Chapter 2

Theoretical framework

This chapter presents the pre-requisite theoretical formalisms that were utilized
for the current investigation. Various elastic and inelastic cross-sections are
calculated for the electron collision with target systems for the energy range
0.1-5000 eV. For low energy calculations (i.e., 0.1-20 eV) R-matrix approach
and for intermediate to high energy calculations (i.e., ionisation threshold to
5000 eV) spherical complex optical potential (SCOP) formalism is employed.
Complex scattering potential-ionisation contribution (CSP-ic) technique is
used to extract out the ionisation cross-sections from the total inelastic cross-
sections. Various correlations between the cross-sections and target properties
have also been analysed and discussed, leading to the prediction of
polarizability and dielectric constant of the targets. The computation
methodology in case of condensed or solid phase target systems is also

described here.

2.1 Introduction

When human mind encounters the word "scattering," they immediately conjure up an image
of two individuals colliding with each other. This vision is a product of the way we look at
the world as a whole. On the other hand, nature is incredibly mysterious, and at every scale,
there is always something exciting and unexpected to be discovered there. The large-scale
(macroscopic) world embodies many particles of micro level, and the concepts/theories that
apply in the large-scale universe could not apply in the meticulous micro-scale world. Since
many observations overruled the laws of classical physics, quantum mechanics was
piecemeal developed to study the microscopic region of our world. Within the realm of
quantum mechanics, the term "scattering" refers, in its most fundamental sense, to a change
in the trajectory of the projectile that is brought about by the existence of the target particle.

When this collision transpires, there are an enormous number of various processes that takes
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place. The probability of occurring all of these scattering processes can be quantified through

the scattering cross-sections.

2.1.1 Physical interpretation of cross-sections

Consider the standard scattering experiment depicted in figure 2.1, where a uniform and

collimated beam of monoenergetic electrons, e is aimed at a scatterer (target) X.
Additionally, it is presumed that the target behaves as a sole system in order to assure a
solitary collision situation. In addition, the amount of time taken by electrons to travel
through the interaction area is going to be significantly less than the amount of time it took

before the incident beam was activated. This leads to a state of stable operation.

Detector

Scattered beam

Incident
beam

|

Figure 2.1 Schematic diagram for scattering of projectile particles from target system

Owing to the interaction between the incident beam and the atomic or molecular target, a
certain number of scatterers are able to block the path of the incoming beam of electrons.
This interruption can just be the result of an interaction among the two charged entities and
not an actual physical blockage. This number shall hereafter be referred to as Nx. Now, a
particular effective region of the scatterers will block the path that the incident electron is
travelling in. Let A represent the effective region that is obstructed by Ny scatterers. Let N. be
the number of incident electrons that reach the target X per unit of time. Only a certain
fraction of these N. will engage in interaction with the X system. The notation "N;," is used to

refer to this quantity per unit of time. It should be evident that this represents a portion of Ne.
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This fraction is dependent on the probability of the occurrence of the interaction between the
electrons and scatterers. Let us refer this as P, which stands for the probability that an
electron in the incident flux will interact with the scatterer and, as a result, be removed from

the incoming flow via scattering.

Ny =P x N, (2.1

This Ny, will be directly influenced by the incoming flux ((De = Ne / A) and Ny,

Nin o @, - Ny (2.2)

Ny = Q- 9, Ny (2.3)
P-Ng

Q=300 (2.4)

This Q is referred to as the scattering cross-section, and its physical dimension is [L?]. It
provides a measurement of the propensity of electrons and target X to interact and thus, is
proportional to the probability of an interaction. Cross section refers to the effective target

area that intercepts and scatters the projectile's incident beam [1].

2.1.2 Optical Theorem

The Schrodinger equation needs to be solved in order to find a solution to any scattering

issue. The equation is given as follows,

~ L) + V) W) = EW () (2.5)

¥ here describes the system's state. The complete solution to this equation is comprised of
two waves: a scattered wave and an incident wave. It is considered that the wave associated
with the scattered particles was spherically symmetric and recedes with the distance. The

incoming wave was presumed to be a plane wave. Therefore, the scattered wave should take

the form of (1/,), with the area (1/r)2decreasing to 0 (zero) as r — oo in the asymptotic
region. Given that the detector is located at such a considerable distance from the scattering
system that it is considered to be infinite, thus this particular distance is of relevance. As a
result, to find a solution of any scattering problem, we must explore the solution in this
region. In addition, the amplitude of the scattering will be dependent on a specific angle
(6, @ or 2), which indicates the direction in which the scattering takes place. The equation

for the total wave (comprised of both the scattered and incident wave) is written as,
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(2.6)

where, C is the normalisation constant, the wave vectors for incident and scattered wave are
ko and k, respectively. The scattering amplitude is denoted by f (8, ¢). Here, 6 is the angle

between k, and k.

Consider the probability current density as,

J(r) = Re [% W (r) - W(r)] 2.7)

Taking into account the radial component and neglecting the (1/ r2) term compared to the

(1/ r), the solution provides three terms that correspond to the incoming flux, the interference

flux and the outgoing flux. A plane wave is taken into account while describing the incident
term. It behaves like a pure incoming wave, as if there is no scattering at all, whatever enters
the system leaves the system. Hence, the incident term vanishes. Thus, for the steady state

expression,

f]out(r) da + f]inter(r) "da=0 (2.8)

The solution provides as follows, by considering the outgoing term [1],

[oue () -da = Z|CUI? [If (@)1 - d2 2.9

Now, the single differential cross-section, Z—g is defined by the term |f(2)|?. Thus, the above

equation is rewritten as

[oue () - da == [C(k)?Qr (2.10)

At 6 = 0°, where forward scattering occurs, we discover that the interference term becomes
significant. This term approaches zero in the asymptotic area, which encompasses all other

angles. However, for extremely small angles, the term can be written as

[Jinter () - da =2 |CUI? x 2 Re [£(0) (T} + £ () ] 2.11)
[ Jinter @) - da = X |C(R)I? x =% Im[f(0)] (2.12)
From equations 2.8, 2.10 and 2.12,

Qr =7 Imlf(0)] (2.13)
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The f(0), scattering amplitude at forward angle, and Q are related through the equation
2.13, Bohr-Peierls-Placzek relation, also clled as the optical theorem [1]. The shadow that is
cast by the scatterer (target) in the forward direction recedes the intensity of the incident
wave, which results in the scattered particles being removed in a manner that is proportional
to the Q. The theorem's physical foundation is the principle of flux probability conservation.
Interference between incident and scattered waves at zero forward angle is responsible for

this relationship, as was previously discussed.

2.2 Spherical Complex Optical Potential approach (SCOP)

Any scattering event can be described and solved through the Schrodinger equation (equation
2.5). The potential V(r) that can be incorporated into Schrodinger equation 2.5 will be
developed here. This SCOP method is a way for computing the interaction potential, utilised
to obtain the scattering cross sections. Before it was applied to collision physics, in the field
of nuclear physics, this idea of a complex potential was initially established [2]. The
generation of this potential for electron scattering systems will be covered in the following

subsections.

2.2.1 Interaction potentials

Elastic and inelastic channels can be used to broadly categorise the events that may occur as a
result of the impact of projectile electrons onto the target. Quantification of elastic events can
be done using the polarisation, exchange, and static effects and that for inelastic events can be
done using absorption effects. A complex potential characterises the dynamics of the collision
between the electrons and target; the real component of this potential represents the elastic
events, while the imaginary part accounts for the inelastic ones. This is similar to how the
complex refractive index works in optics, where the real part of it relates to the portion of the
wave that passes through the medium, while the imaginary part represents the portion of the

wave that is absorbed by the medium. Therefore, the complex potential will be,

Ve(r, E)) = V(1 Ep) + Veu (1, Ep) + Vs () + iV (7, Ey) (2.14)

where, V,, Vo, Vs and V;, represent the polarisation, exchange, static and absorption potential,

respectively. E; is the incident energy of the projectile electrons.
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Charge density and static potential

Poisson's equation, a fundamental tool, allows us to express the correlation between the static

potential, V; and the desired target charged cloud density p(r") [3.4] as,

-7 1 12 7 ’ 1 o ! ! !
Vo(r) = —+ 4m [;forp(r)rzdr +;f0 p(r)rdr] (2.15)
For a variety of atoms, Cox and Bonham [5] have successfully fitted the radial charged

density function by making use of the potential field parameters A; and y;. The V; and p(r)

are given by an analytical form as,

-Z —7.
Vo(r) = = Ziyie M (2.16)

A —7.
p(r) = rmZiﬂ'lz yie M (2.17)

Polarisation potential

Polarisation potential, abbreviated as V},, is developed when the charge cloud of the target
system is momentarily redistributed as a result of the electric field induced by an incoming
electron. This results in the production of multipole moments. The possibility for correlation
polarisation can be described by a number of various models. This calculation makes use of

the parameter-free model that Padial and Norcross [6] suggested,

ﬁco(r)’ r S rC
%(T‘):{qu' T>T‘C (218)
2r4

Here, 1, is the first crossing point between the long-range dipole component, %‘f and the

short-range polarisation component 9., (7).
It has been shown by Perdew and Zunger [7] that,

0.033In1s — 0.584 + 0.00133 Inrs — 0.008415, 1< 1
8o (1) = { =v (14281 /s +3Bors)
(1+B1yTs+B275)”

(2.19)

7'521

1/
Here, 75 is the density parameter <= (411; (r)) 3). The constants —y, f; and 8, have the

values 0.1423 a.u., 1.0523 a.u. and 0.3334 a.u., respectively.
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In the vicinity of target, polarisation potential should approach the 9.,, and it should have the
right asymptotic form for larger distance r. In the study of Zhang et.al. [8] presented new

polarisation potential, which can be stated in mathematical form as,

Vooo(r) = ——2— (2.20)

2(r2+rco)
Where, the cur-off parameter, ¢, can be found by plugging the equation V., (1) =

4d /ero = ¢, (0). This brings V., close to the asymptotic form for larger distance and

makes V¢, = Yo near the target area.

Exchange potential

When there is an electron as a projectile, there is a chance that it will swap places with one of
the electrons in target atomic or molecular system that it is aiming at. The potential that
results from the fact that electrons cannot be distinguished from one another is handled by
employing the exchange potential, V,,. Exchange primarily has the effect of keeping the
approaching projectile electron off from the target electron with same spin. By doing so, the
whole wavefunction maintains its anti-symmetry regarding the changing of the projectile
electron's coordinates with that of the target. Considering the electron to be a Fermi gas that
adheres to Pauli's exclusion principle, Hara [9] developed a "free electron gas exchange
model", also called as "Hara Free Electron Gas Exchange model", for the purpose of
calculating V,,.. The amount of energy that is exchanged, is determined by adding together all
of the momentum states that go up to the Fermi energy, &r. The ultimate realisation of the

potential is expressed here as,

Vex r, B = 25 [0.5 = 55 i [ 24]] @21)

(k2+kE+2(IE)) /2
kr

2 .
, k= 8T Ei The ionisation energy of the

Here, kj is fermi wave vector. £ = =

target is denoted by (/E).

Due to the emergence of multiple inelastic events with rising of the energy, V., is dominant at
lower energies and begins to diminish as energy rises. Furthermore, at a greater radial

distance, the exchange potential's contribution becomes weaker.
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Absorption potential

The absorption potential, V,; represented by the imaginary component of the complex
potential V. in equation 2.14, is responsible for all the scattered flux losses across all the
permissible pathways of electronic excitations and ionisations. The quasi-free, dynamic Vy,

reported by Staszewska et.al. [10], has non-empirical expression as,

Vao (1 E) = p(r) | —OST, (5i35) 0" = k = 2) (s + Ay + 43)] (222)

Here, T; is local kinetic energy of the projectile electron given by, T; = E; — V; — V., and

Heaviside step-function is denoted as 6 (x).

5k
A, ==L
17 2a
ki (3k3—5p2
A2 — F( F p)

(p?-k3)"

(2k2+20-p?)>°

— 2 2
A = 20(2k% + 20 — p?) Em

(2.23)

With inelastic channels, viz., electronic excitations or ionisations, the threshold energy is set
by the parameter A. The inelastic pathways are blocked for E; < A. In addition, discrete
contribution of inelastic channel, i.e., excitations can occur beneath the target's ionisation
threshold. To avoid a disproportionate lost flux into inelastic pathways at the intermediate
energy, an energy dependent form for A, as provided below is therefore required to achieve

the desired results,

A(E;) = 0.8(IE) + B[E; — (IE)] (2.24)
To calculate 5, A = (IE) at E; = Ep (energy at which the Q;y; is highest). After Ep, A is held

at a constant and is made to be equal to /E (ionisation energy).

2.2.2 Partial wave analysis

The final complex potential defined as above (equation 2.14) then incorporates into the
Schrodinger equation, and final Schrodinger equation is solved through the partial wave
analysis method by computing the phase shifts. Partial wave analysis primarily pertains to the
potentials who are spherically symmetric. The system is perfectly symmetrical in the
incidence direction when the potential is spherical. As a result, the wave function and f (60, ¢)

are purely reliant on 8 and are unaftected by ¢.
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Pure elastic scattering

A universal solution of the Schrodinger equation can be written as

Y(r) = Zim ComRuc (1) Yim (6, @) (2.25)
In this case, m = 0 since the system does not change with respect to the ¢, an azimuthal
angle. Additionally, under these circumstances, y;,,,(6,0)~P;(cos 8). As a result, the above

equation of ¥ (r) will be,
Y(r,0) = XiZoa; Ru(r) Pi(cosb) (2.26)
Each of these terms, referred to as a partial wave, is an eigenfunction of L, and L?operators.

Considering the incident part of the equation 2.6 as a superposition of the eigenstates of

angular momentum operators,

W(r,0) = $i2,i' (2L + 1)j,(kr)P,(cos 0) + f(8) ZL2 (2.27)

Now, at the asymptotic region, this ¥ (r, 8) has the form as follow by considering the Bessel

function, j;(kr) atr — oo,

exp (lkr)

W(r,0) = ¥, il (2L + 1) P,(cos 6) ( )+f(6 @) E2UD (2.28)

¥(r,0) ~ —ZLEE 5o 121 + 1) Py(cos 6) + ex”:“‘” [£©) + 5 Bi2o(=D) (D' 2L + 1)Py(cos 6)]

2ikr

(2.29)

eikr(_l‘)l_e—ikr(i)l
2

where, sin (kr —gl) = (2.30)

Now, the radial term of ¥ (r, 8) from equation 2.26, should satisfy the radial equation and as

the asymptotic region is of relevance, the equation will be,

l(l+1)

[+ k2 = 2y () -

o ]( Ri(r)) =0 (2.31)
[:T + k2| (rRye(1)) = 0 (2.32)

Here, for deriving the above equation, the fact that V(r), potential will be 0 at the large

distance, has been taken into consideration.

By using the Neumann functions, 1;(r) and Bessel functions, j;(r), the generalized solution

of equation 2.32 can be written as,
Rie(r) = Dy ji(r) + Eymi(r) (2.33)
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And asymptotic form of the R, (r) can be derived by considering the asymptotic values of
m(r) and ji (1), as

. sin(kr—gl) cos(kr—%l)
lim Ile(r) 4 Dl o - El .
T—00

Take, C; = /D + E} and tan(6;) = —g—i

(2.34)

Then, Ry, (r) at asymptotic region,

sin(kr—§l+6l)

- (2.35)

lim Ile(r) i Cl
r—oo

Here, §;, a fingerprint of the scattering system, is known as phase shift. It is expected that
cross sections will be dependent on this §;. Solving the Schrédinger equation in the area r <
a, where a is the bounded range of the potential V(r), will allow for the numerical
determination of these phase shifts. As a result of the boundary condition, it is anticipated
that the R (), as well as its derivative and logarithmic derivative, will be continuous when
r = a. Thus, for r = a, we have

R (k,7) = D,(k) tan &,(k) [M — (1) (2.36)

tan 6;(k) r=a

14R; _

Then,atr = a, Ry

djy(kr) _ dnykr)
[jl(k,r) —ny(k,r) tan &;(k)

L L= tan 6l(k)]
Hence, phase shift, §; can be obtained from,
djj(ka) d

jilka) RTPERL
tan &,(k) = ar dr 2.37
1(k) [kdna(fa)—m(ka)ﬁfl% ( )

Now, from the equation 2.35, the ¥ (r, 8) from equation 2.26 can be written as,

sin(kr —%l + 61)

— (2.38)

lim¥(r,0) = Y2,a;(r)P,(cos )
T—00

This is the deformed plane wave, which can be distinguished from the incidence wave by a

phase shift, §;. An alternative formulation of the above equation is as,

_ exp(—ik )

o0 s , ik 0 . .
) vzl exp(—iy) Py(cos 0) + 2D 5 ay (=)' exp (6) Py(cos 0)

¥(r,6) - 2ikr

(2.39)

Now, from equation 2.29 and 2.39, by equating the coefficient of term, w
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f@) = ﬁzl(Zl + 1)P;(cos 0) (exp(2i6;) — 1) (2.40)

where, 2198 is defined as the S-matrix (scattering matrix) and |S;(k)| = |e*0¥)| =1 for

pure elastic case.
Now, Q7 can be derived from f(8) as,

Qr = £1Q1 = X (2L + 1) sin?s) 241)

where, Q; represents the cross section for each partial wave corresponding to different

angular momentum states.

Let's now determine whether our proposed solution satisfies optical theorem. From equation
2.40,

£(0) = %Zf‘;O(ZI + 1) (sin 6, cos &, + isin?4)) (2.42)

Hence, Qr = =*Im[f(0)] = X (2L + 1) sin?5, (2.43)

Therefore, we conclude that the condition holds, and since scattering reduces the particles in

the incident beam, the total cross section, Q is proportional to this reduction.
Inelastic scattering

When dealing with inelastic scattering, it is important to account for how the flux is absorbed
by various inelastic channels. For this, the complex form of phase shifts has been introduced

and hence,

Si(k) = ny(k)e? Re@) (2.44)

Here, n;, = e~2™©D s inelasticity factor with values 0 < n; < 1.
Hence, now the f(8), scattering amplitude with the inelastic channel involved will be,

f@) = ﬁzl@l + 1) [exp(2i(Red; + iIm&;)) — 1]P;(cos 6) (2.45)

Then, the elastic, inelastic and total cross sections can be given as,

Quner(k) = 5 Xi(2L + 1) (1 — e™*mD) (2.46)
Qei(k) = %Z,(Zl + 1) (exp(2i(Res; + iIm&;)) — 1)? (2.47)
Qr(k) = 5321+ 1) [1 —n, cos(28)] (2.48)
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Therefore, we conclude that a suitable potential V (r) is required that can represent the whole
scattering system, and wherefore the phase shifts can be derived to calculate the cross

sections.

2.2.3 Numerov Method

The procedure for solving the Schrodinger equation, once the interaction potentials have been
obtained, is described in this subsection. The famous multi-step Numerov method is
employed here to solve the 2™ order differential equations. The requirement that must be met
in this scenario is that the differential equation must not contain a 1% order differential term.

By modifying the following terms in equation 2.31,

w (k1) = TR (k) and G(r) = —2[E; — V()] + =2 (2.49)
The radial equation 2.31 will be as,
d’u _

The above differential equation can be seen as an analogue to a one-dimensional Schrodinger
equation, making it an excellent candidate for the implementation of the Numerov technique.
In addition, r fluctuates continuously from 0 to oo; hence, in order to arrive at a numerical
solution, this continuous fluctuation is transformed into extremely short finite intervals h;
therefore, r = 0, h, 2h, ..., 00. For a given value of r, we can now employ the Numerov

method to determine .

Upyq = A 2.51)

This formula is used to determine u;,, recursively if the previous solutions were «; and
u;_1. In a similar fashion, further solutions such as 1¢;,, 1; 3, %; 44, ... can be computed. The
higher order functions of « can be calculated by applying the above equation once
appropriate initial solutions have been selected for the functions «, and «,. We've set h to be
between 0.001a, and 0.01a, for this study. However, the impact energy and the system
considerations dictate the mesh size h that should be used. The derivative of the « at r = d

has also been calculated with the help of the numerical differentiation formula. The value of
log derivative (le'l %) can be determined using both « and its derivative. So, the usual

formalism given in equation 2.37 can be utilised to determine the phase shifts, §; for a given
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potential. It is common practise in such numerical approaches to iteratively adjust values of
parameters like d and h until the convergence is reached in §; and cross sections. It is
important to notice that as the energy of the incident electron increases, a greater number of
partial waves are needed for the solution to converge. For electron scattering, for instance, 18
partial waves were employed at 20 eV for solution to converge, whereas as many as 50 were

used for the same purpose between 300-5000 eV.

2.2.4 Condensed/Aqueous phase computation

The methodology that was developed and discussed in this chapter is for the gaseous phase is
for gaseous phase target system and hence, is not appropriate for the calculation of the
aqueous or condensed phase. When dealing with the phases other than gaseous, the target
cannot be seen as an autonomous entity; rather, it is necessary to take into account the
impacts of its neighbourhood. When the projectile energy is equivalent to the first ionisation
energy (IE) of the molecular target, the outermost electron will be expelled from the
molecule while it is in its free phase. This means that the e-molecule interaction begins to
undergo inelastic processes at the threshold value, IE. This problem is especially tricky in a
liquid, aqueous or a condensed substance. lonisation does not take place until the projectile's
impact energy is greater than /E, by an amount that is equivalent to the energy-band gap,

denoted by Egqp, [11,12]. To put it another way, the ionisation threshold value will be A=
IE + Egqp.

With this modified A (equation 44), the final V,,,; is formulated with the new threshold value,
which then fed into the time-independent Schrédinger equation. This Schrodinger equation is
then solved utilising the partial wave analysis method through computing the complex
scattering phase shifts, §;. A phase shift is consequently created for each partial wave that
contains information about the collision process. The resulting phase shift is used to
determine the Q;,,,; using the scattering matrix (S;(k) = e219:(9) as seen before in case of the

gaseous phase target systems.

For the present work, we have computed the inelastic and ionisation cross sections for the
aqueous DNA constituents. In addition to cross-sections, we have also determined the
inelastic mean free path, abbreviated as IMFP, for the various inelastic processes that have
been explored here. The equation illustrates the relationship between the IMFP and the

inelastic cross sections, can be given as,
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1
NQinel

2.52)

Ainet =

In which, N is the number density of the aqueous or condensed target system, expressed as

N = %. Here, M is the molecular mass, p is the target material density and N, is the

avogadro’s number.

Further, the electron stopping power or energy loss per unit path length of electron in the

. dE\ . . . d .
target medium (d—i) is also evaluated in terms of mass stopping power %(d—i), which takes

into account the density of the medium from the following equation [13],
1(dE\ _ Ny =
~>(%) = 3 EQune (2.53)

where, E is mean excitation energy of the aqueous or condensed target system.

When the particle penetrates the distance r that the particle travelled in the medium, the
absorbed dose, D is also obtained from the following equation at the distance [14,15],
(&)

D= szz (2.54)
All of these applied quantities are significantly essential in the modelling of the DNA damage
assessment and since human body believed to be consists of about 70% water, the DNA
materials are always found to be covered with those water molecules through hydrogen
bonding [16,17]. Therefore, for the present calculation, we considered the aqueous DNA
compounds to deal with the more realistic picture of it. The computed results for this case can

be found in the chapter V of this thesis.

2.2.5 Two-parameter semi-empirical method (2p-SEM)

Earlier work examined the Qr's dependency on impact energy for both moderate [18,19] and

high energies [20,21] and provided the following formula,

Qr =15 (2.55)

where the value of parameter A is determined by the molecular properties, such as the size of
the molecule and its polarisability. The value of B at high energies, above 500 eV, will be
~0.7, as suggested by Joshipura and Vinodkumar [21]; and Garcia and Manero [20], but this
will be the case only for smaller molecules, that is, for ten electrons (Z = 10) and up to Z = 22

electron systems, respectively. On the other hand, Nishimura and Tawara [22] suggested that
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the value of B should be ~0.5 for the intermediate energy range of 50-500 eV. In this study,
we have generated a single expression from our prior work [23] and from our current results
for C4F7N. This expression is appropriate for the more complicated and larger molecules with

Z values ranging from 55 to 95. The energy range that this expression covers is from 50 to
5000 eV.

Table 2.1 Parameters vide equation (2.55)

Adenine  Perfluoroisobutyronitrile Thymine Cytosine Uracil
Parameter  (CsHsNs) (C4FsN) (CsHgN202)  (C4HsN3O0)  (C4HuN:02)
@ (D (11D av) V)
A 43.47 53.64 40.75 31.70 28.33
B 0.61 0.60 0.60 0.59 0.60

Larger molecules with Z values between 56 and 94 are tabulated for both A and B in table
2.1, and it can be seen that the value of B (~0.6) is roughly the same for all the molecules.
Although A varies from molecule to molecule, this variation suggests that it is dependent on

the number of target electrons (Z) and polarizability (o).

"
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Figure 2.2 Parameter A vs Z
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In order to investigate this relation, we drew the graph of A versus Z that is presented in
figure 2.2. The following equation is a representation of the linear relationship that can be

seen from this figure 2.3,

A(Z) = 0.6413Z — 4.8016 (2.56)
]
5. (1) o = {l}
N
< 01
< m (V)
() g /
N /
(V) Correlationr=0.76
5'0 ' 6I0 ' 7|0 ' slo ' 9'0 ' 1c')0
o (a.u.)

Figure 2.3 A-A(Z) vs o

However, for a given Z, the precision can be improved by incorporating the polarizability by
taking into consideration the difference between the actual values of 'A" (from table 2.1) and
those derived from equation 2.59 for each molecule. The dependence of this deviation (A —
A(Z)) on the molecule size in terms of the polarisability (o) was observed. The formula for

the linear relationship, which can be derived from figure 2.3, is as follows:

A—A(Z) = 0.1431a — 10.5712 (Correlation r = 76%) (2.57)

As a result, a two-parameter expression for Qr may be derived across the broader energy

range of 50-5000 eV for large molecules using equations 2.58 to 2.60,

0.6413 .1431a—15.3728
Qr(EyZ,@) = Fos (2:58)
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The energy dependence of the impact energy is noted here as E;*®°. The two-parameter
expression found in equation 2.61, is valid for complex and heavier molecules with Z values
between 55 and 95, as well as for a wider spectrum of incident energy between 50 and 5000
eV. This 2p-SEM method yields total cross sections as well as total elastic cross sections for
larger and more complicated molecules. It has the potential to be highly beneficial in
situations where experimental data are difficult to get, such as in the case of aqueous DNA

molecules, which is an example that is readily apparent.

2.3 Complex Scattering Potential-ionisation contribution method (CSP-ic)

When it comes to electron collision processes, Qt and the ionisation cross section (Qion) are
the key cross sections of importance from an applied perspective. There is no method that can
reliably calculate Qion based on Qinel. To get the total ionisation cross sections out of the total
inelastic cross sections, we have started using a novel semi-empirical approach called
Complex Scattering Potential - ionisation contribution (CSP-ic). To obtain the total ionisation
cross sections, the majority of the traditional theories, such as Deutsch-Mrk formalism (DM)
and Binary-Encounter-Bethe (BEB), use shell-wise calculations and add them all up. This
approach, on the other hand, is unique. Even more impressively, the overall inelastic cross
section includes contributions from all plausible continuous and discrete inelastic events, viz.,

ionisations and excitations, respectively and hence,

Qinet(E;) = ¥ Qexc(Ey) + Qion(Ey) (2.59)

Since the entire ionisation cross section is already included in the total inelastic cross
sections, this can be used as a basis for the current approach. The other intriguing aspect is

that it yields the total electronic excitation cross section (XQexc) as a consequence.

2.3.1 Ionisation contribution

The ionisation contribution from Qinel is calculated using the standard CSP-ic technique.
Joshipura and his colleagues [24] were the ones who developed this semi-empirical method.
As a by-product, in addition to obtaining Qion, one additionally acquires the electronic
excitation cross section, Qexc. In equation 2.49, the first term disappears very quickly if E; >

IE, and in comparison, to the second term, it is rendered meaningless. The preceding
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equation 2.49 makes it simple to determine that Q;ne; = Qion, With Qiner serving as Qion's

upper limit.

2.3.2 Evaluation of Qjon

The above inequality Q;ne; = Qjon. serves as the basis for CSP-ic approach by defining the

ratio R(E;) = M, which must be a continuous function of energy,
t Qinel(E)

R(E)=1-fU)=1- cl( 2y l”—“) (2.60)

U+a U

with 0 < R(E;) < 1. In the above equation, U is expressed as a dimensionless parameter, U
= Ei/( IE): With such a form, the energy dependency of the discrete excitations and

continuous ionisation contribution at various energies is strengthened. The first item within

the bracket ensures this at lower energy side, whereas the second term indicates the decrease
of Y Qqxc at higher energy side as an/ u- Therefore, in this high energy range, the decay of

function f(U) should be proportional to an/ u- This is supported by the fact that as energy
rises, the ionisation contribution rises as well, reaching unity at sufficiently high energies
while the excitation channel contribution decreases to almost zero. The indicated version of
the energy dependent ratio (equation 48) effectively implements the aforementioned

behaviour.

The boundary conditions that must be satisfied by R(E;) are,

—0, f(U)=1, forE;<IE
R(ENI=1, fF(U)~0,  for E; » IE .61
=Rp, 1—f(Up), fork;=Ep

These criteria are physically true due to the fact that in order for the target to ionise, energy
greater than [E is required. lonisation cannot take place below this energy, which
demonstrates that the first criterion has been met. Similar to the first requirement, the second
one is easily satisfied because, at higher energy, the participation of the ionisation channel in
the inelastic process predominates over the excitation processes. As a result, the ratio moves
towards unity in this condition. However, the last condition is inferred from experiments
showing that the ionisation contribution is 70%-80% at the inelastic cross section peak

[25,26]. While this does increase the uncertainty in calculating the direct Q;,, by about 7%,
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it is still significantly smaller than the experimental uncertainty, which typically ranges from
about 10% to 15%. The selection of a constant ratio on the other hand, ensures the
reproducibility and consistency of the current procedure. The calculation of this ratio cannot
be determined with absolute certainty because there is no standard procedure, and the value
of Rp may also change depending on the target system. However, the generalizability of the

procedure is not compromised in any way by the choice of 0.7 to 0.8 presented here.

2.3.3 Summed total electronic excitation cross-sections (XQexc)

As seen previously, the main contributors of the total inelastic processes are ionisation and
electronic excitation processes for the energy range from molecular ionisation energy to 5000
eV (equation 2.49). The electronic excitation cross-sections, Qexc is computed through the
equation 2.49 once the Qion is determined from the Qinel by following the above methodology
of CSP-ic technique. This Qexc attains its peak at around 40 eV and reduces quickly above the
energies 500 eV.

2.4 Correlation study: Prediction of polarisability (a) and dielectric

constant (&)

For the purpose of computing useful target properties such as polarisability () and dielectric

constant (&), we have made use of the Qion that have been computed for the target systems.

2.4.1 Polarisability (a)

According to the qualitative dependency nature of the maximum ionisation cross-sections,

Qion(peak) that Harland provided, with the target’s polarisability (¢) [27],

a

Qion(peak) = — |- (2.62)

e
4g,
When the target system is in its gas phase, according to Harland, A will be equal to /E. While
we defined, A = [E + Egq, for condensed or solid phase species since this is where the
ionisation of the system happens only when the incoming energy exceeds the A = IE + Egq,

threshold value.
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2.4.2 Dielectric constant (g)

The two formulae for the dielectric constant (¢) have been developed by leveraging the
dependency of the Qion(peak) on @ and & values. The first formulation of dielectric constant as
a function of Qion(peak) that was proposed and determined by using the dependence of

Qion(peak) with a (equation 2.62) and the Clausius-Mosotti (CM) equation [27],

£ = €+ (Qion(peak))®NA (2.63)

£+2

where, N is the number density of the molecule and C is the constant = MT” (%) .

Secondly, the Onsager dielectric equation [28,29], which works well for the case of liquids is

given by,
g1 _4m (e—Ex0)(2e+£c0)
2 s N (2.64)

This equation is thought to be more applicable in the aqueous phase study, and again the

equation of dielectric constant as a function of Qion(peak) is proposed as,

EL = € (Qion (Peak))2NA + EZE)(2e feo) (2.65)

£+2 £(Ec0+2)?

where, &, is the high frequency dielectric constant, which can be obtained from the CM

equation,
Sl = X Ng (2.66)
Eoot2 3

2.5 Low-energy computation: R-matrix approach

In most cases, the energy of the collision may be broken down into three distinct buckets:
low, moderate, and high. Areas with energies lower than the target's ionisation threshold (/E)
are referred to be low energy regime. This energy regime is followed by the intermediate
energy area, which covers energies up to a few multiples of /E, and then by the high energy
region, which takes into account all energies above this intermediate energy zone. The
physics in this area are among the most complex, and as a result, this part of the spectrum
calls for extra care to handle it. Within the scope of this thesis, the low-energy electron
impact scattering from difluoromethane (CH>F>) is investigated. To address the issue of the

low energy scattering (0-15 eV), we make use of the R-matrix approach, due to the intricacy
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of the procedure. The famous R-matrix formalism, which has its roots in nuclear physics, is a
way to study low energy scattering. This technique calls for the space to be partitioned into
two distinct regions—an inner and an outer one, which are then separated by a sphere with a
radius of ‘a’, the centre of which is located at the centre of mass of the molecular or atomic
target. Since the inner region completely accommodates the target wave function, this
technique is nearly useless for studying molecules with complex geometries. In this case, the
scattering electron is located in the outer region, where it is subjected to the local long-range
potential resulting from the interaction with the target system. This is due to the fact that the
scattering electron is located in a location that is sufficiently enough away from the target
charge cloud. As a result, the correlation and exchange effects do not have any significant
influence. Because of the presence of n electrons of the target system and a single scattering
electron, the physics in the inner area is inherently complex. The diameter of the sphere,
which ranges from 10a, to 15a,, is decided upon in such a way that the entire target system’s
wave function is encapsulated within this inner spherical region. All electrons are believed to
be the same in this region, making it energy independent. Because of this, the computation
only needs to be done once for the inner spherical space, and this result provides the bridge
between both the regions. Solving the considerably easier problems that arise in the outer
region case, makes it possible to tackle the energy dependence. The R-matrix concept is

elaborated upon below.

2.5.1 Methodology

Within the bounds of the fixed nuclei approximation (FNA), the general Schrodinger
equation for a system with n + 1 particles, is given as,

(H-E)w(E)=0 (2.67)

In the case of a finite sphere with radius ‘a’, an additional term known as the Bloch term is

introduced, which can be written as,

h? d | (1-b)
L(b) = T2 5 —8(ri— a) [d—rl_ Ll ] (2.68)
The boundary term and arbitrary constant, ‘b’ in the R-matrix often sets to be zero while
maintaining the generality of the expression. Therefore, the Schrodinger equation for the

cubage that can be contained within the inner spherical space (r < a) can be written as,
(H+L-E)w(E) =Lw (2.69)
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For the bounded interior spherical region, the Hamiltonian is H + L. The inclusion of the
Bloch term maintains the Hamiltonian’s hermitian character of this expression. At particular

discrete energies g, with wave function wy,, above equation holds true. Then,

(Wle + LIWk,> = 5kk Ek (270)

Also, the following can be written,

wi(€) = Xk Ak (E)Wi (2.71)
in which, the inner space wavefunction coefficient denoted by A, is energy dependent. Now,

from above two equations 2.70 and 2.71,

wi|L|w)

w(e) = 5, 2!

Ex—E&

2.72)

The preceding equation can be rewritten by substituting the Bloch operator [30] and

projecting wy, on each target states (¢;"), as follows,

1 i dF;
Fi(@) = 3 50wy (a) [r 52 - b (2.73)
r=a
dF;
Fi(a) = % Rij(a, &) [r <2 — bF] . (2.74)
which implies to, R;;(a, &) = %ka (2.75)
—

The radial wave function for the outer region is denoted by the symbol F;(r), and it
corresponds to the boundary amplitudes w;,(a) and the asymptotic channel i. The boundary
form of a conventional R-matrix is given by equation 2.75. Inner-region scattering eigen
energies, & are singularities in this R-matrix. Equation 2.75 gives the inner boundary rule for
differential equations in the outer area. This condition can be regarded as the beginning of the
process of solving the problem of scattering system and the bound states. The calculation of
the inner sphere supplies the necessary numerical values, namely &, and w;,(a), in order to
establish the R-matrix of equation 2.75 at the boundary (r = a). Because these parameters
do not depend on the energy, the solution to the problem of the inner spherical space only
needs to be solved once for each total space spin symmetry that the collision problem

possesses.
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Inner spherical area

A close coupling expansion [31] can be used to demonstrate the inner part wave function for

the (n + 1) electronic system,

PRy o Xpp1) = AT Qi QF (g o X)) Usj(Xnga) + i bie X7 (X1 e Xya) (2.76)

In this calculation, the anti-symmetrization operator is denoted by the letter A, and the
variational coefficients are denoted by by, and a;jy. X, is the spin and spatial coordinates of
the nt" target molecular electron, and the wave function of the i*"* molecular state is termed
by ¢;'. To represent the scattering e, the continuum orbitals is defined here as u;;. These
continuous orbitals, u;; are located precisely where the molecule’s center of mass. In
addition to this, these orbitals range far enough that they are not eliminated at the boundary of
the R-matrix. The short-range polarisation effects and orthogonality relaxation is involved in
such arrangements. The i*" n + 1 electron L? state function is denoted by x7***, where all
(n + 1) electrons are assigned to the virtual occupied molecular orbitals. The molecular
states represented by CI expansion, are carried over into the first summation of the
aforementioned equation. Further, there is one electron in a continuum state, while the others
move in the accessible molecular orbitals, which results in the generation of "molecular target
+ continuum" configurations. Short range correlation and polarisation effects are taken care
via a summation in the second term that runs across the configurations x7***, which relies on
the geometry of the molecule in question and have zero amplitude on the R-matrix border.

Additionally, the orthogonality between the molecular target orbitals and continuum orbitals,

u;; is relaxed as a result of these y;*** functions.

The continuum basis functions are represented as a partial wave expansion using polar
coordinates (7,6, ¢) so that they can correctly match the asymptotic channels in the outer

region,

11,0, 8) = fi;(r)Vym, (0, ) E1/ (2.77)

Here, =21 /o is the electron spin function.

55



At the boundary

In order to construct the R-matrix at the boundary line (r = a), the pole locations and
amplitude at the boundary must be known. The overlap integral used to calculate this

amplitude at v = a for any i*" channel,

Wi (@) = (@i, 51 |#2*) @78)

Alternately, one could compute w;,(a) using the u;; and the inner region wave function

coefficients, a;j from

wik(a) = Xju(a)agji (2.79)
Hence,
Fi(a) = X A (&wi (@) (2.80)

The energy-dependent impact particle wave function is then provided for the i*" channel at
the boundary line (r = a). After it has been calculated, other information that is significant
for the computation of the outer space, which is essentially the molecule properties, are

derived here [32].
Outer configuration space

The wave function associated with this outer part of the configuration space will be,

PH(E) = Liea 08 (X oo Xn) Fy(Ta) Vi (6, ) E1 (2.81)

In this case, the summation is performed across all the n-channels that are linked to every
target molecular states. After plugging the equation 2.81 into the Schrédinger equation,
d?  L(+1)

—[5 - L2 4 k2| Fi(r) = 250, Vi (1) F () (2.82)
Thus, F;(r), radial function is represented by the system of m homogeneous, coupled
differential equations [33]. In the above equation, k; = /2(g — &I*), is the wavenumber of
the scattering electron consorted with the i® channel. The difference in the energy between
the ground state of the molecular target and the scattered electron, is (¢ — €*). The channel is
open if and only if k; is positive; otherwise, it is closed. Furthermore, V;; is the long-range

effective potentials in this region, which are determined from the target molecular attributes.
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o
Vij(r) = Ya=omzir (2.83)

In which, a’ = \[% C (1AL mmymy;) C(1iAL; 000)Q) (2.84)
are the coefficients for asymptotic potential of the order (1). The Clebsch-Gordan coefficients
are denoted here as C (lillj ; mimlmj) C(l;4l;;000) and Ql.(?) are the molecular state moment.
Here, for charged target systems, 4 = 0; for quadrupole A = 2 and for dipole 4 = 1. When

there is a permanent moment, then i = j.

After that, we extend the R-matrix from r = a to r =1y [34,35], where 77 is a sufficiently
larger distance that we may ignore the non-coulombic interaction in the asymptotic area (r >
77). Although there are a number of approaches [36-39] that can be used to obtain these
asymptotic solutions, the Gailitis procedure [39] is the one that is utilised in this study
because it is thought to be the most reliable approach out of all the existing ones. Therefore,

the solution to equation 2.82 in the (r > 77) region is expressed as,

1 .
FijN\/‘_k_i(SlnBi 511 + cos Bi KU) (285)

K;j constructs a K-matrix that is real and symmetric; and contains all of the scattering

information. 6; is defined as channel angle,

7', for neutral target
0. = _ (2.86)
C | k=S =g In(@rk) + 0y, if Z—N %0

where, n; = Z;—N and the coulomb phase, o; = arg(I'(1 + [; + in;)) (2.87)

L

The calculations of the eigen phase sum is done by,

5(e) = Yitan (KL (2.88)
where K7 is the set of eigenvalues that the K-matrix has. The scattering matrix, also known

as S-matrix, and transition matrix, often known as the T-matrix, can both be constructed with

the assistance of the K-matrix.

— 1K —¢_
S=—— and T=S-1 (2.89)

And finally, the cross section can be calculated through T-matrix,
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(25+1)
U(l - l ) - k2 ZS 2(25 +1)Zl"ll | lll l (2'90)

The scattering electron has an energy of k—nz relative to its original state of spin angular
l

momentum S;. Here, [ and ' represent the degenerate channels corresponds to the target's

initial and final states, respectively. I” covers all the spatial symmetries.

2.5.2 Polar molecular targets

The previous discussion on calculation of the R-matrix, only takes into account up to g-waves
(I £ 4). However, for polar molecules, such low [-expansions are simply not enough. For the
purpose of including the higher partial derivatives in this thesis, the Born top-up
approach [40] is utilised. This provides an accurate representation of the long-range
interaction for molecules that have a dipolar character, and it converges the cross sections in
the correct way. Since the higher partial waves (above L,,, the minimum angular
momentum), are weakly scattered, the Born correction, given by following expression is

useful for treating them independently.

AQ = Q""" - QL 2.91)

QFB4 is the plane wave Born approximation cross

The cross section in this case, denoted by
section, and QFB4 is the cross section calculated from a finite expansion of the first-Born
cross section, which contains the same number of partial waves as QR (equation 2.90). The
closed version of the FBA can be achieved without having to resort to a partial wave
expansion, and it include contributions from all angular momenta [41]. To obtain the
complete integral cross section for polar molecules, we add AQ (computed via equation 2.91)

to QR (calculated through equation 2.90).

2.5.3 Scattering models used in the calculations

Since the Schrodinger equation is notoriously tricky to solve exactly, several approximations
have been developed to resort in obtaining the reliable results. QUANTEMOL-N provides
users with access to three distinct models, each with its own set of L? functions and molecular
electronic states to be employed in the aforementioned equation 2.76. Let's look at the models

in detail.
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. Static model

The electrons involved in scattering and the ones in the target are treated as two
distinct entities.
Therefore, there is no possibility for the exchange.

The perturbation brought on by polarisation effects is also not taken into account.

. Static exchange model (SE)

Although exchange interaction is present in this model, exclusion of polarisation
effect prevents the target system from being disturbed.

Electrons of the target system are remained immobilised in their ground state
configuration, since the electronic excitations are ignored in this model.

Since the core and Feshback excited resonances needed the excitation of the bound
electrons, they remain undetectable in this model. However, shape resonance can be
detected.

Not aftlicted by pseudo-resonances, therefore, suitable for onsetting the calculation.

Compatible with high-energy calculations.

. Static exchange with polarisation model (SEP)

There will be a perturbation of the target system due to the consideration of
correlation and polarisation effects.

This paradigm permits the single excitations from the ground state to be incorporated
into other higher orbitals.

This method allows for the thorough study of the shape resonances, while core excited
resonances are inadequately studied. Also, pseudo resonances are produced at high
energies.

Appropriate for the low energy computations.

. Complete active space-configuration interaction model (CAS-CI)

Compared to previous scattering models, this one is quite advanced.

The calculation relies on the close coupling approximations.

In order to build the target system wavefunction, all the allowed configurations are
taken into consideration.

Can detect all core excited, Feshback and shape resonances.

59



e The computation not only produces elastic cross sections, but also electronic

excitation cross-sections.

2.5.4 Various modules of QUANTEMOL-N code

The procedure for running a target and carrying out the computations in the inner and outside
region is depicted in Figure 2.4, 2.5, and 2.6. Each important module for both regions are

described as follow.
Modules for inner region computation

e SWMOL3: calculates the one electron and two electron integrals between the
numerous atomic orbitals that are produced at the beginning of the process

e GAUSTAIL: examines each integral's outer contribution of the R-matrix sphere and
combines Bloch operator matrix components with Hamiltonian matrix elements

e SWORD: arranges SWMOL3 atomic integrals

o SWFJK: produces the different possible amalgamation of the exchange and coulomb
integrals for the Fock matrix

e SWSCF: implementing the Hartree-Fock self-consistent field optimisation (HF-SCF),
the integrals that were formed by SWFJK are used here to generate the molecular
orbitals from the linear combination of the atomic orbitals

e SWTRMO: executes the four-index transformation from the atomic orbital
representation to the molecular orbital representation of the arranged integrals
acquired by SWMOL3

o SWEDMOS: using the orthogonalisation technique, Schmidt and symmetric
orthogonalisation orbitals are combined. Along the boundary of the R-matrix, the
amplitude of each continuum orbital is calculated as a function of partial wave.

e CONGEN: constructs the configuration state functions, often known as CSFs, using
appropriate symmetry and spin couplings

e SCATCI: the CONGEN-generated configurations are used to build the Hamiltonian,
which is subsequently diagonalised. Eigen vectors and eigen energies are computed

here. The module returns €1, pole energies of the R-matrix and the corresponding

wave functions @i+, expressed via coefficients by, and q; ik

e GAUSPROP: performs the necessary computations for the property integrals, as
requested by DENPROP
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DENPROP: estimates the wave function properties and generates the transition
density matrix by employing the target eigenvectors acquired from the Cl-calculation.
This module performs additional analysis on the diagonalized tensor component

values of @y, @y, @,;; dipole polarizability and multipole transition moments.

CONGEN

Target Cl vectors

Boundary Amplitudes

Target Cl vectors
L=
[

N+1 Cl vectors

Figure 2.5 Inner area program flow diagram
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Modules for outer region computation

o SWINTEREF: It serves as the connecting mechanism between the inner and exterior
region. This module takes the SWEDMOS boundary amplitudes, the eigenvectors and
eigenvalues of the n + 1 system, and the DENPROP multipole moments as its inputs.
The output of this module supplies the molecular target attributes as well as all other
data that is necessary for constructing the R-matrix for exterior region.

e BOUND: provides the wavefunctions of the bound state

e RSOLVE: This is where the majority of the time-consuming calculations for the outer
region are performed. Constructing the R-matrix at the interaction radius, it is
propagated to the asymptotic area using RPROP to match it with the boundary
conditions. The fixed-nuclei K-matrices are then calculated with the aid of CFASYM.

e EIGENP: The previously computed K-matrix is diagonalized in order to produce the

eigen phases by computing the arctan values of their respective eigenvalues.

(N+1) Cl vectors

SWINTERF

RSOLVE

Target'properties =gy @ Boundary amplitudes

TMATRX EIGENP 2 &
sums

IXSEC RESON
G
Integral cross sections Resonance Parameters

Figure 2.6 Outer area calculation flow diagram

e PolyDCS: cross sections for rotational excitations, momentum transfers, and
differential cross sections are all provided here using the K-matrix.

o TMATRX: generates the T-matrix by applying conventional equations to the K-
matrix that was provided

e IXSEC: From the T-matrices, the integral cross sections are computed here.
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BORNCROS: determines the born cross sections as well as the born correction that
needs to be incorporated to the cross sections
RESON: using Breit-Wigner profiles to fit eigen phase sums, resonances are found

TIMEDEL: offers a different approach to the process of fitting resonances
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