List of Tables

Table No.	Caption	Page No.
Table 2. 1	The stable isotopes of the samples and reference foil element along with the natural abundances [7].	22
Table 2. 2	The masses of the samples Sb, V, Rh, Cu, Se and the reference foils Al used in each irradiation along with the thickness.	23
Table 2.3	The experimental details concerning the proton energy and irradiation time.	25
Table 3. 1	The different neutron production reaction channels for the $^{nat}Li(p,n)$ reaction.	33
Table 3. 2	The γ -ray energies of the ¹⁵² Eu sources [8].	37
Table 3. 3	Measured values of fitting parameters of the HPGe detector efficiencies.	38
Table 3. 4	Nuclear spectroscopic decay data half-lives, decay mode, y-ray energies, intensities of the most intense y-rays and reaction thresholds for samples and reference reactions with their uncertainties [8].	42
Table 3.5	The measured $^{121}Sb(n, 2n)^{120}Sb^m$ and $^{123}Sb(n, 2n)^{122}Sb$ reaction cross sections with their uncertainties.	44
Table 3. 6	The measured ${}^{103}Rh(n, 2n){}^{102}Rh, {}^{103}Rh(n, 2n){}^{102}Rh^m$ and ${}^{103}Rh(n, 2n){}^{102}Rh^g$ reactions cross sections with their uncertainties.	44
Table 3. 7	The measured ${}^{51}V(n,p){}^{51}Ti$ reaction cross sections with their uncertainties.	44
<i>Table 3. 8</i>	The measured (n, p) reaction cross sections for Se isotopes with their uncertainties.	44

Table 3.9	The measured ${}^{65}Cu(n,p){}^{65}Ni$ reaction cross sections with their uncertainties.	44
Table 3. 10	The standard $^{27}Al(n, \alpha)^{24}Na$ reaction cross section with their covariance and correlation matrix obtained from the IRDFF-	46
	1.05 database.	
Table 3. 11	The standard ${}^{27}Al(n, \alpha){}^{24}Na$ reaction cross section with their	46
	covariance and correlation matrix obtained from the IRDFF-	
	1.05 database.	
Table 3. 12	The values of γ -ray self-attenuation and low energy background neutrons correction factors used to measure the cross section.	47
Table 3. 13	Compilation of the uncertainties (%) for the measured ${}^{65}Cu(n,p){}^{65}Ni$ reaction cross section.	49
Table 3. 14	The partial uncertainties of various parameters used to obtain	50
	HPGe detector efficiency (Sb and V data).	
Table 3. 15	The partial uncertainties in the HPGe detector efficiency due to the different attributes (Se data).	51
Table 3. 16	The calculated covariance and correlation matrix for the HPGe	51
	detector efficiencies (Sb and V).	
Table 3. 17	The calculated covariance and correlation matrix for the HPGe	52
	detector efficiencies (Se data).	
Table 3. 18	The interpolated detector efficiencies of the characteristics γ- ray of the ⁵¹ Ti and ²⁴ Na product nuclide with their uncertainties along with covariance and correlation matrix.	53
Table 3. 19	The interpolated detector efficiencies of the characteristics γ -	53
	ray of the $^{120}Sb^m$, ^{122}Sb and ^{24}Na product nuclide with their	
	uncertainties along with covariance and correlation matrix.	
Table 3. 20	The interpolated detector efficiencies of the characteristics γ -	53
	ray of the ⁷⁶ As, ⁷⁷ As, ⁷⁸ As, ⁸⁰ As and ²⁴ Na product nuclide with	

	matrix.	
Table 3. 21	The partial uncertainties in various parameters to obtain the $^{121}Sb(n, 2n)^{120}Sb^m$ and $^{123}Sb(n, 2n)^{122}Sb$ reactions cross section.	54
	section.	
<i>Table 3.22</i>	The calculated covariance and correlation matrix at 12.50, 15.79 and 18.87 MeV neutron energies for the ¹²¹ Sb(n, 2n) ¹²⁰ Sb ^m and ¹²³ Sb(n, 2n) ¹²² Sb reactions cross section.	55
Table 3. 23	The partial uncertainties in various parameters to obtain the	55
	(n, p) reaction cross section for Se isotopes.	
Table 3. 24	The calculated covariance and correlation matrix at 10.5,	58
	13.52, 16.86 and 19.81 MeV neutron energies for the	
	$^{76}Se(n,p)^{76}As, ^{77}Se(n,p)^{77}As, ^{78}Se(n,p)^{78}As \text{ and }^{80}Se(n,p)^{80}As$	
	reactions cross sections.	
<i>Table 3. 25</i>	The partial uncertainties and correlations coefficient of various parameters used to obtain the ${}^{51}V(n,p){}^{51}Ti$ reaction cross section.	59
<i>Table 3. 26</i>	The calculated covariance and correlation matrix at 7.87, 13.05 and 16.98 MeV neutron energies for the ⁵¹ V(n,p) ⁵¹ Ti reaction cross section.	60
Table 3. 27	The systematic formulae for (n, p) reaction given by the different authors.	61
<i>Table 3. 28</i>	The systematic formulae for (n, 2n) reaction given by the different authors.	62
Table 3. 29	The systematic formulae for (n, α) reaction given by the different authors.	62
Table 5. 1	The different phenomenological and microscopic models of the optical potential, level densities and γ -ray strength function.	89

their uncertainties along with covariance and correlation

<i>Table 5. 2</i>	The statistical models and parameterizations of the TALYS	89
	(ver. 1.9) code were used to calculate (n, 2n) reaction cross	
	section of ¹⁰³ Rh, ¹²¹ Sb and ¹²³ Sb isotopes.	
Table 5. 3	The statistical models and parameterizations of the EMPIRE	89
	(ver. 3.2.2) code were used to calculate $(n, 2n)$ reaction cross	
	section of ¹⁰³ Rh, ¹²¹ Sb and ¹²³ Sb isotopes.	
Table 5.4	Basic keywords and corresponding values used in input file of	90
	the TALYS 1.9 code to reproduce the cross sections of neutron induced reactions on ¹⁰³ Rh, ¹²¹ Sb and ¹²³ Sb.	
Table 5.5	Basic keywords and corresponding values used in input file of	91
	the EMPIRE 3.2.2 code to reproduce the cross sections of	
	neutron induced reactions on ^{103}Rh , ^{121}Sb and ^{123}Sb .	
Table 5. 6	The $(n, 2n)$ reaction cross section for ¹⁰³ Rh, ¹²¹ Sb and ¹²³ Sb	109
	isotopes estimated using the systematic formulae.	
Table 6. 1	The experimental value of D_0 for the ⁶⁵ Cu was obtained from	119
	the RIPL-3 database and compared with the theoretical values	
	predicted for each level density model by TALYS (ver. 1.9)	
	code.	
<i>Table 6. 2</i>	The statistical model codes used for the default theoretical	121
	calculations of the (n,p) reaction cross section of the ⁷⁶ Se,	
	⁷⁷ Se, ⁷⁸ Se, ⁸⁰ Se, ⁶⁵ Cu, ⁵² Cr, ⁵¹ V and ⁴⁸ Ti nuclei.	
Table 6. 3	Summary of the ${}^{65}Cu(n,p){}^{65}Ni$ reaction cross sections from the	128
	previous measurements.	
Table 6.4	The TALYS (ver. 1.9) adjusted model calculations with different	134
	statistical models and parameters of the ${}^{65}Cu(n,p){}^{65}Ni$ reaction	
	cross section.	

Table 6.5	The EMPIRE (ver. 3.2.3) adjusted model calculations with	135
	different statistical models and parameters of the	
	$^{65}Cu(n,p)^{65}Ni$ reaction cross section.	
Table 6. 6	Theoretical models and optimum parameters are used in	140
	TALYS calculations to reproduce the data of ^{52}Cr isotope.	
Table 6. 7	Cross section for ${}^{51}V(n,p){}^{51}Ti$ reaction estimated over the	143
	threshold to 22 MeV neutron energies using different optical	
	potential models of the TALYS code.	
Table 6.8	Cross section for ${}^{51}V(n,p){}^{51}Ti$ reaction estimated over the	143
	threshold to 22 MeV neutron energies using different pre-	
	equilibrium models of the TALYS code.	
Table 6. 9	Cross section for ${}^{51}V(n,p){}^{51}Ti$ reaction estimated over the	143
	threshold to 22 MeV neutron energies using different level	
	density options of the TALYS code.	
Table 6. 10	The default and adjust level density parameters of the	144
	$^{51}V(n,p)^{51}Ti$ reaction cross section.	
Table 6. 11	Theoretical models and optimum parameters are used in	152
	TALYS calculations to reproduce the data of ⁴⁸ Ti isotope.	
Table 6. 12	The (n, p) reaction cross sections for ⁴⁸ Ti, ⁵¹ V, ⁵² Cr and ⁶⁵ Cu	155
	calculated from the systematic formulae.	
Table 6. 13	The (n, α) reaction cross sections for ⁴⁸ Ti, ⁵¹ V, ⁵² Cr and ⁶⁵ Cu	156
	calculated from the systematic formulae.	
Table 6. 14	The (n,p) reaction cross sections for ⁷⁶ Se, ⁷⁷ Se, ⁷⁸ Se and ⁸⁰ Se	157
	calculated from the systematic formulae.	