ + Cz̃√

x̃2 + ỹ2 + z̃2
√
A2 +B2 + C2

)(
x̃2 + ỹ2 + z̃2

A2 +B2 + C2

)m/2

.

Using the notations ρ2 = x̃2 + ỹ2 + z̃2 and D2 = A2 +B2 +C2, above expression takes

the elegant form (Koon et al. (2011, p.146)):

1

d
=

1

D

∞∑
m=0

(
ρ

D

)m

Pm

(
Ax̃+Bỹ + Cz̃

ρD

)
. (2.12)

The terms 1/R1, 1/R2, 1/R
3
1 and 1/R3

2 in (2.3) and (2.6) are expanded using Legendre

polynomials. For series expansion of 1/R3
1 and 1/R3

2, the Cauchy product of series is

used and in each expansion, the terms containing the product of Legendre polynomials

are neglected. For R1 in (2.4), a comparison between (2.4) and (2.9) gives

A = −1

γ
± 1, B = 0, C = 0, hence D =

1

γ
∓ 1. From (2.12),

1

R1

=
1

γ

(
1

γ
∓ 1

) ∞∑
m=0

 ρ(
1∓ γ

γ

)


m

Pm


(
−1

γ
± 1

)
x̃

ρ

(
1

γ
∓ 1

)


=
1

γ

∞∑
m=0

(
γ

1∓ γ

)m+1

(−1)mPm

(
x̃

ρ

)
ρm.
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It can be observed that ρ/D < 1 as γ < 1/2 implying

(
1
γ
∓ 1

)−1

> 1 which justifies

|t|< 1. In a similar manner,

1

R2

=
1

γ

∞∑
m=0

(±1)mPm

(
x̃

ρ

)
ρm,

1

R3
1

=
1

(1∓ γ)3
+

1

γ3

∞∑
m=1

3

(
γ

1∓ γ

)m+3

(−1)mPm

(
x̃

ρ

)
ρm,

1

R3
2

=
1

γ3
+

∞∑
m=1

3(±1)m

γ3
Pm

(
x̃

ρ

)
ρm,

for L1 and L2. For L3,

1

R1

=
1

γ

∞∑
m=0

Pm

(
x̃

ρ

)
ρm,

1

R2

=
∞∑

m=0

γm

(1 + γ)m+1
Pm

(
x̃

ρ

)
ρm,

1

R3
1

=
1

γ

[
1 + 3

∞∑
m=1

Pm

(
x̃

ρ

)
ρm

]
,

1

R3
2

=
1

(1 + γ)3
+ 3

∞∑
m=1

γm

(1 + γ)m+3
Pm

(
x̃

ρ

)
ρm.

Substituting the expansions for 1/Ri and 1/R3
i , i = 1, 2, in equations of motion and

collecting all linear terms on left and non-linear terms on right, we get,

¨̃x− 2n ˙̃y − (n2 + 2C2)x̃ =
∂

∂x̃

∑
m⩾3

Cmρ
mPm

(
x̃

ρ

)
,

¨̃y + 2n ˙̃x+ (C2 − n2)ỹ =
∂

∂ỹ

∑
m⩾3

Cmρ
mPm

(
x̃

ρ

)
,

¨̃z + C2z̃ =
∂

∂z̃

∑
m⩾3

Cmρ
mPm

(
x̃

ρ

)
,

(2.13)
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where

Cm =
1

γ3

[
(−1)mq1(1− µ)

(
γ

1∓ γ

)m+1(
1 +

3A1

2(1∓ γ)2

)
+(±1)mµq2

(
1 +

3A2

2γ2

)]
,

(2.14)

with m ⩾ 1, for L1 and L2. For L3,

Cm =
1

γ3

[
(1− µ)q1

(
1 +

3A1

2γ2

)
+

µq2γ
m+1

(1 + γ)m+1

(
1 +

3A2

2(1 + γ)2

)]
, m ⩾ 1. (2.15)

The solution of the linearized system corresponding to system (2.13), obtained by

neglecting all non-linear terms appearing on the right side of the system (2.13), is

(Koon et al. (2011) and Tiwary and Kushvah (2015))

x̃(t) = a1e
αt + a2e

−αt + a3 cosλt+ a4 sinλt,

ỹ(t) =− k1a1e
αt + k1a2e

−αt − k2a3 sinλt+ k2a4 cosλt,

z̃(t) = a5 cos
√
C2t+ a6 sin

√
C2t,

where ai, i = 1 to 6, are arbitrary constants and the parameters α, λ, k1 and k2 are

given by

α =

√
−(2n2 − C2) +

√
9C2

2 − 8n2C2

2
,

λ =

√
2n2 − C2 +

√
9C2

2 − 8n2C2

2
,

κ1 =
(2C2 + n2)− α2

2nα
,

κ2 =
(2C2 + n2) + λ2

2nλ
.

The solution of the linearized system is unbounded because the solution of character-

istic equation has two real roots which are equal in magnitude and opposite in sign.

By taking a1 = a2 = 0, a3 = −Ax̃ cosϕ, a4 = Ax̃ sinϕ, a5 = Az̃ sinψ, a6 = Az̃ cosψ

as an initial condition, a bounded solution can be obtained in the form (Koon et al.

(2011) and Tiwary and Kushvah (2015)):

x̃(t) = − Ax̃ cos(λt+ ϕ),

ỹ(t) =κAx̃ sin(λt+ ϕ),

z̃(t) =Az̃ sin(
√
C2t+ ψ),
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where Ax̃ and Az̃ are amplitudes; λ and
√
C2 are the frequencies; ϕ and ψ are phases

of the in–plane and out-of-plane motions, respectively, and κ2 is replaced by κ. The

in-plane and out-of-plane frequencies of linearized motion are different. If the ratio of

these frequencies is irrational, then quasi-periodic orbits are obtained. For computing

periodic orbits, the last equation of (2.13) is expressed as

¨̃z + λ2z̃ =
∂

∂z̃

∑
m⩾3

Cmρ
mPm

(
x̃

ρ

)
+∆z̃, (2.16)

where ∆ = λ2−C2 is called frequency correction term and ∆ = O(ϵ2). Expanding the

series on the right hand side of the system (2.13) and equation (2.16) upto m = 6 for

acquiring the fifth order approximate solution, we get

¨̃x− 2n ˙̃y − (n2 + 2C2)x̃ =
3

2
C3(2x̃

2 − ỹ2 − z̃2) + 2C4x̃(2x̃
2 − 3ỹ2 − 3z̃2)

+
5

8
C5[8x̃

2{x̃2 − 3(ỹ2 + z̃2)}+ 3(ỹ2 + z̃2)2]

+ 3C6

[
2x̃3{x̃2 − 5(ỹ2 + z̃2)}+ 15

4
x̃(ỹ2 + z̃2)2

]
,

¨̃y + 2n ˙̃x+ (C2 − n2)ỹ = − 3C3x̃ỹ −
3

2
C4ỹ(4x̃

2 − ỹ2 − z̃2)

− 5

2
C5x̃ỹ(4x̃

2 − 3ỹ2 − 3z̃2)

+
15

2
C6

[
x̃2ỹ{−2x̃2 + 3(ỹ2 + z̃2)} − 1

4
ỹ(ỹ2 + z̃2)2

]
,

¨̃z + λ2z̃ = ∆z̃ − 3C3x̃z̃ −
3

2
C4z̃(4x̃

2 − ỹ2 − z̃2)

− 5

2
C5x̃z̃(4x̃

2 − 3ỹ2 − 3z̃2)

+
15

2
C6

[
x̃2z̃{−2x̃2 + 3(ỹ2 + z̃2)} − 1

4
z̃(ỹ2 + z̃2)2

]

(2.17)

Lindstedt-Poincaré method is applied to system (2.17) for getting analytic solution.

2.2.1 Analytic solutions of halo orbits around L1, L2 and L3

In successive approximations, the non-linear factors in system (2.17) generate secu-

lar terms. To alter the frequency of the solution of the non-linear system, a new

independent variable τ = ωt is introduced. Then

d(·)
dt

= ω
d(·)
dτ

,
d2(·)
dt2

= ω2d
2(·)
dτ 2

.
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Expressing system (2.17) in terms of new variable τ ,

ω2x̃′′ − 2nωỹ′ − (n2 + 2C2)x̃ =
3

2
C3(2x̃

2 − ỹ2 − z̃2)

+ 2C4x̃(2x̃
2 − 3ỹ2 − 3z̃2)

+
5

8
C5[8x̃

2{x̃2 − 3(ỹ2 + z̃2)}+ 3(ỹ2 + z̃2)2]

+ 3C6

[
2x̃3{x̃2 − 5(ỹ2 + z̃2)}

+
15

4
x̃(ỹ2 + z̃2)2

]
,

ω2ỹ′′ + 2nωx̃′ + (C2 − n2)ỹ = − 3C3x̃ỹ −
3

2
C4ỹ(4x̃

2 − ỹ2 − z̃2)

− 5

2
C5x̃ỹ(4x̃

2 − 3ỹ2 − 3z̃2)

+
15

2
C6

[
x̃2ỹ{−2x̃2 + 3(ỹ2 + z̃2)}

− 1

4
ỹ(ỹ2 + z̃2)2

]
,

ω2z̃′′ + λ2z̃ = − 3C3x̃z̃ −
3

2
C4z̃(4x̃

2 − ỹ2 − z̃2)

− 5

2
C5x̃z̃(4x̃

2 − 3ỹ2 − 3z̃2)

+
15

2
C6

[
x̃2z̃{−2x̃2 + 3(ỹ2 + z̃2)}

− 1

4
z̃(ỹ2 + z̃2)2

]
+∆z̃,

(2.18)

where ′ denotes derivative with respect to τ . Considering the solution of the system

(2.18) in the perturbation form as given in equations (1.41)-(1.44) and truncating series

in these expressions after first five terms for fifth order solution, the final solution will

be of the form:

x̃(τ) = ϵx̃1(τ) + ϵ2x̃2(τ) + ϵ3x̃3(τ) + ϵ4x̃4(τ) + ϵ5x̃5(τ),

ỹ(τ) = ϵỹ1(τ) + ϵ2ỹ2(τ) + ϵ3ỹ3(τ) + ϵ4ỹ4(τ) + ϵ5ỹ5(τ),

z̃(τ) = ϵz̃1(τ) + ϵ2z̃2(τ) + ϵ3z̃3(τ) + ϵ4z̃4(τ) + ϵ5z̃5(τ),

(2.19)

with

ω = 1 + ϵω1 + ϵ2ω2 + ϵ3ω3 + ϵ4ω4. (2.20)

Substituting the expressions (2.19) with (2.20) into system (2.18) and equating coef-

ficients of ϵ5 by incorporating all the solutions and constraints used upto the fourth
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order solution, the fifth order equations are obtained as:

x̃′′5 − 2nỹ′5 − (n2 + 2C2)x̃5 = γ51,

ỹ′′5 + 2nx̃′5 + (C2 − n2)ỹ5 = γ52,

z̃′′5 + λ2z̃5 = f3, p = 1, 3,

(2.21)

where

γ51 = [v4 + 2λAx̃ω4(nk − λ)] cos τ1 + γ8 cos 3τ1 + γ9 cos 5τ1,

γ52 = [v5 + 2λAx̃ω4(λk − n)] sin τ1 + β9 sin 3τ1 + β10 sin 5τ1,

f3 = [v6 ± 2ω4λ
2Az̃] cos τ1 + δ8 cos 3τ1 + δ9 cos 5τ1

and remaining coefficients are given in Appendix A. In f3, the upper sign corresponds

to p = 1 and the lower sign corresponds to p = 3. For p = 1, Az̃ > 0 which gives

northern halo and for p = 3, Az̃ < 0 which gives southern halo. This bifurcation of

halo orbits gets manifested in the third order solution through the phase-angle relation

ψ = ϕ+
pπ

2
, p = 1, 3

for values of Ax̃ greater than a certain minimum value (Koon et al. (2011)).

For abolishing the secular term from the solution of last equation of system (2.21), we

must have

v6 ± 2ω4λ
2Az̃ = 0, (2.22)

in which the upper sign corresponds to p = 1 and the lower sign corresponds to p = 3.

Since the first two equations of the system (2.21) are coupled equations, for abolishing

secular terms from their solution,

[v4 + 2λAx̃ω4(nk − λ)]− k[v5 + 2λAx̃ω4(λk − n)] = 0

from which the value of ω4 can be obtained as

ω4 =
v4 − kv5

2λAx̃[λ(k2 + 1)− 2nk]
. (2.23)
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Applying the constraints (2.22) and (2.23) to system (2.21), the fifth order equations

get converted to

x̃′′5 − 2nỹ′5 − (n2 + 2C2)x̃5 = kβ11 cos τ1 + γ8 cos 3τ1 + γ9 cos 5τ1,

ỹ′′5 + 2nx̃′5 + (C2 − n2)ỹ5 = β11 sin τ1 + β9 sin 3τ1 + β10 sin 5τ1,

z̃′′5 + λ2z̃5 = δ8 cos 3τ1 + δ9 cos 5τ1, p = 1, 3,

(2.24)

where β11 = v5 +2λAx̃ω4(λk− n). The solution of the system (2.24) can be expressed

as

x̃5(τ) = ρ51 cos 3τ1 + ρ52 cos 5τ1,

ỹ5(τ) =σ51 sin τ1 + σ52 sin 3τ1 + σ53 sin 5τ1,

z̃5(τ) = k51 cos 3τ1 + k52 cos 5τ1.

(2.25)

All coefficients appearing in above solution are given in Appendix A.

For acquiring the final approximation, the fifth order solution along with the first,

second, third and fourth order solution is substituted into equations (2.19) and then

ϵ is removed from these solutions with the help of transformations Ax̃ → Ax̃/ϵ and

Az̃ → Az̃/ϵ. Then system (2.19) gets transformed to

x̃(τ) = (ρ20 + ρ40)− Ax̃ cos τ1 + (ρ21 − ρ22 + ρ41) cos 2τ1

+ (ρ31 + ρ51) cos 3τ1 + ρ42 cos 4τ1 + ρ52 cos 5τ1,

ỹ(τ) = (kAx̃ + σ32 + σ51) sin τ1 + (σ21 + σ41 − σ22) sin 2τ1

+ (σ31 + σ52) sin 3τ1 + σ42 sin 4τ1 + σ53 sin 5τ1,

z̃(τ) = (−1)
p−1
2 (Az̃ cos τ1 + k21 cos 2τ1 + k22 + k32 cos 3τ1)

+ k40 + k41 cos 2τ1 + k42 cos 4τ1 + k51 cos 3τ1 + k52 cos 5τ1, p = 1, 3.

(2.26)

Solutions (2.26) are used for generating the first guess of halo orbits. For this purpose,

the Sun-Earth system with perturbations due to solar radiation pressure and oblate-

ness of the Earth is considered. The state vectors of halo orbits around L1 calculated

using the third, fourth and fifth order analytic solutions are given in Tables 2.1, 2.2

and 2.3, respectively, for different values of q1 and A2. For getting this initial guess,

Az̃ = 1.25 × 105 km is considered. The corresponding value of Ax̃ can be obtained

from the amplitude constraint relation (Richardson (1980)). In Tables 2.1-2.3, A2 = 0

shows oblateness of the Earth is not considered, A2 = 2.42405 × 10−12 is the actual

oblateness of the Earth and q1 = 1 denotes that perturbation due to solar radiation

pressure is not considered.
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In Fig. 2.1, halo orbits around L1 obtained using the third, fourth and fifth order

Lindstedt-Poincaré method are plotted in blue, green and red colour, respectively. The

xy, xz and yz projections of these orbits are given in Figs. 2.2, 2.3 and 2.4, respectively.

The separation between the third and fourth order analytic solution is 4784.44 km and

the separation between the fourth and fifth order analytic solution is 1951.61 km which

indicates that the separation between the successive solutions decreases as the order

of solution increases. This can be observed from Figs. 2.1-2.4 as well.

Table 2.1: Initial guess from the third order analytical solution around L1 in
the Sun-Earth system

q1 A2 Initial guess

x(×108) (km) y z(×105) (km) ẋ ẏ (km/s) ż

0.99 0 1.482238677364 0 -1.133909207584 0 -0.9199293912363 0

0.979 2.42405× 10−12 1.480573596221 0 -1.136492217736 0 -0.8539269651719 0

1 2.42405× 10−12 1.483432365376 0 -1.139593655307 0 -0.9691542403827 0

1 0 1.483432365530 0 -1.139593655225 0 -0.9691542409496 0

Table 2.2: Initial guess from the fourth order analytical solution around L1 in
the Sun-Earth system

q1 A2 Initial guess

x(×108) (km) y z(×105) (km) ẋ ẏ (km/s) ż

0.99 0 1.482210682231 0 -1.162260965275 0 -0.9201578350097 0

0.979 2.42405× 10−12 1.480532643379 0 -1.168284121572 0 -0.8535828234300 0

1 2.42405× 10−12 1.483416559976 0 -1.162808064038 0 -0.9697930252479 0

1 0 1.483416560131 0 -1.162808063984 0 -0.9697930258232 0

Using the same value of Az̃, initial guess for halo orbits around L2 is also computed

using the third, fourth and fifth order analytic solutions. The initial state vectors of

these halo orbits corresponding to various values of q1 and A2 are given in Tables 2.4-

2.6.
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Table 2.3: Initial guess from the fifth order analytical solution around L1 in
the Sun-Earth system

q1 A2 Initial guess

x(×108) (km) y z(×105) (km) ẋ ẏ (km/s) ż

0.99 0 1.482214355512 0 -1.163220390129 0 -0.9282323898148 0

0.979 2.42405× 10−12 1.480538040599 0 -1.168636401854 0 -0.8662066148866 0

1 2.42405× 10−12 1.483418634032 0 -1.169496960363 0 -0.8597224569674 0

1 0 1.483418634187 0 -1.163537425035 0 -0.9794676169398 0

Figure 2.1: The third, fourth and fifth order Analytic solutions around L1

with q1 = 0.979 and A2 = 2.424052106866× 10−12

Halo orbits around L2 for q1 = 0.979 and A2 = 2.424052106866 × 10−12 obtained

using the state vectors given in Tables 2.4-2.6 are plotted in Fig. 2.5. The xy, xz

and yz projections of these orbits are given in Figs. 2.6, 2.7 and 2.8, respectively. In

Figs. 2.5-2.8, orbits in blue, red and green corresponds to the third, fourth and fifth

order solution, respectively. In this case also, the separation between the fifth order

and fourth order solution is less than the separation between the fourth order and the

third order solution.
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Figure 2.2: xy projections of the third, fourth and fifth order analytic solutions
around L1 with q1 = 0.979 and A2 = 2.424052106866× 10−12

Figure 2.3: xz projections of the third, fourth and fifth order analytic solutions
around L1 with q1 = 0.979 and A2 = 2.424052106866× 10−12
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Figure 2.4: yz projections of the third, fourth and fifth order analytic solutions
around L1 with q1 = 0.979 and A2 = 2.424052106866× 10−12

2.2.2 Numerical solution of halo orbits around L1 and L2

Analytic solutions computed using Lindstedt-Poincaré method are revised by apply-

ing Differential Correction (DC) method. The third, fourth and fifth order analytic

solutions are inserted as initial guess of the solution in DC method. State vectors of

halo orbits around L1 computed using DC method are given in Tables 2.7-2.9. Halo

orbits obtained using these solutions are plotted in Fig. 2.9 and their xy, xz and yz

projections are given in Figs. 2.10, 2.11 and 2.12, respectively. Orbits in cyan, magenta

and black colours correspond to the third, fourth and fifth order solution, respectively.

From Figs. 2.9-2.12, it can be observed that the separation between the solution de-

creases as the order of solution increases. The separation between the fifth and the

fourth order solution is 122.33 km and the separation between the fourth and the third

order solution is 3205.85 km. In Table 2.13, separation between the third, fourth and

fifth order analytic and numerical solutions for different values of q1 and A2 are given.

State vectors of halo orbits around L2 computed using DC method are given in Ta-

bles 2.10-2.12. Halo orbits obtained using these solutions are plotted in Fig. 2.13 and

their xy, xz and yz projections are given in Figs. 2.14, 2.15 and 2.16, respectively.

Orbits in cyan, magenta and black colours correspond to the third, fourth and fifth
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Table 2.4: Initial guess from the third order analytical solution around L2 in
the Sun-Earth system

q1 A2 Initial guess

x(×108) (km) y z(×105) (km) ẋ ẏ (km/s) ż

0.99 0 1.510804811691 0 -1.371615994153 0 -0.9281901534292 0

0.979 2.42405× 10−12 1.509115808560 0 -1.355088561477 0 -0.9614392217686 0

1 2.42405× 10−12 1.512799359163 0 -1.385564724333 0 -0.8912931779191 0

1 0 1.512799358962 0 -1.385564724361 0 -0.8912931782033 0

Table 2.5: Initial guess from the fourth order analytical solution around L2 in
the Sun-Earth system

q1 A2 Initial guess

x(×108) (km) y z(×105) (km) ẋ ẏ (km/s) ż

0.99 0 1.510811465779 0 -1.352312961004 0 -0.9272507788787 0

0.979 2.42405× 10−12 1.509115968500 0 -1.340918416255 0 -0.9604076673270 0

1 2.42405× 10−12 1.512815720807 0 -1.360667556390 0 -0.8905902892661 0

1 0 1.512815720606 0 -1.360667556405 0 -0.8905902895425 0

Table 2.6: Initial guess from the fifth order analytical solution around L2 in
the Sun-Earth system

q1 A2 Initial guess

x(×108) (km) y z(×105) (km) ẋ ẏ (km/s) ż

0.99 0 1.510812566524 0 -1.163220390129 0 -0.9387394164807 0

0.979 2.42405× 10−12 1.509116373712 0 -1.341334996462 0 -0.9739509441934 0

1 2.42405× 10−12 1.512818025419 0 -1.361471747499 0 -0.9005070159124 0

1 0 1.512818025218 0 -1.361471747514 0 -0.9005070163730 0

order solution, respectively. From Figs. 2.13-2.16, it can be observed that the separa-

tion between the solution decreases as the order of solution increases. The separation
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Figure 2.5: The third, fourth and fifth order Analytic solutions around L2

with q1 = 0.979 and A2 = 2.424052106866× 10−12

Figure 2.6: xy projections of the third, fourth and fifth order analytic solutions
around L2 with q1 = 0.979 and A2 = 2.424052106866× 10−12
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Figure 2.7: xz projections of the third, fourth and fifth order analytic solutions
around L2 with q1 = 0.979 and A2 = 2.424052106866× 10−12

Figure 2.8: yz projections of the third, fourth and fifth order analytic solutions
around L2 with q1 = 0.979 and A2 = 2.424052106866× 10−12
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between the fifth and the fourth order solution is 41.71 km and the separation between

the fourth and the third order solution is 1418.93 km. In Table 2.14, separation be-

tween the third, fourth and fifth order analytical and numerical solutions for different

values of q1 and A2 are given.

Figure 2.9: The third, fourth and fifth order Numerical solutions around L1

with q1 = 0.979 and A2 = 2.424052106866× 10−12

2.3 Results and Discussion

Circular Restricted Three Body Problem (CRTBP) is considered with both the pri-

maries radiating as well as oblate spheroids. Effects of these perturbations on locations

of collinear Lagrangian points and parameters of halo orbits are analyzed. For ana-

lyzing deviations in locations and parameters of halo orbits around L1 and L2 due to

radiation (q2) of the second primary (P2) and oblateness (A1) of the first primary (P1),

mass ratio µ = 0.004 and Az̃ = 4.881785271574502 × 10−4/γ are considered. These

values are selected randomly. For studying the effects of perturbing forces on location

of L3 and halo orbits around it, the Sun-Earth system with the Sun as a source of

radiation and the Earth as an oblate spheroid is considered. Here, Ax̃ = 0.045, a

random value, is taken for getting parameters of halo orbits.
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Figure 2.10: xy projections of the third, fourth and fifth order numerical
solutions around L1 with q1 = 0.979 and A2 = 2.424052106866× 10−12

Figure 2.11: xz projections of the third, fourth and fifth order numerical
solutions around L1 with q1 = 0.979 and A2 = 2.424052106866× 10−12
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Figure 2.12: yz projections of the third, fourth and fifth order numerical
solutions around L1 with q1 = 0.979 and A2 = 2.424052106866× 10−12

2.3.1 Effects of radiation pressure

For analyzing the effects q2 on parameters of halo orbits, different values of q2 in the

interval [0.89, 1] are considered. The change in locations of L1 and L2 due to radia-

tion of P1 is shown in Fig. 2.17. As radiation of P1 increases, L1 moves away from

P1 and goes closer to P2 (Fig. 2.17(A)). Lagrangian point L2 shifts towards P2 and

hence towards P1 as well due to increase in radiation of P1 (Fig. 2.17(B)). Variation in

period of halo orbits around L1 and L2 are given in Fig, 2.18. As radiation increases,

period of orbits around L1 increases (Fig. 2.18(A)) whereas period of orbits around L2

decreases (2.18(B)). In Fig. 2.19, variation in size of orbits around L1 and L2 due to

increase in radiation pressure of P1 is shown. In Fig. 2.19(A), halo orbits around L1

for q2 = 0.99, 0.75, 0.50 and 0.25 are plotted in blue, red, green and magenta colours,

respectively. The xy and yz projections of these orbits are given in Figs. 2.19(C) and

2.19(E), respectively. Similarly, halo orbits around L2 for above listed four values of q2

are plotted in Fig. 2.19(B) and their xy and yz projections are given in Figs. 2.19(D)

and 2.19(F), respectively. In these figures also, blue, red, green and magenta coloured

orbits correspond to q2 = 0.99, 0.75, 0.50 and 0.25, respectively.

The values of γ, location of Lagrangian points, ∆, τ and coefficients Ci (i = 2, 3, 4, 5, 6)
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Figure 2.13: The third, fourth and fifth order Numerical solutions around L2

with q1 = 0.979 and A2 = 2.424052106866× 10−12

Figure 2.14: xy projections of the third, fourth and fifth order numerical
solutions around L2 with q1 = 0.979 and A2 = 2.424052106866× 10−12

for q2 = 0.99, 0.75.0.50 and 0.25 for halo orbits around L1 and L2 are given in Ta-

bles 2.15 and 2.16, respectively. Here, for all computations and plotting of orbits,
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Figure 2.15: xz projections of the third, fourth and fifth order numerical
solutions around L2 with q1 = 0.979 and A2 = 2.424052106866× 10−12

Figure 2.16: yz projections of the third, fourth and fifth order numerical
solutions around L2 with q1 = 0.979 and A2 = 2.424052106866× 10−12
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Figure 2.17: Effect of radiation pressure on the position of halo orbits around
L1 and L2

A1 = A2 = 0.0002 and q1 = 0.99 are considered.

The Sun-Earth system is considered to study the effects of solar radiation pressure

and oblateness of the Earth on parameters of halo orbits around L3. Fig. 2.20 shows

halo orbits around L3 for four different values of q1. Orbits in blue, red, green and

magenta correspond to q1 = 1.00, 0.95, 0.90 and 0.85, respectively. Here, q2 = 1 and

A1 = A2 = 0 are considered for plotting orbits. It can be observed from Fig. 2.20

that as solar radiation pressure increases, halo orbits around L3 shrink. In Table 2.17,

parameters of these orbits for different values of q1 and A2 are given. It can be observed

that halo orbits around L3 shift towards the Sun as radiation pressure increases. Also,

due to solar radiation, period of orbits decreases whereas the z̃ amplitude, Az̃, increases

(Table 2.17).

2.3.2 Effects of oblateness

To analyze changes in locations and parameters of halo orbits around L1 and L2 due

to oblateness of the first primary (P1), different values of A1 in the range [0.066, 1]

are considered. In Fig. 2.21, orbits corresponding to A1 = 0.0002, 0.0500, 0.0999 and

0.1500 around L1 and L2 are plotted in blue, red, green and magenta colours, with

A2 = 0.0002, q1 = 0.99 and q2 = 0.99. Locations of Lagrangian points and parameters

of these orbits are given Tables 2.18 and 2.19. It can be noticed that as the value of A1

increases, orbits around L1 and L2 both expand. Fig. 2.22(A) shows that as oblateness

of the first primary increases, halo orbits around L1 move towards the second primary

and halo orbits around L2 move towards the first primary (Fig. 2.22(B)). Variation
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Figure 2.18: Effect of radiation pressure on the period of halo orbits around
L1 and L2

in period of these orbits around L1 and L2 are shown in Fig. 2.23. As value of A1

increases, period of orbits around L1 and L2 both decrease (Figs. 2.23(A), 2.23(B)).

As an application, this model has been applied to the Earth-Moon system with

Az̃ = 0.338933597544932 in dimensionless system for observing effects of Earth’s

oblateness on parameters of halo orbits. Halo orbits around L1 and L2 in the Earth-

Moon system are shown in Figs. 2.24 and 2.25, respectively. In both the figures, blue

orbit shows that oblateness of of the Earth is neglected and red orbit corresponds to

A1 = 3.6715 × 10−7, the actual oblateness of the Earth. In this case, mass factor is

µ = 0.0122 and q1 = q2 = 1, A2 = 0. The values of masses and radii of the Earth

and the Moon are taken from NASA Fact Sheets (https://nssdc.gsfc.nasa.gov/

planetary/factsheet/earthfact.html, https://nssdc.gsfc.nasa.gov/planetary/

factsheet/moonfact.html).

From Table 2.17, it can be observed that due to oblateness of the second primary

(P2), halo orbits around L3 shift towards the Sun and period as well as z̃ amplitude

decreases.

2.4 Conclusions

In this chapter, Circular Restricted Three Body Problem (CRTBP) with both the pri-

maries radiating as well as oblate are considered and fifth order analytical solution for

getting an initial guess of halo orbits around L1, L2 and L3 is obtained using Lindstedt-

Poincaré method. Also, variations in locations and parameters of halo orbits around

collinear Lagrangian points due to oblateness and radiation of primaries are analyzed.
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Figure 2.19: Effect of radiation pressure on the size of halo orbits around L1

and L2
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It is found that as the radiation pressure of the second primary increases, halo or-

bits around L1 contract, shift towards the second primary and their period increase

whereas halo orbits around L2 elongate, move towards the second primary and their

periods decrease. Due to increase in the radiation of the more massive primary, halo

orbits around L3 shift towards the more massive primary P1 and their periods decrease.

The effects of oblateness of the first primary on parameters of halo orbits around L1

and L2 are analyzed. Due to oblateness of the first primary, orbits around L1 and

L2 both elongate, shift towards the second primary and their periods decrease. This

model is applied to the Earth-Moon system. Observations show that due to oblate-

ness of the Earth, halo orbits around L1 and L2 elongate and go nearer to the Moon.

Further, period of these orbits decrease. Due to oblateness of the second primary, halo

orbits around L3 move towards the first primary and their periods decrease.

It has been observed that as the order of solution increases, the separation between

consecutive orbits decreases, which indicates the convergence to the actual solution.
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Figure 2.23: Effect of oblateness on the period of halo orbits around L1 and
L2

So, it can be concluded that use of fifth order solution as an initial guess in differential

correction method provides more accurate solution than the fourth or third order

solution.
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ẏ
(k
m
/s
)

ż
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