Chapter 2

Fifth order solution of halo orbits in CRTBP for Sun-Earth and Earth -Moon systems

2.1 Introduction

The existence of equilibrium points of CRTBP was established by Euler and Lagrange in the 18th century but its first application was suggested in 1950 by Arthur C. Clarke. He proposed that for relaying radio and TV broadcasts from the Earth to colonists on the far side of the Moon, the Earth-Moon L_2 point would be an ideal place. In 1966, Robert Farquhar identified trajectories around Earth-Moon L_2 in which a communication satellite could be positioned to maintain a constant connection between the Earth and the far side of the Moon (Farquhar (1966)). He called these orbits as halo orbits because from the Earth, these orbits appeared to be a halo around the Moon.

Halo family is a family of three dimensional periodic orbits around collinear Lagrangian points which arise as a bifurcation from the planar Lyapunov orbits. A satellite placed in a halo orbit can serve many scientific purposes. In any Sun-Planet system, the Lagrangian point L_1 lies between the Sun and the planet. A satellite placed in a halo orbit around L_1 remains in direct contact with the Sun without any occultation or eclipse. The space weather is constantly influenced by the radiation, solar wind and magnetic fields of the Sun. The solar wind along with other explosive events like Coronal Mass Ejection (CME) affects the space weather and the nature of magnetic field and it also changes charge particle environment near the planet. Since the atmosphere and magnetic field of a planet like Earth acts as a protective shield, many particles and fields do not reach the surface of the planet. So, the study of such particles, magnetic field and space weather near a planet can be done from the space. For accomplishing such scientific goals, halo orbits are very useful. International Sun-Earth Explorer-3 (ISEE-3) was the first halo orbit mission. It was placed in a halo orbit around the Sun-Earth L_1 for collecting data on solar wind conditions upstream from Earth. Solar and Heliospheric Observatory (SOHO) is another famous halo orbit mission around the Sun-Earth L_1 . The aim of this mission was to study the internal structure, outer atmosphere as well as the solar wind blown by the Sun.

Indian Space Research Organisation (ISRO) has planned Aditya L_1 mission to study the Sun. It is the first space based observatory class Indian solar mission to study the Sun. It will be placed in a halo orbit around the Sun-Earth L_1 . The major objectives of this mission are (https://www.isro.gov.in/Aditya_L1.html):

- To understand the coronal heating and solar wind acceleration.
- To understand initiation of Coronal Mass Ejection (CME), flares and near Earth space weather.
- To understand the coupling and dynamics of the solar atmosphere.
- To understand the solar wind distribution and temperature anisotropy.

Aditya L_1 mission carries seven scientific payloads which are all indigenous.

A satellite placed in a halo orbit around Sun-Earth L_2 can be used for space based observations. James Webb Space Telescope (JWST) is the most recent Sun-Earth L_2 halo orbit mission (https://www.esa.int/ESA_Multimedia/Images/2022/03/The_ orbits_of_Gaia_and_Webb). The major objectives of this mission are (https:// nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2021-130A):

- To study the earliest phases of the universe.
- To study how galaxies were formed.
- To study how stars and protoplanetary systems develop.
- To observe planets in our own as well as other solar systems.

JWST was launched on December 25, 2021 and it is planned to operate for 10 years. It carries four science instruments: a Near-IR Camera (NIRCam), a Near-IR Spectrograph (NIRSpec), a Near-IR Tunable Filter Imager (TFI) and a Mid-IR Instrument (MIRI). The near IR instruments operate in the wavelength from 0.6 to 5.0 microns and the mid-IR instruments operate in the wavelength from 5.0 to 29.0 microns.

As indicated by Farquhar, the Earth-Moon L_2 halo orbit can be used for placing a communication satellite for establishing connection with the far side of the Moon.

In 2018, China National Space Administration (CNSA) launched Queqiao, a communication relay satellite for its Chang's-4 lunar far side mission. Queqiao entered in a halo orbit around the Earth-Moon L_2 on June 14, 2018 and established communications between Chang'e-4 lander on the far side of the Moon and the Earth (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=QUEQIAO).

In 1980, Richardson (1980) gave an approximate third order analytical solution using Lindstedt-Poincaré method for finding halo orbits in the classical CRTBP. Recently, Tiwary and Kushvah (2015) derived an analytical guess for halo orbits around L_1 and L_2 in the photogravitational Sun-Earth system with oblateness by considering the fourth order approximate solution using Lindstedt-Poincaré technique. In this chapter, fifth order approximation using Lindstedt-Poincaré method is computed and it is used for obtaining a first guess for halo orbits around L_1, L_2 and L_3 by considering both the primaries as source of radiation as well as oblate spheroids. This analytical solution is revised using the numerical method of differential correction for getting more precise initial state vector for halo orbits. Also, the effects of perturbations due to radiation pressure and oblateness of the primaries on parameters of halo orbits are studied.

2.2 Computation of halo orbits

For finding halo orbits, the origin of the coordinate system is shifted to the corresponding Lagrangian point from the barycentre of the primaries and the equations of motion in the vicinity of the Lagrangian point are obtained. Also, in the translated system, new coordinates are normalized by dividing them with the quantity γ , the distance between L_i (i = 1, 2, 3) and the nearest primary. For L_1 and L_2 , γ is the distance between L_i (i = 1, 2) and P_2 and for L_3 , γ is the distance between L_3 and P_1 . Then the new coordinates ($\tilde{x}, \tilde{y}, \tilde{z}$) are (Koon et al. (2011))

$$\tilde{x} = \begin{cases} \frac{1}{\gamma} (x + \mu - 1 \pm \gamma), & \text{for } L_1 \text{ and } L_2 \\ \frac{1}{\gamma} (x + \mu + \gamma), & \text{for } L_3 \end{cases}$$

$$\tilde{y} = \frac{1}{\gamma} y,$$

$$\tilde{z} = \frac{1}{\gamma} z.$$
(2.1)

In the first equation, the upper sign corresponds to L_1 and the lower sign corresponds to L_2 . Since the variables are normalized in the new coordinate system, the distance between the Lagrangian point and the nearest primary is unity.

Using transformation (2.1) into system (1.6), the equations of motion get transformed to

$$\begin{split} \ddot{\tilde{x}} - 2n\dot{\tilde{y}} &= \frac{1}{\gamma^2}\Omega_{\tilde{x}},\\ \ddot{\tilde{y}} + 2n\dot{\tilde{x}} &= \frac{1}{\gamma^2}\Omega_{\tilde{y}},\\ \ddot{\tilde{z}} &= \frac{1}{\gamma^2}\Omega_{\tilde{z}}, \end{split}$$
(2.2)

where

$$\Omega = \frac{n^2}{2} \left[(\gamma \widetilde{x} + 1 - \mu \mp \gamma)^2 + (\gamma \widetilde{y})^2 \right] + \frac{(1 - \mu)q_1}{R_1} + \frac{(1 - \mu)q_1A_1}{2R_1^3} + \frac{\mu q_2}{R_2} + \frac{\mu q_2A_2}{2R_2^3}$$
(2.3)

and

$$R_1 = \sqrt{(\gamma \widetilde{x} + 1 \mp \gamma)^2 + (\gamma \widetilde{y})^2 + (\gamma \widetilde{z})^2}, \qquad (2.4)$$

$$R_2 = \sqrt{(\gamma \widetilde{x} \mp \gamma)^2 + (\gamma \widetilde{y})^2 + (\gamma \widetilde{z})^2}, \qquad (2.5)$$

for L_1 and L_2 . For L_3 ,

$$\Omega = \frac{n^2}{2} \left[(\gamma \widetilde{x} - \mu - \gamma)^2 + (\gamma \widetilde{y})^2 \right] + \frac{(1 - \mu)q_1}{R_1} + \frac{(1 - \mu)q_1A_1}{2R_1^3} + \frac{\mu q_2}{R_2} + \frac{\mu q_2A_2}{2R_2^3}, \quad (2.6)$$

$$R_1 = \sqrt{(\gamma \tilde{x} - \gamma)^2 + (\gamma \tilde{y})^2 + (\gamma \tilde{z})^2}, \qquad (2.7)$$

$$R_2 = \sqrt{(\gamma \widetilde{x} - \gamma - 1)^2 + (\gamma \widetilde{y})^2 + (\gamma \widetilde{z})^2}.$$
(2.8)

Suppose d denotes the distance between the two points $(\tilde{x}, \tilde{y}, \tilde{z})$ and (A, B, C) in Euclidean space. Then

$$d = \sqrt{(\tilde{x} - A)^2 + (\tilde{y} - B)^2 + (\tilde{z} - C)^2}$$
(2.9)

which gives

$$\frac{1}{d} = \frac{1}{\sqrt{(\tilde{x} - A)^2 + (\tilde{y} - B)^2 + (\tilde{z} - C)^2}},$$

$$= \frac{1}{\sqrt{(A^2 + B^2 + C^2) + (\tilde{x}^2 + \tilde{y}^2 + \tilde{z}^2) - 2(A\tilde{x} + B\tilde{y} + C\tilde{z})}},$$

$$= \frac{1}{\sqrt{A^2 + B^2 + C^2}} \sqrt{1 - 2\left(\frac{A\tilde{x} + B\tilde{y} + C\tilde{z}}{A^2 + B^2 + C^2}\right) + \left(\frac{\tilde{x}^2 + \tilde{y}^2 + \tilde{z}^2}{A^2 + B^2 + C^2}\right)}.$$
(2.10)

The generating function for the classical Legendre polynomials is (Rainville (1961, p.130)):

$$(1 - 2xt + t^2)^{-1/2} = \sum_{m=0}^{\infty} P_m(x)t^m,$$
(2.11)

where |t| < 1 and $x \in \mathbb{R}$.

The multiple of $(A^2 + B^2 + C^2)^{-1/2}$ in (2.10) may be compared with $(1 - 2xt + t^2)^{-1/2}$, where

$$x = \frac{A\tilde{x} + B\tilde{y} + C\tilde{z}}{\sqrt{\tilde{x}^2 + \tilde{y}^2 + \tilde{z}^2}\sqrt{A^2 + B^2 + C^2}}, \qquad t = \sqrt{\frac{\tilde{x}^2 + \tilde{y}^2 + \tilde{z}^2}{A^2 + B^2 + C^2}},$$

With these choices, it turns out to be the generating function of the Legendre polynomials $P_m(x)$. Thus,

$$\frac{1}{d} = \frac{1}{\sqrt{A^2 + B^2 + C^2}} \sum_{m=0}^{\infty} P_m \left(\frac{A\tilde{x} + B\tilde{y} + C\tilde{z}}{\sqrt{\tilde{x}^2 + \tilde{y}^2 + \tilde{z}^2}\sqrt{A^2 + B^2 + C^2}} \right) \left(\frac{\tilde{x}^2 + \tilde{y}^2 + \tilde{z}^2}{A^2 + B^2 + C^2} \right)^{m/2}.$$

Using the notations $\rho^2 = \tilde{x}^2 + \tilde{y}^2 + \tilde{z}^2$ and $D^2 = A^2 + B^2 + C^2$, above expression takes the elegant form (Koon et al. (2011, p.146)):

$$\frac{1}{d} = \frac{1}{D} \sum_{m=0}^{\infty} \left(\frac{\rho}{D}\right)^m P_m \left(\frac{A\tilde{x} + B\tilde{y} + C\tilde{z}}{\rho D}\right).$$
(2.12)

The terms $1/R_1$, $1/R_2$, $1/R_1^3$ and $1/R_2^3$ in (2.3) and (2.6) are expanded using Legendre polynomials. For series expansion of $1/R_1^3$ and $1/R_2^3$, the Cauchy product of series is used and in each expansion, the terms containing the product of Legendre polynomials are neglected. For R_1 in (2.4), a comparison between (2.4) and (2.9) gives $A = -\frac{1}{\gamma} \pm 1$, B = 0, C = 0, hence $D = \frac{1}{\gamma} \mp 1$. From (2.12),

$$\frac{1}{R_1} = \frac{1}{\gamma\left(\frac{1}{\gamma} \mp 1\right)} \sum_{m=0}^{\infty} \left(\frac{\rho}{\left(\frac{1 \mp \gamma}{\gamma}\right)}\right)^m P_m\left(\frac{\left(-\frac{1}{\gamma} \pm 1\right)\widetilde{x}}{\rho\left(\frac{1}{\gamma} \mp 1\right)}\right)$$
$$= \frac{1}{\gamma} \sum_{m=0}^{\infty} \left(\frac{\gamma}{1 \mp \gamma}\right)^{m+1} (-1)^m P_m\left(\frac{\widetilde{x}}{\rho}\right) \rho^m.$$

Chapter 2. Fifth order solution of halo orbits in CRTBP for Sun-Earth and Earth -Moon systems

It can be observed that $\rho/D < 1$ as $\gamma < 1/2$ implying $\left(\frac{1}{\gamma} \mp 1\right)^{-1} > 1$ which justifies |t| < 1. In a similar manner,

$$\frac{1}{R_2} = \frac{1}{\gamma} \sum_{m=0}^{\infty} (\pm 1)^m P_m\left(\frac{\widetilde{x}}{\rho}\right) \rho^m,$$

$$\frac{1}{R_1^3} = \frac{1}{(1\mp\gamma)^3} + \frac{1}{\gamma^3} \sum_{m=1}^{\infty} 3\left(\frac{\gamma}{1\mp\gamma}\right)^{m+3} (-1)^m P_m\left(\frac{\widetilde{x}}{\rho}\right) \rho^m,$$

$$\frac{1}{R_2^3} = \frac{1}{\gamma^3} + \sum_{m=1}^{\infty} \frac{3(\pm 1)^m}{\gamma^3} P_m\left(\frac{\widetilde{x}}{\rho}\right) \rho^m,$$

for L_1 and L_2 . For L_3 ,

$$\begin{aligned} \frac{1}{R_1} &= \frac{1}{\gamma} \sum_{m=0}^{\infty} P_m \left(\frac{\widetilde{x}}{\rho}\right) \rho^m, \\ \frac{1}{R_2} &= \sum_{m=0}^{\infty} \frac{\gamma^m}{(1+\gamma)^{m+1}} P_m \left(\frac{\widetilde{x}}{\rho}\right) \rho^m, \\ \frac{1}{R_1^3} &= \frac{1}{\gamma} \left[1 + 3 \sum_{m=1}^{\infty} P_m \left(\frac{\widetilde{x}}{\rho}\right) \rho^m \right], \\ \frac{1}{R_2^3} &= \frac{1}{(1+\gamma)^3} + 3 \sum_{m=1}^{\infty} \frac{\gamma^m}{(1+\gamma)^{m+3}} P_m \left(\frac{\widetilde{x}}{\rho}\right) \rho^m. \end{aligned}$$

Substituting the expansions for $1/R_i$ and $1/R_i^3$, i = 1, 2, in equations of motion and collecting all linear terms on left and non-linear terms on right, we get,

$$\ddot{\tilde{x}} - 2n\dot{\tilde{y}} - (n^2 + 2C_2)\tilde{x} = \frac{\partial}{\partial \tilde{x}} \sum_{m \ge 3} C_m \rho^m P_m\left(\frac{\tilde{x}}{\rho}\right),$$
$$\ddot{\tilde{y}} + 2n\dot{\tilde{x}} + (C_2 - n^2)\tilde{y} = \frac{\partial}{\partial \tilde{y}} \sum_{m \ge 3} C_m \rho^m P_m\left(\frac{\tilde{x}}{\rho}\right),$$
$$\ddot{\tilde{z}} + C_2\tilde{z} = \frac{\partial}{\partial \tilde{z}} \sum_{m \ge 3} C_m \rho^m P_m\left(\frac{\tilde{x}}{\rho}\right),$$
(2.13)

where

$$C_m = \frac{1}{\gamma^3} \left[(-1)^m q_1 (1-\mu) \left(\frac{\gamma}{1\mp\gamma} \right)^{m+1} \left(1 + \frac{3A_1}{2(1\mp\gamma)^2} \right) + (\pm 1)^m \mu q_2 \left(1 + \frac{3A_2}{2\gamma^2} \right) \right],$$
(2.14)

with $m \ge 1$, for L_1 and L_2 . For L_3 ,

$$C_m = \frac{1}{\gamma^3} \left[(1-\mu)q_1 \left(1 + \frac{3A_1}{2\gamma^2} \right) + \frac{\mu q_2 \gamma^{m+1}}{(1+\gamma)^{m+1}} \left(1 + \frac{3A_2}{2(1+\gamma)^2} \right) \right], \ m \ge 1.$$
 (2.15)

The solution of the linearized system corresponding to system (2.13), obtained by neglecting all non-linear terms appearing on the right side of the system (2.13), is (Koon et al. (2011) and Tiwary and Kushvah (2015))

$$\widetilde{x}(t) = a_1 e^{\alpha t} + a_2 e^{-\alpha t} + a_3 \cos \lambda t + a_4 \sin \lambda t,$$

$$\widetilde{y}(t) = -k_1 a_1 e^{\alpha t} + k_1 a_2 e^{-\alpha t} - k_2 a_3 \sin \lambda t + k_2 a_4 \cos \lambda t,$$

$$\widetilde{z}(t) = a_5 \cos \sqrt{C_2} t + a_6 \sin \sqrt{C_2} t,$$

where $a_i, i = 1$ to 6, are arbitrary constants and the parameters α , λ , k_1 and k_2 are given by

$$\alpha = \sqrt{\frac{-(2n^2 - C_2) + \sqrt{9C_2^2 - 8n^2C_2}}{2}},$$

$$\lambda = \sqrt{\frac{2n^2 - C_2 + \sqrt{9C_2^2 - 8n^2C_2}}{2}},$$

$$\kappa_1 = \frac{(2C_2 + n^2) - \alpha^2}{2n\alpha},$$

$$\kappa_2 = \frac{(2C_2 + n^2) + \lambda^2}{2n\lambda}.$$

The solution of the linearized system is unbounded because the solution of characteristic equation has two real roots which are equal in magnitude and opposite in sign. By taking $a_1 = a_2 = 0$, $a_3 = -A_{\tilde{x}} \cos \phi$, $a_4 = A_{\tilde{x}} \sin \phi$, $a_5 = A_{\tilde{z}} \sin \psi$, $a_6 = A_{\tilde{z}} \cos \psi$ as an initial condition, a bounded solution can be obtained in the form (Koon et al. (2011) and Tiwary and Kushvah (2015)):

$$\widetilde{x}(t) = -A_{\widetilde{x}}\cos(\lambda t + \phi),$$

$$\widetilde{y}(t) = \kappa A_{\widetilde{x}}\sin(\lambda t + \phi),$$

$$\widetilde{z}(t) = A_{\widetilde{z}}\sin(\sqrt{C_2}t + \psi),$$

where $A_{\tilde{x}}$ and $A_{\tilde{z}}$ are amplitudes; λ and $\sqrt{C_2}$ are the frequencies; ϕ and ψ are phases of the in-plane and out-of-plane motions, respectively, and κ_2 is replaced by κ . The in-plane and out-of-plane frequencies of linearized motion are different. If the ratio of these frequencies is irrational, then quasi-periodic orbits are obtained. For computing periodic orbits, the last equation of (2.13) is expressed as

$$\ddot{\widetilde{z}} + \lambda^2 \widetilde{z} = \frac{\partial}{\partial \widetilde{z}} \sum_{m \ge 3} C_m \rho^m P_m\left(\frac{\widetilde{x}}{\rho}\right) + \Delta \widetilde{z}, \qquad (2.16)$$

where $\Delta = \lambda^2 - C_2$ is called frequency correction term and $\Delta = \mathcal{O}(\epsilon^2)$. Expanding the series on the right hand side of the system (2.13) and equation (2.16) up to m = 6 for acquiring the fifth order approximate solution, we get

$$\begin{split} \ddot{\tilde{x}} - 2n\dot{\tilde{y}} - (n^2 + 2C_2)\tilde{x} &= \frac{3}{2}C_3(2\tilde{x}^2 - \tilde{y}^2 - \tilde{z}^2) + 2C_4\tilde{x}(2\tilde{x}^2 - 3\tilde{y}^2 - 3\tilde{z}^2) \\ &+ \frac{5}{8}C_5[8\tilde{x}^2\{\tilde{x}^2 - 3(\tilde{y}^2 + \tilde{z}^2)\} + 3(\tilde{y}^2 + \tilde{z}^2)^2] \\ &+ 3C_6\left[2\tilde{x}^3\{\tilde{x}^2 - 5(\tilde{y}^2 + \tilde{z}^2)\} + \frac{15}{4}\tilde{x}(\tilde{y}^2 + \tilde{z}^2)^2\right], \\ \ddot{\tilde{y}} + 2n\dot{\tilde{x}} + (C_2 - n^2)\tilde{y} &= -3C_3\tilde{x}\tilde{y} - \frac{3}{2}C_4\tilde{y}(4\tilde{x}^2 - \tilde{y}^2 - \tilde{z}^2) \\ &- \frac{5}{2}C_5\tilde{x}\tilde{y}(4\tilde{x}^2 - 3\tilde{y}^2 - 3\tilde{z}^2) \\ &+ \frac{15}{2}C_6\left[\tilde{x}^2\tilde{y}\{-2\tilde{x}^2 + 3(\tilde{y}^2 + \tilde{z}^2)\} - \frac{1}{4}\tilde{y}(\tilde{y}^2 + \tilde{z}^2)^2\right], \end{split}$$
(2.17)
$$&\quad \ddot{\tilde{z}} + \lambda^2\tilde{z} = \Delta\tilde{z} - 3C_3\tilde{x}\tilde{z} - \frac{3}{2}C_4\tilde{z}(4\tilde{x}^2 - \tilde{y}^2 - \tilde{z}^2) \\ &- \frac{5}{2}C_5\tilde{x}\tilde{z}(4\tilde{x}^2 - 3\tilde{y}^2 - 3\tilde{z}^2) \\ &+ \frac{15}{2}C_6\left[\tilde{x}^2\tilde{z}\{-2\tilde{x}^2 + 3(\tilde{y}^2 + \tilde{z}^2)\} - \frac{1}{4}\tilde{z}(\tilde{y}^2 + \tilde{z}^2)^2\right] \end{split}$$

Lindstedt-Poincaré method is applied to system (2.17) for getting analytic solution.

2.2.1 Analytic solutions of halo orbits around L_1, L_2 and L_3

In successive approximations, the non-linear factors in system (2.17) generate secular terms. To alter the frequency of the solution of the non-linear system, a new independent variable $\tau = \omega t$ is introduced. Then

$$\frac{d(\cdot)}{dt} = \omega \frac{d(\cdot)}{d\tau}, \qquad \frac{d^2(\cdot)}{dt^2} = \omega^2 \frac{d^2(\cdot)}{d\tau^2}.$$

Expressing system (2.17) in terms of new variable τ ,

$$\begin{split} \omega^{2} \widetilde{x}'' - 2n\omega \widetilde{y}' - (n^{2} + 2C_{2}) \widetilde{x} &= \frac{3}{2} C_{3} (2\widetilde{x}^{2} - \widetilde{y}^{2} - \widetilde{z}^{2}) \\ &+ 2C_{4} \widetilde{x} (2\widetilde{x}^{2} - 3\widetilde{y}^{2} - 3\widetilde{z}^{2}) \\ &+ \frac{5}{8} C_{5} [8\widetilde{x}^{2} \{\widetilde{x}^{2} - 3(\widetilde{y}^{2} + \widetilde{z}^{2})\} + 3(\widetilde{y}^{2} + \widetilde{z}^{2})^{2}] \\ &+ 3C_{6} \left[2\widetilde{x}^{3} \{\widetilde{x}^{2} - 5(\widetilde{y}^{2} + \widetilde{z}^{2})\} \\ &+ \frac{15}{4} \widetilde{x} (\widetilde{y}^{2} + \widetilde{z}^{2})^{2} \right], \\ \omega^{2} \widetilde{y}'' + 2n\omega \widetilde{x}' + (C_{2} - n^{2}) \widetilde{y} &= -3C_{3} \widetilde{x} \widetilde{y} - \frac{3}{2} C_{4} \widetilde{y} (4\widetilde{x}^{2} - \widetilde{y}^{2} - \widetilde{z}^{2}) \\ &- \frac{5}{2} C_{5} \widetilde{x} \widetilde{y} (4\widetilde{x}^{2} - 3\widetilde{y}^{2} - 3\widetilde{z}^{2}) \\ &+ \frac{15}{2} C_{6} \left[\widetilde{x}^{2} \widetilde{y} \{ -2\widetilde{x}^{2} + 3(\widetilde{y}^{2} + \widetilde{z}^{2}) \} \\ &- \frac{1}{4} \widetilde{y} (\widetilde{y}^{2} + \widetilde{z}^{2})^{2} \right], \end{split}$$
(2.18)
$$&+ \frac{15}{2} C_{5} \widetilde{x} \widetilde{z} (4\widetilde{x}^{2} - 3\widetilde{y}^{2} - 3\widetilde{z}^{2}) \\ &- \frac{5}{2} C_{5} \widetilde{x} \widetilde{z} (4\widetilde{x}^{2} - 3\widetilde{y}^{2} - 3\widetilde{z}^{2}) \\ &+ \frac{15}{2} C_{6} \left[\widetilde{x}^{2} \widetilde{z} \{ -2\widetilde{x}^{2} + 3(\widetilde{y}^{2} + \widetilde{z}^{2}) \} \\ &- \frac{1}{4} \widetilde{z} (\widetilde{y}^{2} + \widetilde{z}^{2})^{2} \right] + \Delta \widetilde{z}, \end{split}$$

where ' denotes derivative with respect to τ . Considering the solution of the system (2.18) in the perturbation form as given in equations (1.41)-(1.44) and truncating series in these expressions after first five terms for fifth order solution, the final solution will be of the form:

$$\widetilde{x}(\tau) = \epsilon \widetilde{x}_1(\tau) + \epsilon^2 \widetilde{x}_2(\tau) + \epsilon^3 \widetilde{x}_3(\tau) + \epsilon^4 \widetilde{x}_4(\tau) + \epsilon^5 \widetilde{x}_5(\tau),$$

$$\widetilde{y}(\tau) = \epsilon \widetilde{y}_1(\tau) + \epsilon^2 \widetilde{y}_2(\tau) + \epsilon^3 \widetilde{y}_3(\tau) + \epsilon^4 \widetilde{y}_4(\tau) + \epsilon^5 \widetilde{y}_5(\tau),$$

$$\widetilde{z}(\tau) = \epsilon \widetilde{z}_1(\tau) + \epsilon^2 \widetilde{z}_2(\tau) + \epsilon^3 \widetilde{z}_3(\tau) + \epsilon^4 \widetilde{z}_4(\tau) + \epsilon^5 \widetilde{z}_5(\tau),$$

(2.19)

with

$$\omega = 1 + \epsilon \omega_1 + \epsilon^2 \omega_2 + \epsilon^3 \omega_3 + \epsilon^4 \omega_4.$$
(2.20)

Substituting the expressions (2.19) with (2.20) into system (2.18) and equating coefficients of ϵ^5 by incorporating all the solutions and constraints used upto the fourth

order solution, the fifth order equations are obtained as:

$$\widetilde{x}_{5}'' - 2n\widetilde{y}_{5}' - (n^{2} + 2C_{2})\widetilde{x}_{5} = \gamma_{51},$$

$$\widetilde{y}_{5}'' + 2n\widetilde{x}_{5}' + (C_{2} - n^{2})\widetilde{y}_{5} = \gamma_{52},$$

$$\widetilde{z}_{5}'' + \lambda^{2}\widetilde{z}_{5} = f_{3}, \quad p = 1, 3,$$
(2.21)

where

$$\begin{split} \gamma_{51} &= [v_4 + 2\lambda A_{\tilde{x}}\omega_4(nk - \lambda)]\cos\tau_1 + \gamma_8\cos3\tau_1 + \gamma_9\cos5\tau_1, \\ \gamma_{52} &= [v_5 + 2\lambda A_{\tilde{x}}\omega_4(\lambda k - n)]\sin\tau_1 + \beta_9\sin3\tau_1 + \beta_{10}\sin5\tau_1, \\ f_3 &= [v_6 \pm 2\omega_4\lambda^2 A_{\tilde{z}}]\cos\tau_1 + \delta_8\cos3\tau_1 + \delta_9\cos5\tau_1 \end{split}$$

and remaining coefficients are given in Appendix A. In f_3 , the upper sign corresponds to p = 1 and the lower sign corresponds to p = 3. For p = 1, $A_{\tilde{z}} > 0$ which gives northern halo and for p = 3, $A_{\tilde{z}} < 0$ which gives southern halo. This bifurcation of halo orbits gets manifested in the third order solution through the phase-angle relation

$$\psi = \phi + \frac{p\pi}{2}, \quad p = 1, 3$$

for values of $A_{\tilde{x}}$ greater than a certain minimum value (Koon et al. (2011)).

For abolishing the secular term from the solution of last equation of system (2.21), we must have

$$v_6 \pm 2\omega_4 \lambda^2 A_{\tilde{z}} = 0, \qquad (2.22)$$

in which the upper sign corresponds to p = 1 and the lower sign corresponds to p = 3.

Since the first two equations of the system (2.21) are coupled equations, for abolishing secular terms from their solution,

$$[v_4 + 2\lambda A_{\tilde{x}}\omega_4(nk - \lambda)] - k[v_5 + 2\lambda A_{\tilde{x}}\omega_4(\lambda k - n)] = 0$$

from which the value of ω_4 can be obtained as

$$\omega_4 = \frac{v_4 - kv_5}{2\lambda A_{\tilde{x}}[\lambda(k^2 + 1) - 2nk]}.$$
(2.23)

Applying the constraints (2.22) and (2.23) to system (2.21), the fifth order equations get converted to

$$\widetilde{x}_{5}'' - 2n\widetilde{y}_{5}' - (n^{2} + 2C_{2})\widetilde{x}_{5} = k\beta_{11}\cos\tau_{1} + \gamma_{8}\cos3\tau_{1} + \gamma_{9}\cos5\tau_{1},$$

$$\widetilde{y}_{5}'' + 2n\widetilde{x}_{5}' + (C_{2} - n^{2})\widetilde{y}_{5} = \beta_{11}\sin\tau_{1} + \beta_{9}\sin3\tau_{1} + \beta_{10}\sin5\tau_{1},$$

$$\widetilde{z}_{5}'' + \lambda^{2}\widetilde{z}_{5} = \delta_{8}\cos3\tau_{1} + \delta_{9}\cos5\tau_{1}, \quad p = 1, 3,$$
(2.24)

where $\beta_{11} = v_5 + 2\lambda A_{\tilde{x}}\omega_4(\lambda k - n)$. The solution of the system (2.24) can be expressed as

$$\widetilde{x}_{5}(\tau) = \rho_{51} \cos 3\tau_{1} + \rho_{52} \cos 5\tau_{1},$$

$$\widetilde{y}_{5}(\tau) = \sigma_{51} \sin \tau_{1} + \sigma_{52} \sin 3\tau_{1} + \sigma_{53} \sin 5\tau_{1},$$

$$\widetilde{z}_{5}(\tau) = k_{51} \cos 3\tau_{1} + k_{52} \cos 5\tau_{1}.$$
(2.25)

All coefficients appearing in above solution are given in Appendix A.

For acquiring the final approximation, the fifth order solution along with the first, second, third and fourth order solution is substituted into equations (2.19) and then ϵ is removed from these solutions with the help of transformations $A_{\tilde{x}} \to A_{\tilde{x}}/\epsilon$ and $A_{\tilde{z}} \to A_{\tilde{z}}/\epsilon$. Then system (2.19) gets transformed to

$$\widetilde{x}(\tau) = (\rho_{20} + \rho_{40}) - A_{\widetilde{x}} \cos \tau_1 + (\rho_{21} - \rho_{22} + \rho_{41}) \cos 2\tau_1 + (\rho_{31} + \rho_{51}) \cos 3\tau_1 + \rho_{42} \cos 4\tau_1 + \rho_{52} \cos 5\tau_1, \widetilde{y}(\tau) = (kA_{\widetilde{x}} + \sigma_{32} + \sigma_{51}) \sin \tau_1 + (\sigma_{21} + \sigma_{41} - \sigma_{22}) \sin 2\tau_1 + (\sigma_{31} + \sigma_{52}) \sin 3\tau_1 + \sigma_{42} \sin 4\tau_1 + \sigma_{53} \sin 5\tau_1, \widetilde{z}(\tau) = (-1)^{\frac{p-1}{2}} (A_{\widetilde{z}} \cos \tau_1 + k_{21} \cos 2\tau_1 + k_{22} + k_{32} \cos 3\tau_1) + k_{40} + k_{41} \cos 2\tau_1 + k_{42} \cos 4\tau_1 + k_{51} \cos 3\tau_1 + k_{52} \cos 5\tau_1, p = 1, 3.$$

$$(2.26)$$

Solutions (2.26) are used for generating the first guess of halo orbits. For this purpose, the Sun-Earth system with perturbations due to solar radiation pressure and oblateness of the Earth is considered. The state vectors of halo orbits around L_1 calculated using the third, fourth and fifth order analytic solutions are given in Tables 2.1, 2.2 and 2.3, respectively, for different values of q_1 and A_2 . For getting this initial guess, $A_{\tilde{z}} = 1.25 \times 10^5$ km is considered. The corresponding value of $A_{\tilde{x}}$ can be obtained from the amplitude constraint relation (Richardson (1980)). In Tables 2.1-2.3, $A_2 = 0$ shows oblateness of the Earth is not considered, $A_2 = 2.42405 \times 10^{-12}$ is the actual oblateness of the Earth and $q_1 = 1$ denotes that perturbation due to solar radiation pressure is not considered. In Fig. 2.1, halo orbits around L_1 obtained using the third, fourth and fifth order Lindstedt-Poincaré method are plotted in blue, green and red colour, respectively. The xy, xz and yz projections of these orbits are given in Figs. 2.2, 2.3 and 2.4, respectively. The separation between the third and fourth order analytic solution is 4784.44 km and the separation between the fourth and fifth order analytic solution is 1951.61 km which indicates that the separation between the successive solutions decreases as the order of solution increases. This can be observed from Figs. 2.1-2.4 as well.

q_1	A_2			Initial guess			
		$x(\times 10^8)$ (km)	y	$z(\times 10^5)$ (km)	<i>x</i>	$\dot{y}~({\rm km/s})$	ż
0.99	0	1.482238677364	0	-1.133909207584	0	-0.9199293912363	0
0.979	2.42405×10^{-12}	1.480573596221	0	-1.136492217736	0	-0.8539269651719	0
1	2.42405×10^{-12}	1.483432365376	0	-1.139593655307	0	-0.9691542403827	0
1	0	1.483432365530	0	-1.139593655225	0	-0.9691542409496	0

TABLE 2.1: Initial guess from the third order analytical solution around L_1 in the Sun-Earth system

TABLE 2.2: Initial guess from the fourth order analytical solution around L_1 in the Sun-Earth system

q_1	A_2			Initial guess			
		$x(\times 10^8)$ (km)	y	$z(\times 10^5)$ (km)	<i>x</i>	$\dot{y}~({\rm km/s})$	ż
0.99	0	1.482210682231	0	-1.162260965275	0	-0.9201578350097	0
0.979	2.42405×10^{-12}	1.480532643379	0	-1.168284121572	0	-0.8535828234300	0
1	2.42405×10^{-12}	1.483416559976	0	-1.162808064038	0	-0.9697930252479	0
1	0	1.483416560131	0	-1.162808063984	0	-0.9697930258232	0

Using the same value of $A_{\tilde{z}}$, initial guess for halo orbits around L_2 is also computed using the third, fourth and fifth order analytic solutions. The initial state vectors of these halo orbits corresponding to various values of q_1 and A_2 are given in Tables 2.4-2.6.

q_1	A_2			Initial guess			
		$x(\times 10^8)$ (km)	y	$z(\times 10^5)$ (km)	\dot{x}	$\dot{y}~({ m km/s})$	ż
0.99	0	1.482214355512	0	-1.163220390129	0	-0.9282323898148	0
0.979	2.42405×10^{-12}	1.480538040599	0	-1.168636401854	0	-0.8662066148866	0
1	2.42405×10^{-12}	1.483418634032	0	-1.169496960363	0	-0.8597224569674	0
1	0	1.483418634187	0	-1.163537425035	0	-0.9794676169398	0

TABLE 2.3: Initial guess from the fifth order analytical solution around L_1 in the Sun-Earth system

FIGURE 2.1: The third, fourth and fifth order Analytic solutions around L_1 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$

Halo orbits around L_2 for $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$ obtained using the state vectors given in Tables 2.4-2.6 are plotted in Fig. 2.5. The xy, xzand yz projections of these orbits are given in Figs. 2.6, 2.7 and 2.8, respectively. In Figs. 2.5-2.8, orbits in blue, red and green corresponds to the third, fourth and fifth order solution, respectively. In this case also, the separation between the fifth order and fourth order solution is less than the separation between the fourth order and the third order solution.

Chapter 2. Fifth order solution of halo orbits in CRTBP for Sun-Earth and Earth -Moon systems

FIGURE 2.2: xy projections of the third, fourth and fifth order analytic solutions around L_1 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$

FIGURE 2.3: xz projections of the third, fourth and fifth order analytic solutions around L_1 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$

Chapter 2. Fifth order solution of halo orbits in CRTBP for Sun-Earth and Earth -Moon systems

FIGURE 2.4: yz projections of the third, fourth and fifth order analytic solutions around L_1 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$

2.2.2 Numerical solution of halo orbits around L_1 and L_2

Analytic solutions computed using Lindstedt-Poincaré method are revised by applying Differential Correction (DC) method. The third, fourth and fifth order analytic solutions are inserted as initial guess of the solution in DC method. State vectors of halo orbits around L_1 computed using DC method are given in Tables 2.7-2.9. Halo orbits obtained using these solutions are plotted in Fig. 2.9 and their xy, xz and yzprojections are given in Figs. 2.10, 2.11 and 2.12, respectively. Orbits in cyan, magenta and black colours correspond to the third, fourth and fifth order solution, respectively. From Figs. 2.9-2.12, it can be observed that the separation between the solution decreases as the order of solution increases. The separation between the fifth and the fourth order solution is 122.33 km and the separation between the fourth and the third order solution is 3205.85 km. In Table 2.13, separation between the third, fourth and fifth order analytic and numerical solutions for different values of q_1 and A_2 are given.

State vectors of halo orbits around L_2 computed using DC method are given in Tables 2.10-2.12. Halo orbits obtained using these solutions are plotted in Fig. 2.13 and their xy, xz and yz projections are given in Figs. 2.14, 2.15 and 2.16, respectively. Orbits in cyan, magenta and black colours correspond to the third, fourth and fifth

q_1	A_2			Initial guess			
		$x(\times 10^8)$ (km)	y	$z(\times 10^5)$ (km)	\dot{x}	$\dot{y}~({ m km/s})$	ż
0.99	0	1.510804811691	0	-1.371615994153	0	-0.9281901534292	0
0.979	2.42405×10^{-12}	1.509115808560	0	-1.355088561477	0	-0.9614392217686	0
1	2.42405×10^{-12}	1.512799359163	0	-1.385564724333	0	-0.8912931779191	0
1	0	1.512799358962	0	-1.385564724361	0	-0.8912931782033	0

TABLE 2.4: Initial guess from the third order analytical solution around L_2 in the Sun-Earth system

TABLE 2.5: Initial guess from the fourth order analytical solution around L_2 in the Sun-Earth system

q_1	A_2			Initial guess			
		$x(\times 10^8)$ (km)	y	$z(\times 10^5)$ (km)	<i>x</i>	$\dot{y}~({ m km/s})$	ż
0.99	0	1.510811465779	0	-1.352312961004	0	-0.9272507788787	0
0.979	2.42405×10^{-12}	1.509115968500	0	-1.340918416255	0	-0.9604076673270	0
1	2.42405×10^{-12}	1.512815720807	0	-1.360667556390	0	-0.8905902892661	0
1	0	1.512815720606	0	-1.360667556405	0	-0.8905902895425	0

TABLE 2.6: Initial guess from the fifth order analytical solution around L_2 in the Sun-Earth system

q_1	A_2			Initial guess			
		$x(\times 10^8)$ (km)	y	$z(\times 10^5)$ (km)	\dot{x}	$\dot{y}~({ m km/s})$	ż
0.99	0	1.510812566524	0	-1.163220390129	0	-0.9387394164807	0
0.979	2.42405×10^{-12}	1.509116373712	0	-1.341334996462	0	-0.9739509441934	0
1	2.42405×10^{-12}	1.512818025419	0	-1.361471747499	0	-0.9005070159124	0
1	0	1.512818025218	0	-1.361471747514	0	-0.9005070163730	0

order solution, respectively. From Figs. 2.13-2.16, it can be observed that the separation between the solution decreases as the order of solution increases. The separation

Chapter 2. Fifth order solution of halo orbits in CRTBP for Sun-Earth and Earth -Moon systems

FIGURE 2.5: The third, fourth and fifth order Analytic solutions around L_2 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$

FIGURE 2.6: xy projections of the third, fourth and fifth order analytic solutions around L_2 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$

Chapter 2. Fifth order solution of halo orbits in CRTBP for Sun-Earth and Earth -Moon systems

FIGURE 2.7: xz projections of the third, fourth and fifth order analytic solutions around L_2 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$

FIGURE 2.8: yz projections of the third, fourth and fifth order analytic solutions around L_2 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$

between the fifth and the fourth order solution is 41.71 km and the separation between the fourth and the third order solution is 1418.93 km. In Table 2.14, separation between the third, fourth and fifth order analytical and numerical solutions for different values of q_1 and A_2 are given.

FIGURE 2.9: The third, fourth and fifth order Numerical solutions around L_1 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$

2.3 Results and Discussion

Circular Restricted Three Body Problem (CRTBP) is considered with both the primaries radiating as well as oblate spheroids. Effects of these perturbations on locations of collinear Lagrangian points and parameters of halo orbits are analyzed. For analyzing deviations in locations and parameters of halo orbits around L_1 and L_2 due to radiation (q_2) of the second primary (P_2) and oblateness (A_1) of the first primary (P_1), mass ratio $\mu = 0.004$ and $A_{\tilde{z}} = 4.881785271574502 \times 10^{-4}/\gamma$ are considered. These values are selected randomly. For studying the effects of perturbing forces on location of L_3 and halo orbits around it, the Sun-Earth system with the Sun as a source of radiation and the Earth as an oblate spheroid is considered. Here, $A_{\tilde{x}} = 0.045$, a random value, is taken for getting parameters of halo orbits.

Chapter 2. Fifth order solution of halo orbits in CRTBP for Sun-Earth and Earth -Moon systems

FIGURE 2.10: xy projections of the third, fourth and fifth order numerical solutions around L_1 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$

FIGURE 2.11: xz projections of the third, fourth and fifth order numerical solutions around L_1 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$

Chapter 2. Fifth order solution of halo orbits in CRTBP for Sun-Earth and Earth -Moon systems

FIGURE 2.12: yz projections of the third, fourth and fifth order numerical solutions around L_1 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$

2.3.1 Effects of radiation pressure

For analyzing the effects q_2 on parameters of halo orbits, different values of q_2 in the interval [0.89, 1] are considered. The change in locations of L_1 and L_2 due to radiation of P_1 is shown in Fig. 2.17. As radiation of P_1 increases, L_1 moves away from P_1 and goes closer to P_2 (Fig. 2.17(A)). Lagrangian point L_2 shifts towards P_2 and hence towards P_1 as well due to increase in radiation of P_1 (Fig. 2.17(B)). Variation in period of halo orbits around L_1 and L_2 are given in Fig, 2.18. As radiation increases, period of orbits around L_1 increases (Fig. 2.18(A)) whereas period of orbits around L_2 due to increase in radiation in size of orbits around L_1 and L_2 due to increase in radiation pressure of P_1 is shown. In Fig. 2.19(A), halo orbits around L_1 for $q_2 = 0.99, 0.75, 0.50$ and 0.25 are plotted in blue, red, green and magenta colours, respectively. The xy and yz projections of these orbits are given in Figs. 2.19(C) and 2.19(E), respectively. In these figures also, blue, red, green and magenta coloured orbits correspond to $q_2 = 0.99, 0.75, 0.50$ and 0.25, 0.50 and 0.25, respectively.

The values of γ , location of Lagrangian points, Δ, τ and coefficients C_i (i = 2, 3, 4, 5, 6)

Chapter 2. Fifth order solution of halo orbits in CRTBP for Sun-Earth and Earth -Moon systems

FIGURE 2.13: The third, fourth and fifth order Numerical solutions around L_2 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$

FIGURE 2.14: xy projections of the third, fourth and fifth order numerical solutions around L_2 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$

for $q_2 = 0.99, 0.75.0.50$ and 0.25 for halo orbits around L_1 and L_2 are given in Tables 2.15 and 2.16, respectively. Here, for all computations and plotting of orbits,

Chapter 2. Fifth order solution of halo orbits in CRTBP for Sun-Earth and Earth -Moon systems

FIGURE 2.15: xz projections of the third, fourth and fifth order numerical solutions around L_2 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$

FIGURE 2.16: yz projections of the third, fourth and fifth order numerical solutions around L_2 with $q_1 = 0.979$ and $A_2 = 2.424052106866 \times 10^{-12}$

Chapter 2. Fifth order solution of halo orbits in CRTBP for Sun-Earth and Earth -Moon systems

(A) Change in position against variation in q_2 (B) Change in position against variation in q_2 around L_1 around L_2

FIGURE 2.17: Effect of radiation pressure on the position of halo orbits around L_1 and L_2

 $A_1 = A_2 = 0.0002$ and $q_1 = 0.99$ are considered.

The Sun-Earth system is considered to study the effects of solar radiation pressure and oblateness of the Earth on parameters of halo orbits around L_3 . Fig. 2.20 shows halo orbits around L_3 for four different values of q_1 . Orbits in blue, red, green and magenta correspond to $q_1 = 1.00, 0.95, 0.90$ and 0.85, respectively. Here, $q_2 = 1$ and $A_1 = A_2 = 0$ are considered for plotting orbits. It can be observed from Fig. 2.20 that as solar radiation pressure increases, halo orbits around L_3 shrink. In Table 2.17, parameters of these orbits for different values of q_1 and A_2 are given. It can be observed that halo orbits around L_3 shift towards the Sun as radiation pressure increases. Also, due to solar radiation, period of orbits decreases whereas the \tilde{z} amplitude, $A_{\tilde{z}}$, increases (Table 2.17).

2.3.2 Effects of oblateness

To analyze changes in locations and parameters of halo orbits around L_1 and L_2 due to oblateness of the first primary (P_1) , different values of A_1 in the range [0.066, 1] are considered. In Fig. 2.21, orbits corresponding to $A_1 = 0.0002, 0.0500, 0.0999$ and 0.1500 around L_1 and L_2 are plotted in blue, red, green and magenta colours, with $A_2 = 0.0002, q_1 = 0.99$ and $q_2 = 0.99$. Locations of Lagrangian points and parameters of these orbits are given Tables 2.18 and 2.19. It can be noticed that as the value of A_1 increases, orbits around L_1 and L_2 both expand. Fig. 2.22(A) shows that as oblateness of the first primary increases, halo orbits around L_1 move towards the second primary and halo orbits around L_2 move towards the first primary (Fig. 2.22(B)). Variation

Chapter 2. Fifth order solution of halo orbits in CRTBP for Sun-Earth and Earth -Moon systems

(A) Change in period against variation in q_2 (B) Change in period against variation in q_2 around L_1 around L_2

FIGURE 2.18: Effect of radiation pressure on the period of halo orbits around L_1 and L_2

in period of these orbits around L_1 and L_2 are shown in Fig. 2.23. As value of A_1 increases, period of orbits around L_1 and L_2 both decrease (Figs. 2.23(A), 2.23(B)).

As an application, this model has been applied to the Earth-Moon system with $A_{\tilde{z}} = 0.338933597544932$ in dimensionless system for observing effects of Earth's oblateness on parameters of halo orbits. Halo orbits around L_1 and L_2 in the Earth-Moon system are shown in Figs. 2.24 and 2.25, respectively. In both the figures, blue orbit shows that oblateness of of the Earth is neglected and red orbit corresponds to $A_1 = 3.6715 \times 10^{-7}$, the actual oblateness of the Earth. In this case, mass factor is $\mu = 0.0122$ and $q_1 = q_2 = 1, A_2 = 0$. The values of masses and radii of the Earth and the Moon are taken from NASA Fact Sheets (https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html, https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html).

From Table 2.17, it can be observed that due to oblateness of the second primary (P_2) , halo orbits around L_3 shift towards the Sun and period as well as \tilde{z} amplitude decreases.

2.4 Conclusions

In this chapter, Circular Restricted Three Body Problem (CRTBP) with both the primaries radiating as well as oblate are considered and fifth order analytical solution for getting an initial guess of halo orbits around L_1 , L_2 and L_3 is obtained using Lindstedt-Poincaré method. Also, variations in locations and parameters of halo orbits around collinear Lagrangian points due to oblateness and radiation of primaries are analyzed.

Chapter 2. Fifth order solution of halo orbits in CRTBP for Sun-Earth and Earth -Moon systems

(A) Change in size against variation in q_2 around (B) Change in size against variation in q_2 around

FIGURE 2.19: Effect of radiation pressure on the size of halo orbits around L_1 and L_2

FIGURE 2.20: Sun-Earth system

It is found that as the radiation pressure of the second primary increases, halo orbits around L_1 contract, shift towards the second primary and their period increase whereas halo orbits around L_2 elongate, move towards the second primary and their periods decrease. Due to increase in the radiation of the more massive primary, halo orbits around L_3 shift towards the more massive primary P_1 and their periods decrease.

The effects of oblateness of the first primary on parameters of halo orbits around L_1 and L_2 are analyzed. Due to oblateness of the first primary, orbits around L_1 and L_2 both elongate, shift towards the second primary and their periods decrease. This model is applied to the Earth-Moon system. Observations show that due to oblateness of the Earth, halo orbits around L_1 and L_2 elongate and go nearer to the Moon. Further, period of these orbits decrease. Due to oblateness of the second primary, halo orbits around L_3 move towards the first primary and their periods decrease.

It has been observed that as the order of solution increases, the separation between consecutive orbits decreases, which indicates the convergence to the actual solution.

Chapter 2. Fifth order solution of halo orbits in CRTBP for Sun-Earth and Earth -Moon systems

(A) Change in the size of orbits against variation (B) Change in the size of orbits against variation in A_1 around L_1 in A_1 around L_2

FIGURE 2.21: Effect of oblateness on the size of halo orbits around L_1 and L_2

Chapter 2. Fifth order solution of halo orbits in CRTBP for Sun-Earth and Earth -Moon systems

(A) Change in the position against variation in A_1 (B) Change in the position against variation in A_1 around L_1 around L_2

FIGURE 2.22: Effect of oblateness on the position of L_1 and L_2

(A) Change in the period against variation in A_1 (B) Change in the period against variation in A_1 around L_1 around L_2

FIGURE 2.23: Effect of oblateness on the period of halo orbits around L_1 and L_2

So, it can be concluded that use of fifth order solution as an initial guess in differential correction method provides more accurate solution than the fourth or third order solution.

FIGURE 2.24: Effect of oblateness on the size of halo orbits around L_1 in the Earth-Moon system

(A) Variation in A_1

FIGURE 2.25: Effect of oblateness on the size of halo orbits around L_2 in the Earth-Moon system

$\dot{z}~({\rm km/s})$	592-0.000000022886843-0.00000000100853020.0000000044081740.000000003993	Jarth system		$\dot{z}~({ m km/s})$	838 -0.00000002311 205 -0.0000000001095 5860 0.000000004039
$\dot{y}~({\rm km/s})$	-0.9379249251 -0.8697623686 -0.97934279615 -0.9834280177	L_1 in the Sun-F		$\dot{y}~({\rm km/s})$	-0.9386852200 -0.8703225978 -0.97943331035
One Period $\dot{x} \; (\rm km/s)$	-0.00000247024 -0.00000012061 0.000000043707 0.000000039550	1 method around	One Period	$\dot{x}~({\rm km/s})$	-0.000000243271 -0.000000012697 0.000000039182
State after $z(\times 10^5)$ (km)	$\begin{array}{r} -1.133909213606\\ -1.136492221090\\ -1.139593646274\\ -1.139593646994\end{array}$	rential Correction	State after	$z(imes 10^5) \; (\mathrm{km})$	-1.162260971330 -1.168284125441 -1.162808055720 1.162808055720
$y~(\mathrm{km})$	0.01537829547804 0.01220841080489 -0.01853705437853 -1.696714398844	solution using Diffe		$y~(\mathrm{km})$	0.01515263720041 0.01283100215901 -0.01680695264058
$x(\times 10^8) \ (\mathrm{km})$	1.482349325923 1.482349325923 1.480739990796 1.483492814339 1.483492814672 1.483492814672	The Fourth order		$x(\times 10^8) \text{ (km)}$	1.482353599667 2 1.480744116421 2 1.483496769854 1 483496770900
A_2	0 2.42405 × 10 ⁻¹ 2.42405 × 10 ⁻¹ 0	TABLE 2.8:	A_2		$\begin{array}{c} 0\\ 2.42405 \times 10^{-1}\\ 2.42405 \times 10^{-1} \end{array}$
q_1	$\begin{array}{c} 0.99 \\ 0.979 \\ 1 \\ 1 \end{array}$		q_1		0.99 0.979 1

$\dot{z}~({ m km/s})$	$\begin{array}{c} -0.00000002350\\ -0.0000000010394\\ 0.0000000004497\\ 0.0000000004495\end{array}$	ı system	$\dot{z}(imes 10^{-10})~({ m km/s})$	9.421767695866 2.946588656184 2.524976983458
$\dot{y}~({\rm km/s})$	-0.9387112761799 -0.8703442767687 -0.97943618389348 -0.9843618974500	L_2 in the Sun-Earth	$\dot{y}~({ m km/s})$	-0.9318919070386 -0.9590569430007 -0.9008459311123
r One Period $\dot{x}~({\rm km/s})$	-0.000000247098 -0.000000012068 0.000000043621 0.000000043607	n method around .	ır One Period $\dot{x}(\times 10^{-8})~(\rm km/s)$	-1.215487480032 -3.251103323859 -3.868512472735
$z(\times 10^5) (\rm km)$) -1.163220396315) -1.169496963821) -1.163537415879) -1.163537415825 	ferential Correctio	State afte $z(\times 10^5)$ (km)	-1.371615991937 -1.355088556281 -1.385564717203
	0.01539790921255 0.01221579325035 -0.01849724911828 -0.0184947852554	solution using Dif	$y(\times 10^{-3}) \; (\mathrm{km})$	1.471665377223 2.304429951549 8.898054096977
$x(\times 10^8) ({\rm km})$	$\begin{array}{c} 1.482353746154\\ 1.480744276087\\ 1.483496895462\\ 1.483496895816\\ 1.483496895816\end{array}.$	The third order	$x(\times 10^8)$ (km)	1.510824449871 1.509116635243 1.512856050413
242	$\begin{array}{c} 0\\ 2.42405 \times 10^{-12}\\ 2.42405 \times 10^{-12}\\ 0\end{array}$	TABLE 2.10:	A_2	$\begin{array}{c} 0 \\ 2.42405 \times 10^{-12} \\ 2.42405 \times 10^{-12} \end{array}$
q_1	$\begin{array}{c} 0.99 \\ 0.979 \\ 1 \\ 1 \end{array}$		q_1	0.99 0.979 1

59

	A_2		State aft	er Une Period		
		$x(\times 10^8)$ (km) $y(\times 10^{-3})$ (km)	$z(\times 10^5) \; (\mathrm{km})$	$\dot{x}(\times 10^{-8})~({\rm km/s})$	$\dot{y}~({\rm km/s})$	$\dot{z}(\times 10^{-10}) \; ({\rm km/s})$
0.99	0	1.510825131979 1.464787233392	-1.352312958817	-1.212369457842	-0.9313535505452	9.229188944808
0.979	2.42405×10^{-12}	1.509117372717 2.248531307499	-1.340918411249	-3.161726609138	-0.9584303866803	2.828363587114
1	2.42405×10^{-12}	1.512856519709 8.908057844904	-1.360667549380	-3.873219746086	-0.9003978997643	2.482772448621
1	0	$1.512856519610 \ \ 9.028147554969$	-1.360667549302	-3.925456731783	-0.9003979477507	2.516698899572
q_1	A_2	$x(\times 10^8)$ (km) $y(\times 10^{-3})$ (km)	State aft $z(\times 10^5)$ (km)	er One Period $\dot{x}(\times 10^{-8})~(\rm km/s)$	$\dot{y}~({ m km/s})$	$\dot{z}(\times 10^{-10}) \ (\rm km/s)$
0.99	0	$1.510825111191 \ 1.501698018895$	-1.352905592899	-1.238289982569	-9.313699738583	9.468039282185
0.979	2.42405×10^{-12}	1.509117351157 2.261429665733	-1.341334991426	-3.179226343005	-0.9584487219016	2.844869315812
1	2.42405×10^{-12}	1.512856504694 8.938490705411	-1.361471740462	-3.885914039301	-9.004122515741	2.492562216162
	0	1 519856504600 8 005799469188	-1.361471740503	-3.872248085660	-0 9004122998670	2 483556700531

Chapter 2. Fifth order solution of halo orbits in CRTBP for Sun-Earth and Earth -Moon systems

TABLE	2.13: Separatic	m between the third,	fourth and fifth order	solution around L_1 in	the Sun-Earth system
q_1	A_2	Separation between 3^{rd} and 4^{th} order analytic solutions (km)	Separation between the 4^{th} and 5^{th} order analytic solutions (km)	Separation between the 3^{rd} and 4^{th} order numerical solutions (km)	Separation between the 4^{th} and 5^{th} order numerical solutions (km)
$\begin{array}{c} 0.99\\ 0.979\\ 1\\ 1\end{array}$	$\begin{array}{c} 0 \\ 2.42405 \times 10^{-12} \\ 2.42405 \times 10^{-12} \\ 0 \end{array}$	$\begin{array}{c} 3693.807761777532\\ 4784.436418469269\\ 2612.223198770815\\ 2612.223184280293 \end{array}$	$\begin{array}{c} 1888.992165744702\\ 1951.606947548718\\ 1748.091370124659\\ 1748.091408386162\\ \end{array}$	$\begin{array}{c} 2867.206061025634\\ 3205.847725943790\\ 2354.898955627799\\ 2354.899231701449\end{array}$	$\begin{array}{c} 97.054352043598371\\ 122.3302982814382\\ 74.009703858646148\\ 74.009686186351615\end{array}$
TABLE	2.14: Separatic	on between the third,	fourth and fifth order	solution around L_2 in	the Sun-Earth system
<i>q</i> ¹	A_2	Separation between 3^{rd} and 4^{th} order analytic solutions (km)	Separation between the 4^{th} and 5^{th} order analytic solutions (km)	Separation between the 3^{rd} and 4^{th} order numerical solutions (km)	Separation between the 4^{th} and 5^{th} order numerical solutions (km)
$\begin{array}{c} 0.99 \\ 0.979 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 2.42405 \times 10^{-12} \\ 2.42405 \times 10^{-12} \end{array}$	1907.718409640883 1341.572192391892 2767.524401687017	$\begin{array}{c} 1712.064715234355\\ 1746.621405210147\\ 1807.106513760034 \end{array}$	$\begin{array}{c} 1931.508113088076\\ 1418.932269738788\\ 2490.159040141219\end{array}$	$\begin{array}{c} 59.299854276846276\\ 41.713771573529193\\ 80.433123101888498 \end{array}$

Chapter 2. Fifth order solution of halo orbits in CRTBP for Sun-Earth and Earth -Moon systems

80.433126727805742

2490.159045140090

1807.106551506953

2767.524385678627

0

τ	$\begin{array}{c} 2.827784 \\ 2.852600 \\ 2.885861 \\ 2.936128 \end{array}$	0.99	τ	 8 3.235270 4 3.212741) 3.182224) 3.135481
⊲	$\begin{array}{c} 0.298069\\ 0.297333\\ 0.296329\\ 0.296329\\ 0.294775\end{array}$	$002, q_1 =$	\bigtriangledown	$\begin{array}{c} 0.284518\\ 0.28535_{2}\\ 0.286476\\ 0.288146\end{array}$
	3.422908 3.395054 3.358521 3.304983	$A_{2} = 0.0$	k	3.023335 3.042556 3.069072 3.110787
	2.221946 2.202616 2.177230 2.139955	hen $A_1 =$	γ	$\begin{array}{c} 1.942089\\ 1.955708\\ 1.974463\\ 2.003897\end{array}$
C_6	3.250764 3.206697 3.147625 3.057312	bund L_2 w	C_6	2.772855 2.804953 2.850362 2.925234
C_5	3.248026 : 3.204727 : 3.146392 : 3.056742 :	orbits arc	C_5	-2.773535 -2.805499 -2.850755 -2.925454
۲ ۱	3.270704 3.222699 3.159317 3.064283	ameters of	C_4	2.780199 2.811327 2.8555514 2.928769
<u>C</u> 3	3.082850 3.058758 3.023835 2.964509	ferent par	C_3	2.845589 2.873621 2.913186 2.978592
C_2	$\begin{array}{r} 4.638976 \\ 4.554185 \\ 4.444002 \\ 4.284634 \end{array}$	f q2 on dif	C_2	3.487192 - 3.539441 - 3.612036 - 3.727466 -
L_1	$\begin{array}{c} 0.888284 \\ 0.897202 \\ 0.908909 \\ 0.925731 \end{array}$	3: Effect o	L_2	1.109481 . 1.099217 : 1.085946 : 1.067272 :
7	0.107715 0.098797 0.087090 0.087090	ABLE 2.16	¢	$\begin{array}{c} 0.113481 \\ 0.103217 \\ 0.089946 \\ 0.071272 \end{array}$
q_2	$\begin{array}{c} 0.9900\\ 0.7500\\ 0.5000\\ 0.5000\\ \end{array}$	E	q_2	0.9900 + 0.7500 + 0.5000 + 0.2500 +

0.0
=
q_1
)2,
00
0
A_2
A_1
en
whe
L_1
р
m
arc
\mathbf{ts}
rbi
fo
o s
ter
me
ura.
p^{g}
ent
ere
liff
o uc
<u>1</u> 2 0
of
G
ffe
E
15:
3
LЕ
AB
E

A_2	q_1	3	L_3	$A_{\widetilde{z}}$	C_2	Υ	k	τ
0	-	0.9999998	-1.000001	0.155098703693978	1.000002628066122	1.00002628048856	2.0000000000020720	6.283168794705025
	0.99	0.996653	-0.996656	0.155098778099352	1.00002634989055	1.000002634971697	2.000000000020829	6.283168751207761
	0.90	0.965487	-0.965490	0.155099489367699	1.000002701159378	1.000002701141138	2.000000000021888	6.283168335455118
	0.85	0.947266	-0.947269	0.155099920762603	1.000002741285063	1.000002741266277	2.00000000022544	6.283168083342806
0.00005	1	0.999973	-0.999976	0.155091662625958	1.000077628335967	1.000040127517043	2.000000000020721	6.282933188670979
	0.99	0.996628	-0.996631	0.155091737025727	1.000077635259657	1.000040134440383	2.000000000020830	6.282933145173842
	0.95	0.983021	-0.983024	0.155092043533592	1.000077663781697	1.000040162960975	2.000000000021283	6.282932965988065
	0.90	0.965463	-0.965466	0.155092448240049	1.000077701437177	1.000040200614538	2.000000000021889	6.282932729422760
	0.85	0.947242	-0.947245	0.155092879602341	1.000077741567242	1.000040240742552	2.000000000022545	6.282932477311294
0.0001	1	0.999948	-0.999951	0.155084622799540	1.000152628605819	1.000077625579136	2.000000000020722	6.282697609139138
	0.99	0.996603	-0.996606	0.155084697193663	1.000152635530264	1.000077632502971	2.000000000020832	6.282697565642156
	0.95	0.982996	-0.982999	0.155085003678207	1.000152664055406	1.000077661025596	2.000000000021285	6.282697386457044
	0.90	0.965439	-0.965442	0.155085408353976	1.000152701714985	1.000077698681846	2.00000000021891	6.282697149892605
	0.85	0.947219	-0.947222	0.155085839683643	1.000152741849430	1.000077738812735	2.00000000022546	6.282696897781978
0.00015	Η	0.999923	-0.999926	0.155077584214286	1.000227628875686	1.000115122235303	2.000000000020723	6.282462056104484
	0.99	0.996579	-0.996582	0.155077658602661	1.000227635800876	1.000115129159623	2.000000000020832	6.282462012607711
	0.95	0.982972	-0.982975	0.155077965063975	1.000227664329122	1.000115157684282	2.000000000021286	6.282461833423261
	0.90	0.965415	-0.965418	0.155078369709038	1.000227701992799	1.000115195343217	2.00000000021892	6.282461596859687
	0.85	0.947195	-0.947198	0.155078801006026	1.000227742131618	1.000115235476975	2.000000000022547	6.282461344749947

TABLE 2.17: Effect of radiation and oblateness on various parameters of orbits in the Sun-Earth system

μ	 69 2.827784 23 2.678210 59 2.551438 71 2.441810 	66:0 =	τ	 3.235270 3.077265 3.077265 1.2.939084 1.2.939084 3.40 2.816743
	 0.29806 0.32192 0.34568 0.36936 	$d_1 = q_2$		 5 0.2845 5 0.3075 8 0.3305 9 0.3536
k	$\begin{array}{c} 3.422908\\ 3.482282\\ 3.531227\\ 3.572298\end{array}$	= 0.0002	k	3.02333 3.06220 3.09671 3.12764
~	$\begin{array}{c} 2.221946\\ 2.346038\\ 2.462604\\ 2.573166\end{array}$	when A_2 :	~	$\begin{array}{c} 1.942089\\ 2.041807\\ 2.137803\\ 2.230655\end{array}$
C_6	3.250764 3.686755 4.118011 4.546494	ound L_2	C_6	2.772855 3.095460 3.421397 3.750983
C_5	3.248026 3.684200 4.115597 4.544193	f orbits ar	C_5	-2.773535 -3.096123 -3.422047 -3.751622
C_4	3.270704 3.706365 4.137399 4.565736	rameters c	C_4	$\begin{array}{c} 2.780199\\ 3.102844\\ 3.428835\\ 3.428835\\ 3.758485\\ \end{array}$
C_3	3.082850 3.514092 3.940495 4.364074	ifferent pa	C_3	-2.845589 -3.170963 -3.499703 -3.832119
C_2	$\begin{array}{c} 4.638976\\ 5.181972\\ 5.718763\\ 6.251812\end{array}$	of A_1 on di	C_2	3.487192 - 3.861428 - 4.239633 - 4.622185 -
L_1	$\begin{array}{c} 0.888284\\ 0.892635\\ 0.896310\\ 0.899483\\ 0.899483\end{array}$): Effect c	L_2	$\begin{array}{c} 1.109481 \\ 1.105456 \\ 1.101922 \\ 1.098779 \end{array}$
7	$\begin{array}{c} 0.107715\\ 0.103364\\ 0.099689\\ 0.096516\end{array}$	ABLE 2.15	3	0.113481 0.109456 0.105922 0.102779
A_1	$\begin{array}{c} 0.0002 \\ 0.0500 \\ 0.0999 \\ 0.1500 \end{array}$	Ľ	A_1	0.0002 (0.0500 (0.0999 (0.1500 (