# Chapter 6

# Exterior first order resonance of Sun-Saturn system in ERTBP

# 6.1 Introduction

In this chapter, the first order exterior resonant periodic orbits in the Sun-Saturn system are computed using the method of PSS. Orbit-orbit resonances are mean motion resonances as they are generated due to numerical relation between mean motions of bodies. Consider two bodies A and B of arbitrary masses orbiting around a central mass with mean motions  $n_A$  and  $n_B$ , respectively. If there exist integers p and q such that the ratio of mean motions  $n_A : n_B$  is of the form p : s, then the mean motion resonance exists between the two bodies. Here, p corresponds to mean motion of A and s corresponds to mean motion of B. Orbit-orbit resonances can be further classified into two types: exterior resonances and interior resonances. In exterior resonances, an integer ratio p : s is such that p < s. In this case, the spacecraft spends majority of the time outside the vicinity of the second primary and has larger orbital period or semi-major axis compared to the second primary (Zimovan (2017)).

Periodic orbits are important for mission design. Further, these orbits are useful for understanding the behaviour of non-linear systems. The technique of PSS is very useful for finding the initial conditions of periodic orbits. Although the construction of PSS is tedious and time-consuming, it is very useful for the study of resonance.

The study of resonant periodic orbits in CRTBP for different resonant orders has been done by many researchers. In the Sun-Saturn CRTBP system, Patel et al. (2021) have computed first order interior as well as exterior resonant orbits by considering the Saturn as an oblate spheroid. Also, with the help of non-linear multivariate regression analysis, Patel et al. (2022a) have generated regression model for getting initial position of the first order resonant orbits in the Saturn-Hyperion, Saturn-Titan and Earth-Moon systems. This regression model helps in getting initial conditions without plotting PSS. The stability of above resonant orbits has been studied by Patel et al. (2022b). In Kotoulas et al. (2022), the authors have studied the dynamics of interior mean motion resonance of first, second and third order with the Jupiter using CRTBP. Further, multiple families of resonant orbits in restricted-four-body problem has been obtained in Oshima (2022).

In this chapter, the first order exterior resonant orbits in the Sun-Saturn system are found by considering the Sun as a source of radiation in the framework of ERTBP. The effects of eccentricity of the orbit of the primaries, solar radiation pressure and Jacobi constant on parameters of these orbits are analyzed.

## 6.2 Computation of order of resonance

In this study, the notation p: p + s is used to denote the resonance ratio which can be obtained using PSS and the two body approximation. For generating PSS, equations (1.49) are integrated using RKG method for  $x \in [0.55, 1.00]$  with a fixed step size h = 0.001 and the solutions for which y = 0 and y' > 0 are plotted on the xx' plane. From the PSS, the centre of island is determined which corresponds to the location (x) of periodic orbits. Using the location of orbit and two-body approximation, with the Sun as the central body and the spacecraft moving around it, the velocity of the spacecraft can be obtained from Koon et al. (2011, p.8)

$$\mathbf{v} = x'\hat{\mathbf{i}} + (y' + x + \mu)\hat{\mathbf{j}}.$$
(6.1)

The magnitude of velocity vector (v), the angular momentum (h), eccentricity  $(e_s)$  and semi-major axis  $(a_s)$  of orbit of spacecraft are given by (Murray and Dermott (1999, p.424))

$$v = \sqrt{x'^{2} + (y' + x + \mu)^{2}},$$
  

$$h = (x + \mu)(y' + x + \mu),$$
  

$$a_{s} = \left[\frac{2}{r_{1}} - \frac{v^{2}}{(1 - \mu)q}\right]^{-1},$$
  

$$e_{s} = \sqrt{1 - \frac{h^{2}}{a_{s}(1 - \mu)q}}.$$
(6.2)

The ratio p: p + s can be obtained from the relation (Murray and Dermott (1999))

$$\frac{p}{p+s} = \left(\frac{a}{a_s}\right)^{3/2},\tag{6.3}$$

where a is the semi-major axis of the orbit of the primaries. In the ratio p: p + s, the number s gives the order of resonance. Also, the number of islands in a PSS corresponding to an orbit provides the order of resonance.

### 6.3 **Results and Discussion**

The mass factor of the Sun-Saturn system is  $\mu = 0.0002857696$  and the eccentricity of the orbit of the Saturn around the Sun is e = 0.052 (https://nssdc.gsfc.nasa. gov/planetary/factsheet/saturnfact.html). The PSS for e = 0.052, q = 0.99 and C = 2.8 is shown in Fig. 6.1. The arcs in a PSS represent the islands containing the periodic orbits. The locations (x) of resonant periodic orbits are obtained from the PSS by identifying the centres of the islands. The periodic orbits corresponding to the islands of PSS in Fig. 6.1 are plotted in Fig. 6.2. The 1 : 2 resonant orbit is the largest orbit and the spacecraft will be closest to the Saturn in this case.

PSS for different values of e in the range [0.0, 0.1],  $q \in [0.98, 1.00]$  and  $C \in [2.77, 2.85]$ are plotted for studying the effects of these parameters on resonant orbits. The numerical values of location (x), period (T), semi-major axis  $(a_s)$ , the ratio  $(a/a_s)^{3/2}$ and corresponding value of p : p + s for 1 : 2, 2 : 3, 3 : 4, 4 : 5 and 5 : 6 resonant orbits for different values of C and q are given in Tables 6.1-6.9.

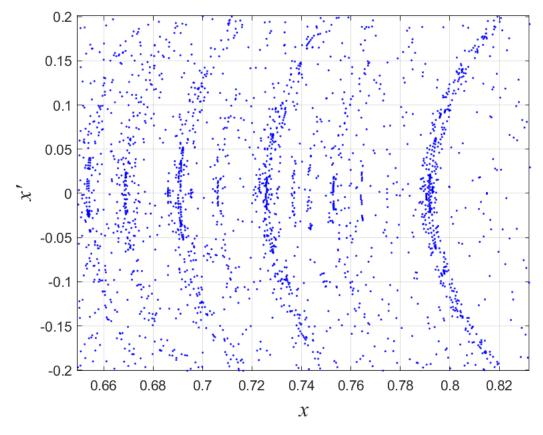



FIGURE 6.1: PSS for e = 0.052, q = 0.99 and C = 2.8

#### 6.3.1 Effects of eccentricity of primaries' orbit

Seven different values of e in the range [0.0, 0.1] are taken into consideration for analyzing the variations in the parameters of the first order resonant orbits caused by variations in the eccentricity of the orbit of the primaries. Tables 6.1– 6.9 contain orbital parameters of periodic orbits for e = 0, 0.03, 0.052 and 0.09.

The variations in locations of 1 : 2 resonant orbits for C = 2.77 corresponding to different values of  $e \in [0.0, 0.1]$  are shown graphically in Fig. 6.3. Due to increase in the eccentricity of the orbit of the primaries, orbits shift towards the Sun. From Tables 6.1–6.9, it can be observed that all p : p + 1,  $p \in \{1, 2, 3, 4, 5\}$  resonant orbits shift towards the Sun.

Further, it can be observed that the periods of first order resonant orbits increase as the value of e increases. So, period of orbits is a monotonically increasing function of e. The periods of 1 : 2, 2 : 3, 3 : 4, 4 : 5 and 5 : 6 resonant orbits corresponding to e = 0.00, 0.03, 0.052 and 0.09 for different values of q and C are given in Tables 6.1–6.9.

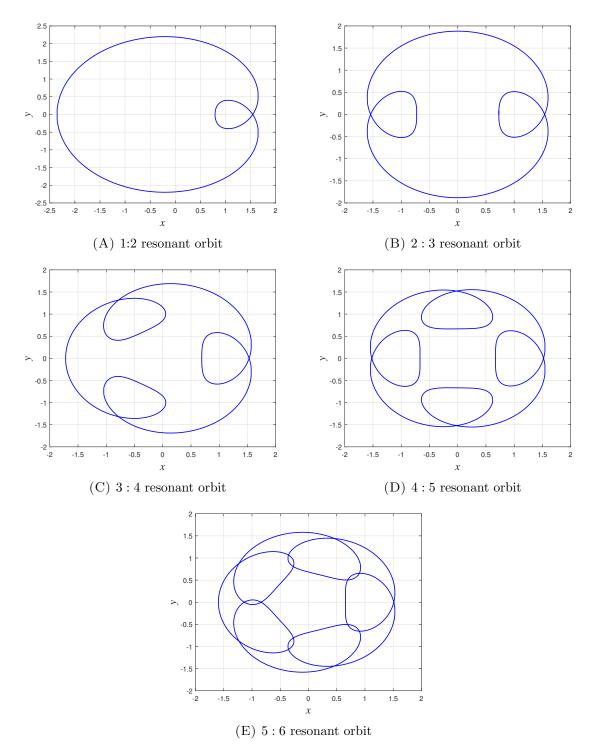



FIGURE 6.2: Periodic orbits corresponding to islands of Fig. 6.1

| $e_p$ | No. of loops | x        | Т       | $a_s$  | $e_s$  | $(a/a_s)^{3/2}$ | p: p+s |
|-------|--------------|----------|---------|--------|--------|-----------------|--------|
|       | 1            | 0.750937 | 12.5440 | 1.6048 | 0.5319 | 0.4975          | 1:2    |
|       | 2            | 0.681265 | 18.8301 | 1.3188 | 0.4830 | 0.6678          | 2:3    |
| 0.000 | 3            | 0.645422 | 25.1167 | 1.2184 | 0.4700 | 0.7520          | 3:4    |
|       | 4            | 0.623522 | 31.4025 | 1.1665 | 0.4652 | 0.8028          | 4:5    |
|       | 5            | 0.608390 | 37.6931 | 1.1337 | 0.4631 | 0.8378          | 5:6    |
|       | 1            | 0.748090 | 12.5586 | 1.5973 | 0.5314 | 0.5010          | 1:2    |
|       | 2            | 0.678957 | 18.8490 | 1.3165 | 0.4840 | 0.6696          | 2:3    |
| 0.030 | 3            | 0.643300 | 25.1364 | 1.2172 | 0.4712 | 0.7532          | 3:4    |
|       | 4            | 0.621503 | 31.4259 | 1.1656 | 0.4665 | 0.8037          | 4:5    |
|       | 5            | 0.606413 | 37.7174 | 1.1331 | 0.4645 | 0.8385          | 5:6    |
|       | 1            | 0.742370 | 12.5850 | 1.5826 | 0.5307 | 0.5080          | 1:2    |
|       | 2            | 0.674287 | 18.8802 | 1.3120 | 0.4858 | 0.6730          | 2:3    |
| 0.052 | 3            | 0.639038 | 25.1748 | 1.2148 | 0.4737 | 0.75548         | 3:4    |
|       | 4            | 0.617480 | 31.4740 | 1.1641 | 0.4693 | 0.8053          | 4:5    |
|       | 5            | 0.602500 | 37.7713 | 1.1320 | 0.4675 | 0.8398          | 5:6    |
|       | 1            | 0.725220 | 12.6716 | 1.5414 | 0.5293 | 0.5285          | 1:2    |
|       | 2            | 0.660300 | 18.9734 | 1.2987 | 0.4913 | 0.6834          | 2:3    |
| 0.090 | 3            | 0.626270 | 25.2850 | 1.2076 | 0.4811 | 0.7621          | 3:4    |
|       | 4            | 0.605340 | 31.6018 | 1.1594 | 0.4776 | 0.8102          | 4:5    |
|       | 5            | 0.590700 | 37.9194 | 1.1285 | 0.4763 | 0.8437          | 5:6    |

TABLE 6.1: Orbital parameters of spacecraft for C = 2.77 and q = 1

Fig 6.4 shows the variation in the semi-major axis of 5 : 6 resonant orbits for values of  $e \in [0.0, 0.1]$ . Here, C = 2.85 is considered. It can be observed from Fig. 6.4 that the semi-major axis of orbits decrease due to increase in the value of e. Also, the semi-major axis  $a_s$  is a non-linear monotonically decreasing function of e. Similar variations in  $a_s$  are observed for 1 : 2, 2 : 3, 3 : 4 and 4 : 5 resonant orbits (Tables 6.1–6.9). These values of  $a_s$  are obtained using (6.2).

In Fig. 6.5, variations in the eccentricity of resonant orbits for C = 2.85 are shown graphically. The values of eccentricity  $(e_s)$  are computed using equation (6.2). Fig. 6.5(A) shows that the value of  $e_s$  decreases as the value of e increases for 1 : 2 resonant orbits while from Fig. 6.5(B), it can be observed that the value of  $e_s$  increases with the increase in the value of e for 4 : 5 resonant orbits. From Tables 6.1–6.9, it can be observed that the eccentricity  $e_s$  is a monotonically increasing function of e for 2 : 3, 3 : 4 and 5 : 6 orbits as well.

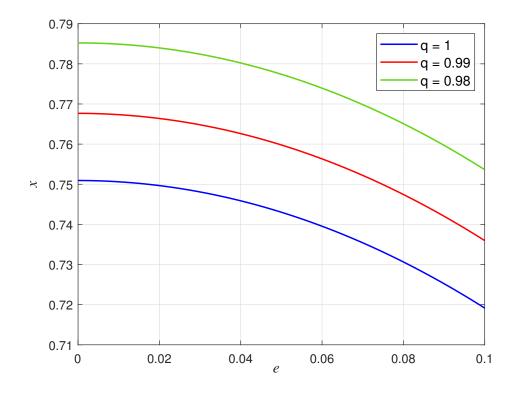



FIGURE 6.3: Variation in location of 1 : 2 resonant orbits against variation in e for C = 2.77

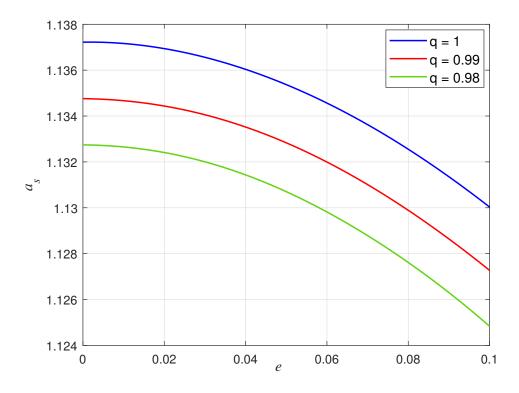
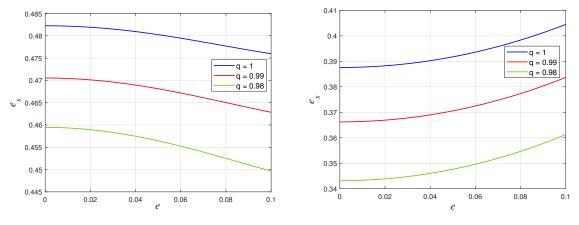




FIGURE 6.4: Variation in semi-major axis of 5 : 6 resonant orbits against variation in e for C = 2.85





(B)  $e_s$  vs e for 4:5 resonant orbits

| $e_p$ | No. of loops | x        | Т       | $a_s$  | $e_s$  | $(a/a_s)^{3/2}$ | p: p+s |
|-------|--------------|----------|---------|--------|--------|-----------------|--------|
|       | 1            | 0.767668 | 12.5410 | 1.6017 | 0.5205 | 0.4989          | 1:2    |
|       | 2            | 0.698900 | 18.8290 | 1.3154 | 0.4684 | 0.6704          | 2:3    |
| 0.000 | 3            | 0.663105 | 25.1128 | 1.2150 | 0.4540 | 0.7552          | 3:4    |
|       | 4            | 0.641110 | 31.3971 | 1.1631 | 0.4485 | 0.8063          | 4:5    |
|       | 5            | 0.625923 | 37.6832 | 1.1305 | 0.4461 | 0.8414          | 5:6    |
|       | 1            | 0.764813 | 12.5524 | 1.5941 | 0.5200 | 0.5025          | 1:2    |
|       | 2            | 0.696547 | 18.8455 | 1.3131 | 0.4693 | 0.6722          | 2:3    |
| 0.030 | 3            | 0.660949 | 25.1343 | 1.2138 | 0.4552 | 0.7563          | 3:4    |
|       | 4            | 0.639070 | 31.4234 | 1.1623 | 0.4499 | 0.8071          | 4:5    |
|       | 5            | 0.623951 | 37.7152 | 1.1300 | 0.4475 | 0.8420          | 5:6    |
|       | 1            | 0.759145 | 12.5836 | 1.5795 | 0.5192 | 0.5095          | 1:2    |
|       | 2            | 0.691850 | 18.8815 | 1.3086 | 0.4711 | 0.6757          | 2:3    |
| 0.052 | 3            | 0.656600 | 25.1728 | 1.2113 | 0.4577 | 0.7587          | 3:4    |
|       | 4            | 0.634940 | 31.4700 | 1.1607 | 0.4527 | 0.8088          | 4:5    |
|       | 5            | 0.619933 | 37.7679 | 1.1288 | 0.4505 | 0.8434          | 5:6    |
|       | 1            | 0.742040 | 12.6662 | 1.5384 | 0.5174 | 0.5301          | 1:2    |
|       | 2            | 0.677660 | 18.9706 | 1.2952 | 0.4766 | 0.6861          | 2:3    |
| 0.090 | 3            | 0.643584 | 25.2823 | 1.2041 | 0.4652 | 0.7655          | 3:4    |
|       | 4            | 0.622545 | 31.5977 | 1.1559 | 0.4612 | 0.8138          | 4:5    |
|       | 5            | 0.607882 | 37.9157 | 1.1252 | 0.4595 | 0.8474          | 5:6    |

| TABLE $6.2$ : | Orbital parame | ters of space | ecraft for $C$ : | = 2.77 and $q = 0.99$ |
|---------------|----------------|---------------|------------------|-----------------------|
|---------------|----------------|---------------|------------------|-----------------------|

FIGURE 6.5: Variation in  $e_s$  against variation in e for C = 2.85

## 6.3.2 Effects of radiation pressure

For studying the effects of radiation pressure on exterior resonant orbits, three different values of q in the interval [0.98, 1.00] are considered. In Fig. 6.3, the curves in blue, red

| $e_p$ | No. of loops | x        | Т       | $a_s$  | $e_s$  | $(a/a_s)^{3/2}$ | p: p+s |
|-------|--------------|----------|---------|--------|--------|-----------------|--------|
|       | 1            | 0.785216 | 12.5333 | 1.5990 | 0.5087 | 0.5002          | 1:2    |
|       | 2            | 0.717610 | 18.8256 | 1.3122 | 0.4529 | 0.6729          | 2:3    |
| 0.000 | 3            | 0.681959 | 25.1096 | 1.2117 | 0.4369 | 0.7583          | 3:4    |
|       | 4            | 0.659934 | 31.3949 | 1.1599 | 0.4308 | 0.8097          | 4:5    |
|       | 5            | 0.644740 | 37.6849 | 1.1275 | 0.4279 | 0.8448          | 5:6    |
|       | 1            | 0.782402 | 12.5493 | 1.5915 | 0.5082 | 0.5037          | 1:2    |
|       | 2            | 0.715217 | 18.8418 | 1.3098 | 0.4537 | 0.6747          | 2:3    |
| 0.030 | 3            | 0.679744 | 25.1297 | 1.2105 | 0.4382 | 0.7594          | 3:4    |
|       | 4            | 0.657825 | 31.4200 | 1.1590 | 0.4322 | 0.8106          | 4:5    |
|       | 5            | 0.642681 | 37.7126 | 1.1269 | 0.4294 | 0.8455          | 5:6    |
|       | 1            | 0.776760 | 12.5812 | 1.5770 | 0.5072 | 0.5107          | 1:2    |
|       | 2            | 0.710441 | 18.8756 | 1.3053 | 0.4555 | 0.6782          | 2:3    |
| 0.052 | 3            | 0.675306 | 25.1685 | 1.2080 | 0.4407 | 0.7618          | 3:4    |
|       | 4            | 0.653592 | 31.4671 | 1.1574 | 0.4350 | 0.8123          | 4:5    |
|       | 5            | 0.638551 | 37.7651 | 1.1256 | 0.4324 | 0.8469          | 5:6    |
|       | 1            | 0.75969  | 12.6625 | 1.5357 | 0.5051 | 0.5315          | 1:2    |
|       | 2            | 0.69607  | 18.9682 | 1.2919 | 0.4610 | 0.6888          | 2:3    |
| 0.090 | 3            | 0.662036 | 25.2825 | 1.2007 | 0.4484 | 0.7687          | 3:4    |
|       | 4            | 0.640900 | 31.5979 | 1.1526 | 0.4437 | 0.8174          | 4:5    |
|       | 5            | 0.626215 | 37.9176 | 1.1221 | 0.4416 | 0.8510          | 5:6    |

TABLE 6.3: Orbital parameters of spacecraft for C = 2.77 and q = 0.98

and green colours show the variation in location of 1:2 resonant orbits corresponding to q = 1.00, 0.99 and 0.98, respectively. Due to increase in the solar radiation pressure, the first order resonant orbits move closer to the Saturn (Fig. 6.6 and Tables 6.1-6.9).

The changes in the values of  $a_s$  for q = 1.00, 0.99 and 0.98 are shown graphically in Fig. 6.4 with blue, red and green curves. Here, C = 2.85 is considered. It can be observed from Fig. 6.4 that  $a_s$  decreases due to increase in the solar radiation pressure. From Tables 6.1–6.9, similar conclusions can be derived for the variation in  $a_s$  for other first order resonant orbits.

Due to increase in solar radiation pressure, periods of  $p : p + 1, p \in \{1, 2, .3, 4, 5\}$  resonant orbits decrease for all values of e and C. Fig. 6.5 shows that as the value of q decreases or solar radiation pressure increases, the eccentricity  $e_s$  decreases for 1 : 2 and 4 : 5 resonant orbits. Further, from Tables 6.1-6.9, it can be observed that the value of  $e_s$  decreases due to increase in solar radiation pressure for 1 : 2, 2 : 3, 3 : 4, 4 : 5 and 5 : 6 resonant orbits.

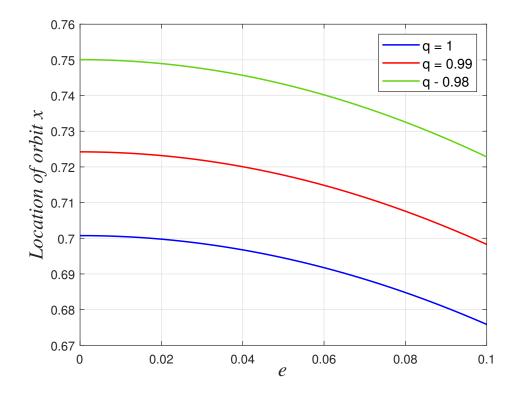



FIGURE 6.6: Variation in location of 5 : 6 resonant orbits against variation in e for C=2.85

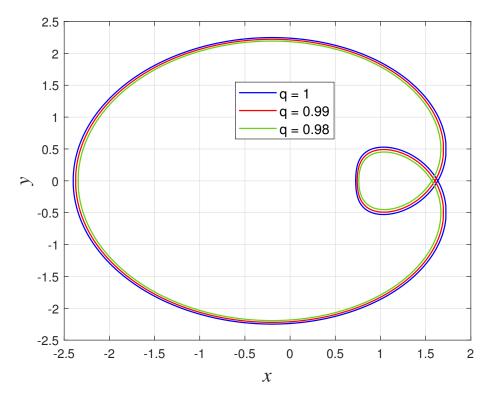



FIGURE 6.7: Variation in size of 1 : 2 resonant orbits due to variation in q for C = 2.77

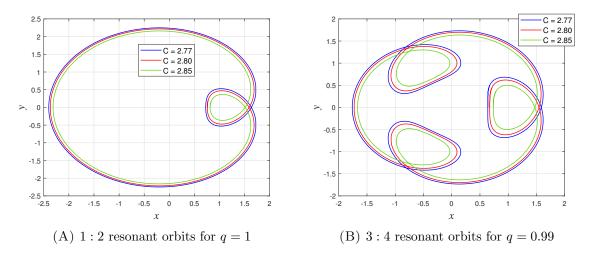



FIGURE 6.8: Variation in size of orbits against variation in Jacobi constant

| $e_p$ | No. of loops | x         | Т       | $a_s$  | $e_s$  | $(a/a_s)^{3/2}$ | p: p+s |
|-------|--------------|-----------|---------|--------|--------|-----------------|--------|
|       | 1            | 0.782343  | 12.5404 | 1.6088 | 0.5135 | 0.4957          | 1:2    |
|       | 2            | 0.713850  | 18.8270 | 1.3205 | 0.4591 | 0.6666          | 2:3    |
| 0.000 | 3            | 0.677945  | 25.1119 | 1.2195 | 0.4438 | 0.7510          | 3:4    |
|       | 4            | 0.655830  | 31.3994 | 1.1674 | 0.4379 | 0.8019          | 4:5    |
|       | 5            | 0.6405591 | 37.6869 | 1.1348 | 0.4353 | 0.8367          | 5:6    |
|       | 1            | 0.779491  | 12.5535 | 1.6011 | 0.5130 | 0.4992          | 1:2    |
|       | 2            | 0.711468  | 18.8442 | 1.3181 | 0.4600 | 0.6683          | 2:3    |
| 0.030 | 3            | 0.675750  | 25.1336 | 1.2183 | 0.4451 | 0.7521          | 3:4    |
|       | 4            | 0.653720  | 31.4222 | 1.1666 | 0.4393 | 0.8027          | 4:5    |
|       | 5            | 0.638506  | 37.7133 | 1.1342 | 0.4368 | 0.8374          | 5:6    |
|       | 1            | 0.773789  | 12.5822 | 1.5864 | 0.5120 | 0.5062          | 1:2    |
|       | 2            | 0.706692  | 18.8777 | 1.3136 | 0.4618 | 0.6718          | 2:3    |
| 0.052 | 3            | 0.671320  | 25.1712 | 1.2158 | 0.4476 | 0.7545          | 3:4    |
|       | 4            | 0.649503  | 31.4683 | 1.1649 | 0.4422 | 0.8044          | 4:5    |
|       | 5            | 0.634419  | 37.7685 | 1.1330 | 0.4398 | 0.8387          | 5:6    |
|       | 1            | 0.756622  | 12.6652 | 1.5450 | 0.5101 | 0.5267          | 1:2    |
|       | 2            | 0.692338  | 18.9712 | 1.3002 | 0.4673 | 0.6822          | 2:3    |
| 0.090 | 3            | 0.658078  | 25.2824 | 1.2085 | 0.4552 | 0.7613          | 3:4    |
|       | 4            | 0.636882  | 31.5997 | 1.1601 | 0.4507 | 0.8094          | 4:5    |
|       | 5            | 0.622121  | 37.9165 | 1.1294 | 0.4489 | 0.8427          | 5:6    |

TABLE 6.4: Orbital parameters of spacecraft for C = 2.8 and q = 1

The radiation pressure also affects the size of periodic orbits. In Fig. 6.7, 1 : 2 resonant orbits for C = 2.77 are plotted in blue, red and green colours corresponding to q = 1.00, 0.99 and 0.98, respectively. The orbits shrink due to increase in solar radiation

| $e_p$ | No. of loops | x        | Т       | $a_s$  | $e_s$  | $(a/a_s)^{3/2}$ | p: p+s |
|-------|--------------|----------|---------|--------|--------|-----------------|--------|
|       | 1            | 0.800241 | 12.5335 | 1.6066 | 0.5017 | 0.4967          | 1:2    |
|       | 2            | 0.733060 | 18.8233 | 1.3174 | 0.4433 | 0.6689          | 2:3    |
| 0.000 | 3            | 0.697350 | 25.1068 | 1.2164 | 0.4264 | 0.7539          | 3:4    |
|       | 4            | 0.675223 | 31.3951 | 1.1643 | 0.4198 | 0.8051          | 4:5    |
|       | 5            | 0.659930 | 37.6830 | 1.1318 | 0.4166 | 0.8400          | 5:6    |
|       | 1            | 0.797426 | 12.5503 | 0.5011 | 1.5991 | 0.5002          | 1:2    |
|       | 2            | 0.73063  | 18.8389 | 1.3151 | 0.4442 | 0.6707          | 2:3    |
| 0.030 | 3            | 0.695100 | 25.1283 | 1.2151 | 0.4277 | 0.7551          | 3:4    |
|       | 4            | 0.673067 | 31.4202 | 1.1634 | 0.4212 | 0.8060          | 4:5    |
|       | 5            | 0.657800 | 37.7070 | 1.1311 | 0.4182 | 0.8408          | 5:6    |
|       | 1            | 0.791753 | 12.5800 | 1.5843 | 0.5001 | 0.5072          | 1:2    |
|       | 2            | 0.725782 | 18.8725 | 1.3105 | 0.4459 | 0.6742          | 2:3    |
| 0.052 | 3            | 0.690574 | 25.1671 | 1.2126 | 0.4302 | 0.7575          | 3:4    |
|       | 4            | 0.668722 | 31.4646 | 1.1617 | 0.4241 | 0.8078          | 4:5    |
| _     | 5            | 0.653602 | 37.7639 | 1.1299 | 0.4213 | 0.8421          | 5:6    |
|       | 1            | 0.774646 | 12.6645 | 1.5428 | 0.4977 | 0.5278          | 1:2    |
|       | 2            | 0.711228 | 18.9687 | 1.2970 | 0.4514 | 0.6847          | 2:3    |
| 0.090 | 3            | 0.677041 | 25.2802 | 1.2052 | 0.4380 | 0.7644          | 3:4    |
|       | 4            | 0.655764 | 31.5967 | 1.1568 | 0.4328 | 0.8129          | 4:5    |
|       | 5            | 0.640965 | 37.9135 | 1.1262 | 0.4306 | 0.8463          | 5:6    |

TABLE 6.5: Orbital parameters of spacecraft for C = 2.8 and q = 0.99

pressure. Also, the loop of these orbits shrink. The orbits in Fig. 6.7 are plotted by considering e = 0.09. In Pathak et al. (2016), the authors have analyzed the effects of solar radiation pressure on exterior resonant periodic orbits in the photogravitational Sun-Earth and Sun-Mars systems. Above results agree with their conclusions. So, the effect of solar radiation pressure on the parameters of resonant orbits are similar in CRTBP and ERTBP.

#### 6.3.3 Effects of Jacobi constant

The value of Jacobi constant affect all parameters of resonant orbits. The data of parameters of periodic orbits for q = 1 corresponding to C = 2.77, 2.80 and 2.85 are given in Tables 6.1, 6.4 and 6.7, respectively. These values of Jacobi constant are selected randomly satisfying the condition  $C \leq C_M$ . In Tables 6.2, 6.5 and 6.8, the values of parameters of resonant orbits corresponding to C = 2.77, 2.80 and 2.85 are given for q = 0.99, respectively, and in Tables 6.3, 6.6 and 6.9, the parameters for

| $e_p$ | No. of loops | x        | Т       | $a_s$  | $e_s$   | $(a/a_s)^{3/2}$ | p: p+s |
|-------|--------------|----------|---------|--------|---------|-----------------|--------|
|       | 1            | 0.819109 | 12.5264 | 1.6056 | 0.4896  | 0.4972          | 1:2    |
|       | 2            | 0.753560 | 18.8167 | 1.3147 | 0.4266  | 0.6710          | 2:3    |
| 0.000 | 3            | 0.718193 | 25.1022 | 1.2135 | 0.4079  | 0.7567          | 3:4    |
|       | 4            | 0.696103 | 31.3911 | 1.1613 | 0.4003  | 0.8082          | 4:5    |
|       | 5            | 0.680785 | 37.6757 | 1.1289 | 0.3967  | 0.8433          | 5:6    |
|       | 1            | 0.816301 | 12.5431 | 1.5979 | 0.48899 | 0.5007          | 1:2    |
|       | 2            | 0.751101 | 18.8345 | 1.3124 | 0.4275  | 0.6728          | 2:3    |
| 0.030 | 3            | 0.715877 | 25.1232 | 1.2122 | 0.4092  | 0.7579          | 3:4    |
|       | 4            | 0.693858 | 31.4133 | 1.1605 | 0.4018  | 0.8092          | 4:5    |
|       | 5            | 0.678622 | 37.7065 | 1.1283 | 0.3983  | 0.8439          | 5:6    |
|       | 1            | 0.810662 | 12.5735 | 1.5831 | 0.4877  | 0.5078          | 1:2    |
|       | 2            | 0.746173 | 18.8689 | 1.3077 | 0.4292  | 0.6763          | 2:3    |
| 0.052 | 3            | 0.711251 | 25.1654 | 1.2096 | 0.4118  | 0.7603          | 3:4    |
|       | 4            | 0.689390 | 31.4602 | 1.1587 | 0.4048  | 0.8109          | 4:5    |
|       | 5            | 0.674259 | 37.7603 | 1.1270 | 0.4014  | 0.8454          | 5:6    |
|       | 1            | 0.793610 | 12.6577 | 1.5412 | 0.4848  | 0.5286          | 1:2    |
|       | 2            | 0.731362 | 18.9646 | 1.2942 | 0.4346  | 0.6870          | 2:3    |
| 0.090 | 3            | 0.697361 | 25.2787 | 1.2022 | 0.4196  | 0.7674          | 3:4    |
|       | 4            | 0.676054 | 31.5962 | 1.1537 | 0.4137  | 0.8162          | 4:5    |
|       | 5            | 0.661221 | 37.9126 | 1.1232 | 0.4110  | 0.8497          | 5:6    |

TABLE 6.6: Orbital parameters of spacecraft for C = 2.8 and q = 0.98

q = 0.98 corresponding to C = 2.77, 2.80 and 2.85 are given.

It can be observed from Tables 6.1, 6.4 and 6.7 that as the Jacobi constant increases, resonant orbits shift towards the second primary, the Saturn. Similar change in locations of orbits is observed for q = 0.99 and 0.98. The period and eccentricity  $(e_s)$  decrease with the increase in Jacobi constant for all values of q and e whereas the semi-major axis increases.

For C = 2.77, 2.80 and 2.85, the periodic orbits are plotted in Fig 6.8 with blue, red and green colours, respectively. In Fig. 6.8(A), 1 : 2 resonant orbits having one loop are plotted for q = 1 and in Fig. 6.8(B), 3 : 4 resonant orbits having three loops are plotted for q = 0.99. From Fig. 6.8(A) and Fig. 6.8(B), it can be observed that the orbits as well as loops contract due to increase in the value of Jacobi constant. Further, these results agree with the results of Pathak et al. (2016) which shows that the effects

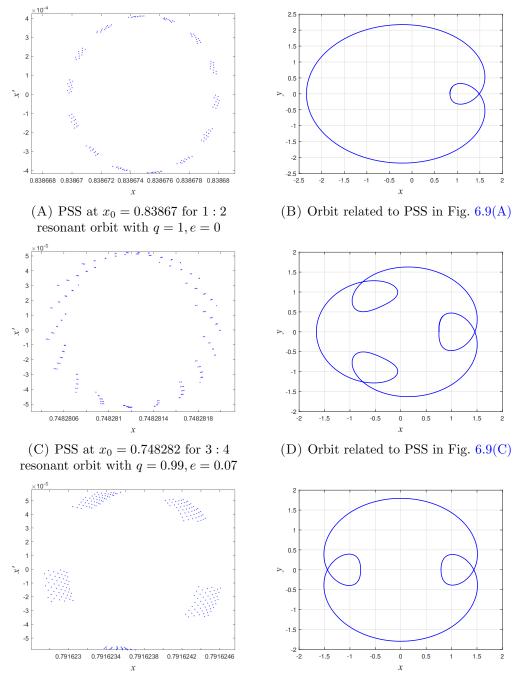
| $e_p$ | No. of loops | x        | Т       | $a_s$  | $e_s$  | $(a/a_s)^{3/2}$ | p: p+s |
|-------|--------------|----------|---------|--------|--------|-----------------|--------|
|       | 1            | 0.838670 | 12.5215 | 1.6203 | 0.4822 | 0.4904          | 1:2    |
|       | 2            | 0.773783 | 18.8140 | 1.3251 | 0.4158 | 0.6632          | 2:3    |
| 0.000 | 3            | 0.738392 | 25.0991 | 1.2226 | 0.3958 | 0.7483          | 3:4    |
|       | 4            | 0.716156 | 31.3858 | 1.1698 | 0.3876 | 0.7995          | 4:5    |
|       | 5            | 0.700742 | 37.6732 | 1.1372 | 0.3836 | 0.8341          | 5:6    |
|       | 1            | 0.83586  | 12.5398 | 1.6126 | 0.4814 | 0.4939          | 1:2    |
|       | 2            | 0.771282 | 18.8333 | 1.3227 | 0.4166 | 0.6649          | 2:3    |
| 0.030 | 3            | 0.736000 | 25.1183 | 1.2212 | 0.3971 | 0.7495          | 3:4    |
|       | 4            | 0.713852 | 31.4100 | 1.1689 | 0.3891 | 0.8003          | 4:5    |
|       | 5            | 0.698499 | 37.7028 | 1.1365 | 0.3852 | 0.8348          | 5:6    |
|       | 1            | 0.830191 | 12.5718 | 1.5974 | 0.4801 | 0.5010          | 1:2    |
|       | 2            | 0.766230 | 18.8647 | 1.3179 | 0.4184 | 0.6686          | 2:3    |
| 0.052 | 3            | 0.731260 | 25.1630 | 1.2187 | 0.3997 | 0.7519          | 3:4    |
|       | 4            | 0.709246 | 31.4572 | 1.1672 | 0.3921 | 0.8022          | 4:5    |
|       | 5            | 0.693988 | 37.7560 | 1.1352 | 0.3884 | 0.8363          | 5:6    |
|       | 1            | 0.813015 | 12.6530 | 1.5545 | 0.4768 | 0.5219          | 1:2    |
|       | 2            | 0.751130 | 18.9632 | 1.3041 | 0.4238 | 0.6792          | 2:3    |
| 0.090 | 3            | 0.717001 | 25.2778 | 1.2110 | 0.4077 | 0.7590          | 3:4    |
|       | 4            | 0.695501 | 31.5931 | 1.1620 | 0.4012 | 0.8075          | 4:5    |
|       | 5            | 0.680562 | 37.9131 | 1.1314 | 0.3982 | 0.8406          | 5:6    |

TABLE 6.7: Orbital parameters of spacecraft for C = 2.85 and q = 1

of Jacobi constant on parameters of exterior resonant orbits are invariant under the eccentricity of the orbit of the primaries (e) and mass factor  $(\mu)$  of the system.

## 6.4 Analysis of resonance

The analysis of different families of first order exterior resonant orbits in the Sun-Saturn system shows that all these orbits possess inner loops. In dimensionless system, the semi-major axis of the Saturn is a = 1.007684. Using equations (6.2), the semi-major axis of orbit,  $a_s$ , is obtained. From equation (6.3), the approximate ratio p : p + s is calculated using the values of a and  $a_s$ .


In Tables 6.1-6.9, the column  $(a/a_s)^{3/2}$  contains the approximate value of the ration p: p+s for various values of e, q and C. The ratio p: p+s was obtained for 63 different families of periodic orbits. Analysis of each family shows that the value of

| $e_p$ | No. of loops | x        | Т       | $a_s$  | $e_s$  | $(a/a_s)^{3/2}$ | p: p+s |
|-------|--------------|----------|---------|--------|--------|-----------------|--------|
|       | 1            | 0.858968 | 12.5140 | 1.6229 | 0.4705 | 0.4893          | 1:2    |
|       | 2            | 0.796407 | 18.8040 | 1.3236 | 0.3981 | 0.6643          | 2:3    |
| 0.000 | 3            | 0.761650 | 25.0897 | 1.2204 | 0.3757 | 0.7503          | 3:4    |
|       | 4            | 0.739581 | 31.3763 | 1.1674 | 0.3662 | 0.8020          | 4:5    |
|       | 5            | 0.724224 | 37.6652 | 1.1348 | 0.3615 | 0.8368          | 5:6    |
|       | 1            | 0.856152 | 12.5283 | 1.6147 | 0.4696 | 0.4930          | 1:2    |
|       | 2            | 0.793830 | 18.8201 | 1.3211 | 0.3989 | 0.6662          | 2:3    |
| 0.030 | 3            | 0.759201 | 25.1137 | 1.2190 | 0.3770 | 0.7515          | 3:4    |
|       | 4            | 0.737194 | 31.4030 | 1.1665 | 0.3678 | 0.8029          | 4:5    |
|       | 5            | 0.721870 | 37.6934 | 1.1340 | 0.3632 | 0.8376          | 5:6    |
|       | 1            | 0.850517 | 12.5612 | 1.5991 | 0.4679 | 0.5002          | 1:2    |
|       | 2            | 0.788712 | 18.8591 | 1.3163 | 0.4006 | 0.6698          | 2:3    |
| 0.052 | 3            | 0.754256 | 25.1519 | 1.2163 | 0.3796 | 0.7541          | 3:4    |
|       | 4            | 0.732400 | 31.4505 | 1.1647 | 0.3709 | 0.8048          | 4:5    |
|       | 5            | 0.717181 | 37.7507 | 1.1327 | 0.3666 | 0.8391          | 5:6    |
|       | 1            | 0.833433 | 12.6472 | 1.5552 | 0.4639 | 0.5216          | 1:2    |
|       | 2            | 0.773278 | 18.9570 | 1.3022 | 0.4060 | 0.6807          | 2:3    |
| 0.090 | 3            | 0.739548 | 25.2714 | 1.2085 | 0.3878 | 0.7614          | 3:4    |
|       | 4            | 0.718130 | 31.5895 | 1.1594 | 0.3803 | 0.8103          | 4:5    |
|       | 5            | 0.703185 | 37.9082 | 1.1286 | 0.3767 | 0.8436          | 5:6    |

TABLE 6.8: Orbital parameters of spacecraft for C = 2.85 and q = 0.99

ratio p: p + s is of the form  $p: p + 1, p \in \{1, 2, 3, 4, 5\}$ , which shows the first order resonance. Also, the existence of internal loops shows the exterior resonance. Further, the PSS corresponding to each orbit contains only one island which confirms the first order resonance.

In Figs. 6.9, the PSS and their corresponding orbits for C = 2.85 are given. In Fig. 6.9(A), the PSS at  $x_0 = 0.83867$  for q = 1 and e = 0 for 1 : 2 resonant orbit is given and the corresponding orbit is given in Fig. 6.9(B). In Fig. 6.9(C), the PSS at  $x_0 = 0.748282$  for q = 0.99 and e = 0.07 is given and the corresponding 3 : 4 resonant orbit is given in Fig. 6.9(D). In Fig. 6.9(E) and Fig. 6.9(F), the PSS and corresponding orbit at  $x_0 = 0.791623$  for q = 0.98 and e = 0.1 are given, respectively.



(E) PSS at  $x_0 = 0.791623$  for 2:3 resonant orbit with q = 0.98, e = 0.1

(F) Orbit related to PSS in Fig. 6.9(E)

FIGURE 6.9: Exterior first order resonant PSS and orbits for C = 2.85

| $e_p$ | No. of loops | x        | Т       | $a_s$  | $e_s$  | $(a/a_s)^{3/2}$ | p: p+s |
|-------|--------------|----------|---------|--------|--------|-----------------|--------|
|       | 1            | 0.880481 | 12.4963 | 1.6294 | 0.4595 | 0.4863          | 1:2    |
|       | 2            | 0.820918 | 18.7912 | 1.3235 | 0.3795 | 0.6643          | 2:3    |
| 0.000 | 3            | 0.787087 | 25.0786 | 1.2190 | 0.3541 | 0.7516          | 3:4    |
|       | 4            | 0.765323 | 31.3657 | 1.1656 | 0.3432 | 0.8038          | 4:5    |
|       | 5            | 0.750065 | 37.6515 | 1.1327 | 0.3376 | 0.8391          | 5:6    |
|       | 1            | 0.877691 | 12.5128 | 1.6208 | 0.4583 | 0.4902          | 1:2    |
|       | 2            | 0.818280 | 18.8091 | 1.3209 | 0.3803 | 0.6663          | 2:3    |
| 0.030 | 3            | 0.784517 | 25.0999 | 1.2176 | 0.3554 | 0.7529          | 3:4    |
|       | 4            | 0.762810 | 31.3919 | 1.1646 | 0.3448 | 0.8048          | 4:5    |
|       | 5            | 0.747589 | 37.6817 | 1.1320 | 0.3393 | 0.8399          | 5:6    |
|       | 1            | 0.87211  | 12.5515 | 1.6043 | 0.4562 | 0.4978          | 1:2    |
|       | 2            | 0.813000 | 18.8440 | 1.3158 | 0.3819 | 0.6702          | 2:3    |
| 0.052 | 3            | 0.779400 | 25.1447 | 1.2148 | 0.3582 | 0.7555          | 3:4    |
|       | 4            | 0.757787 | 31.4418 | 1.1627 | 0.3480 | 0.8068          | 4:5    |
|       | 5            | 0.74264  | 37.7387 | 1.1305 | 0.3429 | 0.8415          | 5:6    |
|       | 1            | 0.855092 | 12.6360 | 1.5583 | 0.4511 | 0.5200          | 1:2    |
|       | 2            | 0.797210 | 18.9506 | 1.3012 | 0.3871 | 0.6815          | 2:3    |
| 0.090 | 3            | 0.764100 | 25.2649 | 1.2066 | 0.3665 | 0.7632          | 3:4    |
|       | 4            | 0.742840 | 31.5822 | 1.1571 | 0.3578 | 0.8127          | 4:5    |
|       | 5            | 0.727950 | 37.9025 | 1.1263 | 0.3534 | 0.8463          | 5:6    |

TABLE 6.9: Orbital parameters of spacecraft for C = 2.85 and q = 0.98

# 6.5 Conclusions

In this chapter, the first order exterior resonant orbits in the photogravitational Sun-Saturn ERTBP are computed using the technique of PSS and the effects of eccentricity of orbit of the primaries, solar radiation pressure and Jacobi constant on parameters of these orbits are analyzed.

The analysis of PSS shows that the first order resonant orbits exist with resonance ratio  $p: p+1, p \in \{1, 2, 3, 4, 5\}$  for different values of eccentricity of orbit of the primaries, solar radiation pressure and Jacobi constant. It is observed that the orbits shift towards the Sun and the semi-major axis of these orbits decrease as the eccentricity of the orbit of the primaries increase. Further, the eccentricity of the 1 : 2 resonant orbits decrease while the reverse effect is observed for the remaining  $p: p+1(p \in \{2, 3, 4, 5\})$ resonant orbits due to increase in the value of eccentricity of primaries' orbit. Also, the periods of these orbits increase with the increase in primaries' eccentricity.

Due to solar radiation pressure, orbits proceed towards the Saturn and shrink in size. This perturbation force decreases periods, semi-major axes and eccentricities of resonant orbits. An increase in the value of Jacobi constant also shift orbits towards the Saturn and they contract in size. Further, period and eccentricity increase while semi-major axis decreases for all resonant orbits.