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1. Introduction 

Organized morphologies are one of the hot research areas due to their diverse 

applications, from micellar catalysis to transport of pharmaceutical material to desired site [1–

8]. However, the possibility to control the physico-biochemical behaviour of the above self-

organized assemblies may enlarge the window of potential applications [9–11]. The 

conventional strategy to control the responsiveness of such assemblies (micelles, vesicles, 

mesophases, etc.) directed towards variation in the chemical structure of the single component 

involved (surfactant/bio-surfactant, ionic liquids, bio-polymer, copolymer, block co-polymer) 

[12–15]. Though, this approach was quite successful but is tedious and time consuming as the 

synthesis of desired material to meet the requirement of stipulated applications. During last two 

decades, an alternative approach of physical blending of above-mentioned material has been 

pick the momentum to meet the applicability [16–20]. In this direction, the mixing of two 

surfactants (having different charges), two co-polymers (of different lengths and architecture) 

or the combination of individuals from both categories has been adopted (by varying 

composition) to obtain various morphologies with desired utility [21–28]. In the present thesis, 

an attempt has been made to use a blending approach to obtain the above-mentioned 

morphologies and their solubilization and drug release applications. In the process, various 

characterization techniques are used to establish different morphologies in the blended 

solution. 

1.1.  Surface Active Agents or Surfactants 

Material with distinct polarities (polar and non-polar groups in the same molecule) in 

the molecular structure imparts a distinct solution behaviour when dissolved in an aqueous 

solution. Such materials prefer to accumulate at the junction of two phases (e.g., air-water, 
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liquid-liquid, solid-liquid, etc.). This accumulation results in changes such as a decrease in 

surface tension, a change in interfacial energy, mixing of two mutually insoluble materials, etc. 

Above properties are shown by surface active agents or Surfactants [29–32]. Due to the 

presence of polar and non-polar sections in the same molecule, surfactants are also known as 

amphiphiles, polar-nonpolar or amphipathic compounds. Conventionally, polar and non-polar 

parts of surfactants are known as ‘head’ and ‘tail’ groups, respectively. Solution properties of 

surfactants have been found to be dependent on molecular architecture (one head-one tail, one 

head-two tail, two head-two tail, etc.), electrostatics together with external stimuli, or nature of 

the medium [33]. Electrostatics of head group (charged or neutral) also dictates the 

category/classification of surfactants. Surfactant can be ionic or non-ionic depending upon the 

nature of charge (present and absent), respectively [34,35]. Surfactants with a charged head 

group comes under the category of ionic surfactants, while those with a no charge comes under 

nonionic surfactants. Similarly, surfactants with a head group having a positive charge are 

known as cationic surfactants, while those with a negative charge are categorized as anionic 

surfactants. Moreover, if both types of charges (cationic and anionic) are present in a surfactant 

molecule than it comes under the category of amphoteric or zwitterionic surfactants. All the 

above categories of surfactants together with their examples are shown in Scheme 1. 
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Scheme 1. Molecular structures typical of the four classes of surfactants: (a) cationic surfactant, 

(b) anionic surfactant, (c) nonionic surfactant, and (d) zwitterionic surfactant. 

Apart from surfactant structures given in Scheme 1, a variety of novel types of 

amphiphiles have been reported in last two-to-three decades, e.g., dimeric or gemini 

surfactants, bola-form type surfactants, polymeric surfactants, bio-surfactants, fluorocarbon 

surfactants, etc. [31,36–40] (Scheme 2). 
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Scheme 2. Different type of new versatile surfactants with their molecular structure. 
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1.2.  Solution Behaviour of Surfactants 

Surfactants are known to show different characteristics in solutions depending upon 

their nature, structure, and medium. Scheme 3 shows some of the phenomena generally shown 

by surfactants when they are present in the solution phase. The present thesis is based on studies 

related to the solution behaviour of dimeric or gemini or twin heads-twin tails surfactants. 

 

 

Scheme 3. Phenomena shown by surfactants in solution 

 

A representative structure of a typical gemini surfactant has been shown in Figure 1. 

This material was first made and patented in the 4th decade of the last century [41]. But in open 

literature, such material was found in early seventies of the last century [42]. However, Magner 

and Littau coined the name ‘Gemini’ in 1991 [40]. Availability of geminis in open literature 

caused a drastic increase in research and applications in diverse areas [43–52]. 
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Figure 1. Schematic representation of gemini surfactant 

The phenomenon shown in Scheme 3 are general but present thesis exclusively related 

to aggregation, structural transitions, solubilization, and solubilized drug release. Literature 

related to other phenomena (not covered in this thesis) can be found in published works or 

monographs [53–60].   

 

1.3.  Aggregation Behaviour of Surfactants 

Owing to the amphipathic nature of surfactants, they prefer to accumulate both at the 

surface and in bulk solvent in the form of monolayer or aggregate, respectively. ‘Micelle’ is 

the most fundamental aggregate (first formed in the solution) formed by the surfactant in an 

aqueous solution when [Surfactant] increases [61]. Micelles are not present at all 

concentrations as some surfactant molecules are used to saturate the air-solution interface. 

Above saturation of interface is followed by aggregation in solution under critical solution 

conditions such as critical micelle concentration (CMC) and critical micellar temperature 

(CMT). Therefore, CMC is the concentration at/above which the presence of micelles can be 
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detected in the solution (Figure 2) [62,63]. Similarly, CMT is the temperature at/above micelle 

formation takes place [64–66]. The phenomenon of conversion of surfactant monomers into 

micelle is known as ‘micellization’. At CMC, micelles are roughly spherical (or ellipsoidal) 

which can take other structural shapes depending upon various factors such as concentration, 

temperature, internal/external stimuli together with foreign material [67–70]. 

 

 

 

Figure 2. Schematic representation of gemini monomers and micelles in aqueous solution 

below and above CMC. 

 To detect the micelle, various physico-chemical methods are available depending upon the 

ionic nature/structure and experimental conditions. Table 1 shows a list of various 

methodologies used to obtain/compute micellar parameters, micellar structure, micellar 

polarity/environment, etc. [71].  
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Table 1. Different techniques to determine critical micelle concentration (CMC) 

Sr 

No. 

Technique 

Nature of 

Surfactant 

Micellar parameters 

obtain from 

Ref. 

1. Surface tension All type 

CMC, C20, area of the head 

group, purity, surface 

activity 

[72,73]  

2. Conductometry Ionic 

CMC, degree of micellar 

ionization, structural 

transition 

[74,75] 

3. Fluorescence All type 

CMC, aggregation number, 

micellar polarity, 

microenvironment 

[76–78] 

4. 
Small angle neutron 

scattering (SANS) 

All type 

Micellar structure, 

aggregation number, 

structural transition, charge 

on micelle 

[79,80] 

5. 

Small angle  

X-ray scattering 

(SAXS) 

All type 

Head group area, magnitude 

of charge, micellar size 

[81,82] 

6. 
Dynamic light 

scattering (DLS) 

All type 

Micellar size, charge on 

micelle, 

isotropy/anisotropy 

[83,84] 
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7. 
Nuclear magnetic 

resonance (NMR) 

All type 

CMC, micellar structure, 

micellar environment, 

micellar interactions 

[85,86] 

8. TEM / Cryo-TEM All type 

Micellar structure/ 

morphology, size 

[87] 

9. 
UV-Visible 

spectroscopy 

All type 

CMC, micellar 

solubilization, surfactant-

dye/drug interaction 

[88]  

10. 
Atomic force 

microscopy (AFM) 

All type 

Surface structure of micelle, 

surface interaction with 

foreign material 

[89] 

11. Refractometric All type 

CMC, refractive index, 

density 

[90] 

12. 
Freezing point 

depression 

All type CMC, aggregation number 
[91] 

13. Viscometry All type CMC, viscosity [92] 

14. 
Isothermal titration 

calorimetry 

All type 

CMC, surfactant purity, 

saturation determination, 

drug-excipient interactions 

[93] 

15. 
Capillary 

electrophoresis 

Ionic CMC 
[94] 
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1.4.  Mixed Micellization 

As mentioned in the opening paragraph of this section, the presence of more than one 

surfactant in an aqueous solution can change the solution behaviour of individual components. 

Mixing or blending may results micelles constituted by both the mixing components. Such an 

aggregation process after blending is known as mixed micellization and the aggregates so 

formed are known as ‘mixed micelle’. Blending of surfactants is important in pharmacy, 

environmental remediation, and the development of various industrial fields (with polymers) 

[95–100]. To produce mixed micelles in the solution, various combinations of surfactants such 

as ionic-ionic, ionic-nonionic, and nonionic-nonionic are investigated in light of changes in 

solution properties and possible applications [101–103]. Mixing of surfactants may result 

tuning of interfacial characteristics at the meeting point of two discreate phases (e.g., oil and 

water or air and water). The presence of a nonionic surfactant as one of the components (or 

both the components) may find application in biological systems and can be treated as a safe 

alternative (compared to other combinations) for environmental point of view [104–107]. 

Depending upon the composition and nature of the two components of the mixture, one can 

observe micellar structural changes in the solution phase or the formation of a biphasic system 

with condensed lamellar structures in coexistent of dilute medium [28,108–110]. In former 

case, various types of micellar structures are formed depending upon mixing composition, 

chain length, type etc. [27,111–113]. In latter case, surfactant association/phase separation has 

been found to be dependent on composition, pH, temperature, etc. [26,114,115]. Spontaneous 

separation and formation of lamellar structures can find applications in pre-concentrating 

biomolecules, carbon tubes, metal ions, and lower hydrocarbon chain molecules [116–119]. 

The structure of a typical mixed micelle formed by the combination of a conventional 

surfactant and a gemini surfactant has been shown in Figure 3.  
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Figure 3. Representative structure of mixed micelle in aqueous solution 

1.5.  Micellar Morphologies in Aqueous Solution 

Surfactant molecules can assemble into a variety of structures depending upon 

solution/experimental conditions. Micellar shape can be governed by various factors namely, 

i) steric repulsion forces among similar charged heads, ii) cumulative hydrophobic interactions 

among hydrocarbon chains of surfactant(s) with or without additives; and iii) changes in 

surface regions (area per head group) by external/internal stimuli. A generalised packing 

parameter (P), named the Mitchell-Ninham parameter, has been proposed to theoretically 

predict possible morphology based on surfactant structure (volume of hydrocarbon tail(V), 

average head group area (a0) and hydrocarbon tail length (l)). This surfactant structural 

information and P are correlated by a mathematical correlation given below. 

 

P = V / a0 l                eq. (1) 

The values of V and l can be computed by the method of C. Tandford [35] while a0 can be 

obtained by experiment [120]. The values of V, l, and a0 can be tuned by structural variation in 

surfactant and/or by the addition of different counter ions [121–125]. It may be mentioned here 

that V can be increase without change in l in case of gemini surfactant. Probably this is the 
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reason of getting higher order aggregates with geminis in comparison to their conventional 

counter parts [126,127]. Dependence of morphology on P has been depicted in Table 2.  

Table 2. Dependence of shape on critical packing parameter (P=V/a0l) 

 

Effective shape of 

surfactant molecule in 
Packing Parameter 

Aggregate morphology 

(Geometry of Micelle) 

 
     Cone 

 

            < 1/3 

(0.33) 

Spherical micelle  

        

 

 
        Truncated cone 

1/3 – 1/2 

(0.33 – 0.5) 

Cylindrical micelle 

      

 

 
       Truncated cone 

1/2 – 1.0 

(0.5 – 1.0) 

Flexible bilayer, vesicle 

      

 

       
 Cylinder 

 

       ~ 1 

Planar bilayer 

       

 

 
Inverted cone 

 

       >1 

Reverse Micelle 

       

 

a0

l
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1.6.  Micellar Solubilization 

An increase aqueous solubility of otherwise sparingly soluble material due to the 

presence of micelles is commonly called micellar solubilization. Solubilization has 

applications both in industries as well as biology due to incorporation of hydrophobic material. 

Sometimes, solubilization process can be considered as partitioning of insoluble material 

between micellar interior and background solution. Depending upon nature and structure of 

solubilizate and surfactant, the process is governed by locus of solubilization. This information 

can be well gathered by NMR technique by obtaining self-diffusion co-efficient of the desired 

material [128,129]. The micellar morphology holds the key to the deciding solubilization 

potential of a typical micelle forming material. The micellar morphology may or may not 

change by the incorporation of solubilizate. The behaviour is well exploited in environmentally 

benign solubilization of hydrophobic material e.g., drug or dyes [130–133]. It may be 

mentioned here that micelles provide a number of sites of varying polarity (Figure 4), where 

additives of matching polarity are stationed at a typical site [134–139].    

 

Figure 4. Schematic representation of solubilization process in a typical micelle 
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As mentioned in the previous section, mixed micelles are formed by more than one 

surfactant. This mixing may result in various structural transitions together with an 

augmentation in solubilization efficacy [28,111,112,140–142]. This approach can be extended 

to increase the solubility of other hydrophobic materials (pesticides, pharmaceuticals, cosmetic 

ingredients, etc.) which are industrially important ingredients. Therefore, the mixing approach 

is an ideal methodology which can be optimized depending upon case-to-case [143–150]. 

1.7.  Micellar Solution as Drug Delivery Vehicle 

Processes such as surfactant-drug interactions, micellar drug solubilization, and 

surfactant-based drug delivery systems are of ongoing importance in the pharmaceutical field 

[151].  The size of the micelle and stability are critical factors in optimizing surfactant-based 

delivery vehicles. Surfactant micelles have been studied from last few decades from the point 

of view of drug-to-gene carriers [152]. Mixed micellar structures have been reported to be 

better systems than individual micelles due to differences in the micellar interior environment 

[153,154]. The micellar interior can serve as a drug carbo space for incorporating various 

nearly insoluble therapeutic materials and can act in controlling release kinetics. The size 

information of micellar systems can help in the bio-distribution and accumulation of drug at 

the desired delivery site [155–158]. The release profile is an essential part of the overall drug 

transportation process. The prolongation of release time of a drug is of paramount importance 

to provide opportunities to bind with receptor at the site (cell membrane). It has been reported 

that drugs can form micellar aggregates in water and can form mixed micelles with an 

oppositely charged surfactant [159–161]. Liposomes are the first lipid-based vehicle to deliver 

drugs in dermis or epidermis regions but unable to deliver required drug concentration with 

gradual circulation [162]. This problem has been solved by taking phospholipid and surfactant 

to make optimised system [163]. This approach has been found successful with a wide variety 
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of drugs [164]. The development of drug specific optimised delivery systems is the topic of 

present time in which application-based carriers are search to achieve the desired goal of release 

kinetics [165–170]. 

1.8.  Relevance of Research Work 

Preceding topics of the present sections show the importance of surfactant association 

process and its modification for required surfactant applications. Blending of surfactants is one 

of the simplest methods to achieve desired solution conditions for targeted applications. 

Morphological changes can affect the desired process by providing an alternative better 

environment for solubilization or drug carrier/release ability. In these directions, studies were 

performed with various conventional surfactants, with or without lipids or phospholipids. As 

we know, gemini has better solution properties (low CMC, high aggregation number, 

anisotropic morphologies, etc.) than its conventional counterparts, people have started using 

geminis with conventional surfactants for blending and achieving desired properties [171–

176]. The last decade witnessed the solution studies on mixtures obtained from exclusive 

blending of gemini surfactants [87,177,178]. However, their potential has not been exploited 

for solubilization efficacy, drug solubilization, or pollutant solubilization. The initial 

researches suggest that such systems show better solubilization efficacy and potential of 

forming higher order aggregates by small changes in chemical structure or in composition of 

the blend [27,28,179,180].  

The present thesis embodies several such instances of the blending of oppositely 

charged gemini surfactants and the resulting influence on solution properties, association 

patterns, and performance towards solubilization efficacy among others. In these directions, 

various ionic gemini surfactants are synthesised and characterised. Such surfactants are having 
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various alkyl chain lengths and spacers and are blended in various fixed concentration to get 

different morphologies of varied electrostatics and shape. The resulted oppositely charged 

gemini mixtures were characterized in terms of their interactions, solubilizing efficacies, and 

nature of the microenvironment. For the purpose, conductance and fluorescence measurements 

are employed to obtain micellar association parameters for further treatment. Various regular 

solution theories are applied and thermodynamic data of interaction together with interaction 

parameter are computed.  

The resulted systems were further studied in context of the presence of various 

morphologies and their charged modulation by blending. For the purpose, DLS, TEM, and zeta 

potential data are collected and combined for the establishment of the presence of various 

charged higher-order aggregates. The size and shape information have been used to formulate 

mixed micellar systems for solubilization experiments. A series of solubilization experiments 

have been performed by taking various polyaromatic hydrocarbons and both extracted natural 

and synthetic drugs. UV-visible spectrophotometry has been employed to generate 

solubilization data and judge the efficacy of the studied systems.  

Based upon above solubilization experiments, few optimized systems are selected for 

the invitro release studies with various drugs. Various release kinetic models were applied to 

observe the release process under physiological conditions. The study provides a hint regarding 

controlled and sustainable release with the selected systems in comparison to conventional 

releasing medium. Antioxidant activity, in the case of an extracted natural drug, has been 

computed using a mathematical formula. A well-known procedure has been used to determine 

the functional stability of the extracted natural drug.  

The cytotoxicity of the optimised systems against MCF-7 (breast cancer cell) has been 
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obtained by a tetrazolium salt MTT assay. IC50 data are acquired by the well-known MTT 

procedure (details are given in Chapters 5 and 6). It has been found that blended systems are 

better for cell proliferation.  

1.9.  Constitution of the Thesis 

The thesis entitles “Solution Behaviour of Aqueous Mixed Surfactant Systems with 

and without Additives” consists of eight chapters including : i) General Introduction; ii) 

Materials and Methodologies; iii) Association Behaviour and Interaction of Oppositely 

Charged Gemini Surfactants in Aqueous Solution; iv) Composition Triggered Morphologies of 

Mixed Oppositely Charged Geminis having Different Chain Length and Spacers; v) Counter 

Charged Geminis Mixture for Solubilization/Release of Raloxifene Hydrochloride; vi) 

Amplification of Curcumin Entrapment/Release in Aqueous Counter Charged Gemini 

Mixtures; vii) Solubilization of Polycyclic Aromatic Hydrocarbons (PAHs) in Individual and 

Mixed Geminis: Implications of Blending  and viii) Overall Conclusion.  
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