List of Figures

Figure No.	Caption	Page No.
Fig. 1.1	Schematic representation of Neutron Activation Analysis steps	2
	and illustration of the neutron induced reaction process.	
Fig. 1.2	A schematic diagram of the Accelerator Driven Sub-Critical	3
	System (ADSs).	
Fig. 1.3	The GUI of the EXFOR database.	6
Fig. 1.4	The GUI of the ENDF database.	7
Fig. 1.5	The GUI of the RIPL database.	8
Fig. 1.6	The GUI of the NNDC database.	8
Fig. 1.7	The comparison of the existing datasets in the literature and	10
	evaluated data for the ${}^{51}V(n,p){}^{51}Ti$ and ${}^{65}Cu(n,p){}^{65}Ni$	
	reactions cross section.	
Fig. 1.8	The comparison of the existing datasets in the literature and	11
	evaluated data for the $Se(n, p)As$ reactions cross section of	
	^{76, 77, 78,80} Se isotopes.	
Fig. 1.9	The comparison of existing literature and evaluated data of the	12
	$^{121}Sb(n, 2n)^{120}Sb^{m}$ and $^{123}Sb(n, 2n)^{122}Sb$ reactions.	
Fig. 1.10	The comparison of the existing datasets in the literature and	13
	evaluated data for the ${}^{103}Rh(n, 2n){}^{102}Rh$ reaction cross section.	
Fig. 1.11	The comparison of existing datasets in literature and evaluated	14
	data for the 48 Ti(n, p) 48 Sc and 52 Cr(n, p) 52 V reactions cross	
	section.	
Fig. 2.1	A schematic diagram of the BARC-TIFR Pelletron accelerator	20
	facility, Mumbai.	
Fig. 2.2	The 6M irradiation set-up and target assemblies at BARC-TIFR	21
	Pelletron accelerator facility Mumbai.	
Fig. 2.3	Sample preparation rolling machine and pelletizer at target lab	23
	of BARC-TIFR facility.	
Fig. 2.4	A schematic representation of the arrangement for neutron	24
	irradiation.	

Fig. 2.5	A schematic block diagram of gamma spectrometry set-up at	26
	BARC-TIFR facility.	
Fig. 2.6	The GUI of the Genie and MAESTRO Interface software.	29
Fig. 2.7	Off-line γ -ray spectrometry method setup along with lead shield	30
	HPGe detector.	
Fig. 3.1	The neutron flux spectrum produced by the ^{nat} Li(p,n) reaction	34
	at 0° of the 10, 15 and 20 MeV proton energies are obtained	
	from the reference data of the C. H. Poppe et al. [3] and M. W.	
	McNaughton et al. [4].	
Fig. 3.2	The energy calibration curve of the HPGe detector.	36
Fig. 3.3	The efficiency calibration curve of the HPGe detector with and	37
	without coincidence summing effect correction factor K_c of the	
	HPGe detector for the ¹⁵² Eu source.	
Fig. 3.4	The HPGe detector which is properly shielded by lead reduces	39
	the contribution of natural radioactivity.	
Fig. 3.5	The off-line γ -ray spectrum of a ¹⁵² Eu point source obtained	40
	with a HPGe detector.	
Fig. 3.6	Off-line γ -ray energy observed after the neutron irradiation.	42
	The y-ray transitions from the decay of the Ti, Ni, Rh, Sb, As	
	and Na nuclei have been marked.	
Fig. 3.7	The standard IRDFF-1.05 data for the ${}^{27}Al(n, \alpha){}^{24}Na$ monitor	45
	reaction.	
Fig. 4.1	Nuclear reaction cross section for the three reaction	66
	mechanisms with emission energy.	
Fig. 4.2	Schematic representation of the $a + A \rightarrow [C^*] \rightarrow B + b$ via the	68
	formation of the compound nucleus C^* .	
Fig. 4.3	Schematic representation of the way that the low-lying states of	69
	the residual nucleus B can be excited in a direct reaction $a +$	
	$A \rightarrow B + b.$	
Fig. 4.4	The pre-equilibrium mechanism based on the exciton model.	73

Fig. 4.5	A simplified representation of the function and incorporated	80
	models of the TALYS code.	
Fig. 4.6	The GUI of the EMPIRE code.	81
Fig. 5.1	The comparison of existing literature and evaluated data of the	<i>93</i>
	$^{121}Sb(n,2n)^{120}Sb^{m}$, $^{121}Sb(n,2n)^{120}Sb^{g}$ and $^{121}Sb(n,2n)^{120}Sb^{g}$	
	reactions.	
Fig. 5.2	The experimental data of the $^{121}Sb(n, 2n)^{120}Sb^m$,	96
	$^{121}Sb(n,2n)^{120}Sb^{g}$ and $^{121}Sb(n,2n)^{120}Sb$ reactions and	
	theoretical calculations from the TALYS and EMPIRE codes	
	using different level density models.	
Fig. 5.3	The comparison of existing literature and evaluated data of the	<i>98</i>
	$^{123}Sb(n, 2n)^{122}Sb^{m}$, $^{123}Sb(n, 2n)^{122}Sb^{g}$ and $^{123}Sb(n, 2n)^{122}Sb^{g}$	
	reactions.	
Fig. 5.4	The experimental data of the $^{123}Sb(n, 2n)^{122}Sb^m$,	100
	$^{123}Sb(n, 2n)^{122}Sb^{g}$ and $^{123}Sb(n, 2n)^{122}Sb$ reactions and	
	theoretical calculations from the TALYS and EMPIRE codes	
	using different level density models.	
Fig. 5.5	Isomeric cross section ratio $\left(\sigma_m/\sigma_g ight)$ and theoretical	102
	calculations from the TALYS and EMPIRE codes using	
	different level density models.	
Fig. 5.6	Present measurements and reported literature isomeric state	104
	cross sections are compared with the TALYS (ver. 1.95)	
	calculations based on the level density models.	
Fig. 5.7	Present measurements and reported literature ground state	105
	cross sections are compared with the TALYS (ver. 1.95)	
	calculations based on the level density models.	
Fig. 5.8	The present measurements and reported literature cross	106
	sections are compared with the latest evaluated data libraries.	
Fig. 5.9	Present measurements and reported literature cross sections	107
	are compared with the TALYS (ver. 1.95) (a and b) and	

	<i>EMPIRE</i> (ver. 3.2.3) (c and d) calculations based on the level	
	density models.	
Fig. 5.10	Measured isomeric cross section ratio (σ_m/σ_g) and TALYS	108
	(ver. 1.95) theoretical calculations based on the	
	phenomenological and microscopic level density models.	
Fig. 6.1.	(a) and (b) Comparison of the $^{76}Se(n,p)^{76}As$ reaction cross	123
	sections with literature data form EXFOR compilation, with	
	JENDL, TENDL and ENDF evaluated libraries and with the	
	theoretical results obtained from EMPIRE-3.2.2 and TALYS-	
	1.9 codes.	
Fig. 6.2.	(a) and (b) Comparison of the $^{77}Se(n,p)^{77}As$ reaction cross	125
	section with literature data form EXFOR compilation, with	
	JENDL, TENDL and ENDF evaluated libraries and with the	
	theoretical results obtained from EMPIRE-3.2.2 and TALYS-	
	1.9 codes.	
Fig. 6.3.	(a) and (b) Comparison of the $^{78}Se(n,p)^{78}As$ reaction cross	126
	sections with literature data form EXFOR compilation, with	
	JENDL, TENDL and ENDF evaluated libraries and with the	
	theoretical results obtained from EMPIRE-3.2.2 and TALYS-	
	1.9 codes.	
Fig. 6.4.	(a) and (b) Comparison of the ${}^{80}Se(n,p){}^{80}As$ reaction cross	128
	section with literature data from EXFOR compilation, JENDL,	
	TENDL and ENDF evaluated libraries and with the theoretical	
	results obtained from EMPIRE-3.2.2 and TALYS-1.9 codes.	
Fig. 6.5.	Comparison of the present data with the previous	131
	measurements taken from the EXFOR compilation, data of S.	
	M. Grimes et al. and the evaluated data from the ENDF/B-	
	VIII.0, JEFF-3.3, JENDL-4.0/HE, CENDL-3.2, TENDL-2019	
	and FENDL-3.2 libraries.	
Fig. 6.6.	The present ${}^{65}Cu(n,p){}^{65}Ni$ reaction cross section along with	133
	the experimental data and theoretical values based on the (a)-	

(b) TALYS (ver. 1.9) and (c)-(d) EMPIRE (ver. 3.2.3) codes
with the default option.

- **Fig. 6.7.** The present ${}^{65}Cu(n, p){}^{65}Ni$ reaction cross section along with 136 the experimental data and adjusted theoretical values obtained from the (a)-(b) TALYS (ver. 1.9) and (c)-(d) EMPIRE (ver. 3.2.3) codes with adjusted parameters.
- Fig. 6.8. Comparison of the activation cross section [7-21] and total 136 proton emission cross sections [22] with the theoretical calculations performed by the TALYS code.
- **Fig. 6.9.** The contribution of the cross section in ${}^{65}Cu(n,p){}^{65}Ni$ reaction 137 from different reaction processes (direct, pre-equilibrium and compound) to the total reaction cross section was calculated using the TALYS code.
- Fig. 6.10. Literature cross sections compared with the latest evaluated 139 data libraries.
- Fig. 6.11. Literature cross sections compared with the TALYS (ver. 1.95) 141 calculations based on the phenomenological and microscopic level density models (a-b) Default (c-d) Adjusted.
- **Fig. 6.12.** The comparison of the measured ⁵¹V(n,p)⁵¹Ti reaction cross 145 section and the experimental and JENDL/AD-2017, ENDF/B-VIII.0 and TENDL-2019 evaluation.
- **Fig. 6.13.** The comparison of the measured ${}^{51}V(n,p){}^{51}Ti$ reaction cross 148 section with literature, evaluations and with the theoretical calculations using the statistical Talys (ver. 1.9) code using different (a) optical potential models and (b) pre-equilibrium models.
- Fig. 6.14.The comparison of the ${}^{51}V(n,p){}^{51}Ti$ reaction cross section with149literature, evaluations and with the theoretical calculations

	using the statistical Talys (ver. 1.9) code using different (a)	
	Phenomenological and (b) Microscopic level density models.	
Fig. 6.15.	The theoretical calculations of the ${}^{51}V(n,p){}^{51}Ti$ reaction cross section as performed by the Talys (ver. 1.9) code with the	150
	adjusted parameters of the (a) Phenomenological and (b)	
	Microscopic level density models.	
Fig. 6.16.	The contribution of the different cross section in ${}^{51}V(n,p){}^{51}Ti$	151
	reaction.	
Fig. 6.17.	Literature cross sections compared with the latest evaluated	152
	data libraries.	
Fig. 6.18.	Literature cross sections compared with the TALYS (ver. 1.95)	154
	calculations based on the phenomenological and microscopic	
	level density models (a-b) Default and (c-d) Adjusted.	