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Chapter 2:                                            

Methodology 
___________________________________________________________________________ 

2.1 Introduction to Many-body Problem 

The advent of quantum mechanical theory, driven by the time-independent Schrödinger 

equation, has emerged as an effective approach to characterize simpler systems with only one 

electron, like hydrogen atom. The time-independent Schrödinger equation is given as; 

𝐻̂𝜓(𝑟) = 𝐸𝜓(𝑟)  -----(2.1) 

where 𝐻̂ is Hamiltonian operator which represents the sum of kinetic and potential energies, 𝐸 

corresponds to energy eigenvalue of the stationary state characterize by the wave function 

𝜓(𝑟). The Hamiltonian operator in equation 2.1 is represented by; 

𝐻̂ = −
ℏ2

2𝑚
𝛻2 + 𝑉(𝑟) -----(2.2) 

In the case of hydrogen atom, variable separable method is employed to evaluate the solution 

of Schrödinger equation, which eventually yields the exact value for the ground state energy. 

However, for the many-body systems, wave-function denoted as 𝜓(r1, r2, ..., rN, R1, R2, ..., RN), 

represents N electrons with position coordinates r1, r2, ..., rN and N nuclei with position 

coordinates R1, R2, ..., RN, respectively. The complexity increases with inclusion of more 

variables in such many-body systems. Therefore, exact solution of Schrödinger equation for 

many-body systems has never been found. In addition, the interactions between electron-

electron, electron-ion and ion-ion comes into the picture for which the Hamiltonian is 

represented as; 

𝐻̂ = 𝑇̂𝑒 + 𝑇̂𝑛 + 𝑉̂𝑒,𝑒 + 𝑉̂𝑒,𝑛 + 𝑉̂𝑛,𝑛 -----(2.3)



Chapter 2 Methodology 

20 

 

where  𝑇̂𝑒 + 𝑇̂𝑛 represents kinetic energy and 𝑉̂𝑒,𝑒 + 𝑉̂𝑒,𝑛 + 𝑉̂𝑛,𝑛 represents the potential energy 

terms to incorporate electron-electron, electron-ion and ion-ion interactions, respectively. From 

the Hamiltonian describe by equation (2.3), the time-independent Schrödinger equation can be 

written as; 

𝐻̂𝜓(𝑟) = { − 
ℏ2

2𝑚𝑒
 ∑

𝜕2

𝜕𝑟𝑖
2𝑖 − 

ℏ2

2𝑀
 ∑

𝜕2

𝜕𝑅𝑙
2𝑙 +

1

2
 ∑

𝑒2

4𝜋𝜀0
𝑙,𝑙′

𝑙≠𝑙′ 

𝑍𝑙𝑍𝑙′

|𝑅𝑙− 𝑅𝑙′|
+

1

2
 ∑

𝑒2

4𝜋𝜀0
𝑖,𝑗
𝑖≠𝑗 

1

|𝑟𝑖− 𝑟𝑗|
−

 ∑ ∑
𝑒2

4𝜋𝜀0
 

𝑍𝑙

|𝑟𝑖− 𝑅𝑙′|
𝑙𝑖  } 𝜓(𝑟) = 𝐸𝜓(𝑟) -----(2.4) 

where, i and l represents the indices run over the electron and ion while the me and M are 

respective masses of electrons and ion, 𝑍𝑙 and 𝑍𝑙′  represents charge of ions. Moreover, 

|𝑅𝑙 − 𝑅𝑙′|, |𝑟𝑖 − 𝑟𝑗| and |𝑟𝑖 − 𝑅𝑙′| defines the distances between ion-ion, electron-electron 

and electron-ion, respectively. The solution to equation (2.4) yields the eigen state and energy 

eigen value which gives the information about the ground state of system under consideration. 

Moreover, solving the equation (2.4) requires only atomic mass and charge of the electrons and 

ions. This particular method, known as first-principles calculation which does not necessitate 

the use of any adjustable parameters. The persistent complexities associated with it make the 

solution of equation (2.4) for many-body systems unattainable. Over the years, several 

approximations to this theory have been put forth which are discussed in subsequent sections. 

2.1.1 Born-Oppenheimer Approximation 

The Born-Oppenheimer approximation permits the independent treatment of electronic 

and ionic motions by decoupling them. The core notion is that the electrons have significantly 

faster movement as compared to the ions, since the ions are 103–105 times heavier. 

Consequently, it is possible to neglect the ionic contribution in the Hamiltonian equation (2.3). 

This approach is known as Born-Oppenheimer Approximation.1 Therefore, the second term of 
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equation (2.3) vanishes and last term becomes constant. The modified equation (2.3) is written 

as;2 

𝐻̂ = 𝑇̂𝑒 + 𝑉̂𝑒,𝑒 + 𝑉̂𝑒,𝑛 + 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 -----(2.5) 

The modified Hamiltonian is described by the sum of kinetic energy of electrons, electron-

electron interaction and electron-ion interaction regarded as external potential (Vext). In this 

regard, equation (2.5) can be written as;  

𝐻̂ =  − 
ℏ2

2𝑚𝑒
 ∑

𝜕2

𝜕𝑟𝑖
2𝑖 + 

1

2
 ∑

𝑒2

4𝜋𝜀0
𝑖,𝑗

𝑖≠𝑗 

1

|𝑟𝑖− 𝑟𝑗|
+ 𝑉̂𝑒,𝑛 + 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 -----(2.6) 

where, Constant = 
1

2
 ∑

𝑒2

4𝜋𝜀0
𝑙,𝑙′

𝑙≠𝑙′ 

𝑍𝑙𝑍𝑙′

|𝑅𝑙− 𝑅𝑙′|
. Despite being simplified, the electronic part of the 

Hamiltonian still poses a challenge to solve. Therefore, the equation necessitates further 

approximations for its solution which is discussed in subsequent sections.  

2.1.2 Hartree Approach 

The classical electrostatics governing the Coulomb interactions between the electrons 

need to be addressed for further simplifying the solution of many-body systems. Hartree 

addressed this by modifying the problem into the independent electron approximation, thereby 

simplifying the calculations.3–6 He treated the n-electron system as a group of independent one-

electron systems (without any interaction among them), wherein each electron experiences an 

averaged electrostatic potential originating from the presence of other electrons. In accordance 

with the Hartree approximation, the Schrödinger wave equation can be formulated as follow;  

(− 
ℏ2

2𝑚𝑒
 ∑

𝜕2

𝜕𝑟𝑖
2𝑖 + 𝑉̂𝑒𝑥𝑡 + 𝑉̂𝐻)𝜓(𝑟) = 𝐸𝜓(𝑟) -----(2.7) 

here, 𝑉̂𝐻 is the Hartree potential which is described by; 

𝑉̂𝐻 = ∫
𝜌(𝑟′)

|𝑟− 𝑟′|
 𝑑𝑟′ -----(2.8) 
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Since, this approach employs mean field theory, it is unable to include actual exchange-

correlation interaction takes place between the electrons. Also, many-body Hartree wave 

function fails to incorporate antisymmetric requirement (unable to account the fermionic 

character of electron wave functions) which demands further approximations.7,8 

2.1.3 Hartree-Fock Approach 

Given that electrons are fermions, it is imperative to handle their analysis within the 

framework of Fermi-Dirac statistics. In this regard, unlike to product wave function, the 

determinantal function is employed in this approach.9,10 The asymmetric wave function is 

represented in equation (2.9) which fulfil the Pauli exclusion principle. Also, the change in sign 

when two rows or columns are interchanged ensures antisymmetric nature of the wave function 

in order to account for the fermionic nature of electrons. 

𝜓𝐻𝐹[(𝑟1,⃗⃗⃗⃗ 𝜎1), (𝑟2,⃗⃗⃗⃗ 𝜎2), … , (𝑟𝑁,⃗⃗⃗⃗  ⃗ 𝜎𝑁)] = − 𝜓𝐻𝐹[(𝑟1,⃗⃗⃗⃗ 𝜎1), (𝑟2,⃗⃗⃗⃗ 𝜎2), … , (𝑟𝑁,⃗⃗⃗⃗  ⃗ 𝜎𝑁)] -----(2.9) 

The slater determinant which represents antisymmetric wave function is written as; 

𝑆 =  
1

√𝑁!
 |

𝜓1(𝑟1,⃗⃗⃗⃗ 𝜎1) 𝜓1(𝑟2,⃗⃗⃗⃗ 𝜎2) …  𝜓1(𝑟𝑁,⃗⃗⃗⃗  ⃗ 𝜎𝑁)

𝜓2(𝑟1,⃗⃗⃗⃗ 𝜎1) 𝜓2(𝑟2,⃗⃗⃗⃗ 𝜎2)… 𝜓2(𝑟𝑁,⃗⃗⃗⃗  ⃗ 𝜎𝑁)
⋮                        ⋮                        ⋮

𝜓𝑁(𝑟1,⃗⃗⃗⃗ 𝜎1) 𝜓𝑁(𝑟2,⃗⃗⃗⃗ 𝜎2)… 𝜓𝑁(𝑟𝑁,⃗⃗⃗⃗  ⃗ 𝜎𝑁)

| -----(2.10) 

here,  
1

√𝑁!
 is normalization factor. The minimization of expectation value with Lagrangian 

multiplier method leads to the Hartree-Fock equation which is given as follows; 

(− 
ℏ2

2𝑚𝑒
 ∑

𝜕2

𝜕𝑟𝑖
2

𝑖

+ 𝑉̂𝑒𝑥𝑡 + 𝑉̂𝐻)𝜓(𝑟)  − 
1

2
 ∑∑∬

𝑒2

4𝜋𝜀0
𝑗≠𝑖𝑖,𝑗

𝜓𝑗
∗(𝑟′) 𝜓𝑗(𝑟

′) 𝜓𝑗(𝑟)

|𝑟 − 𝑟′|
𝜕3𝑟 𝜕3𝑟′  

= 𝐸𝜓(𝑟) -----(2.11) 

This method improves upon the Hartree method by incorporating exchange energy of electrons 

through antisymmetric wave functions. The total energy under the Hartree-Fock approximation 
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is the sum of kinetic energy of electrons, external energy due to interaction between nuclei and 

electrons, Hartree energy and exchange energy. However, total energy requires minimization 

for N particles Slater determinant which in turns computationally costly. Since, many-body 

wave functions incorporate the electron coordinates, it becomes a function of 3N variables. The 

solution of which is tedious and imposes high computational demands. By approximating the 

many-body problem into a single electronic density, density functional theory (DFT) resolves 

this issue which can be computationally feasible. 

2.2 Density Functional Theory 

The electron density, denoted as 𝑛(𝑟 ), could simplify the description of the electronic 

system significantly by relying on just three variables (x, y and z). Hohenberg and Kohn 

introduced DFT in 1964, which serves as a firm and exact theoretical framework for such a 

description. As the many-electron problem is simplified into a density dependent 3-coordinate 

system, the computational cost is also decreases. The framework of DFT mainly includes 

Thomas-Fermi theory,11,12 Hohenberg-Kohn theorems13 and Kohn-Sham equations14 which is 

discussed in subsequent sections. 

2.2.1 Thomas-Fermi Theory 

The origin of density based approach for the solution of many body systems, firstly 

given by the Thomas and Fermi in 1927, which is known as Thomas-Fermi theory.11,12 This 

theory proposes the use of electron density as basic variable rather than the single particle wave 

function and thus, total energy of the system can be written as functional of electron density. 

In the case of N interacting electrons, the kinetic energy in terms of electron density 𝑛(𝑟 ) is 

given by 

𝑇𝑇𝐹 = 𝐶𝑘 ∫𝑛(𝑟 )
5

3 𝑑3𝑟 -----(2.12) 
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 Therefore, total energy as a functional of 𝑛(𝑟 ) can be written as equation (2.13) with kinetic 

energy, electrostatic energy and external potential terms, respectively. 

𝐸 =  𝑇𝑇𝐹 + ∫ 𝑉𝐼𝐸 (𝑟 ) 𝑛(𝑟 ) 𝑑3𝑟 + 
1

2
 ∬

𝑒2

4𝜋𝜀0
 
𝑛(𝑟 ′) 𝑛(𝑟 )

|𝑟 − 𝑟 ′|
  𝑑3𝑟 𝑑3𝑟 ′ -----(2.13) 

The minimization of equation (2.13) has been done by Lagrangian multiplier method. This 

theory does not incorporate the contribution of exchange energy. Inclusion of exchange 

interaction and correlation functional was done by Dirac as extension of this approximation but 

failed to establish shell structure and behaviour of atoms in complex systems. 

2.2.2 Hohenberg-Kohn Theorems 

As we discussed in the realm of the Thomas-Fermi theory, the behaviour of electronic 

systems could be described in terms of the 𝑛(𝑟 ). In 1964, Hohenberg and Kohn gave two 

theorems, which serves as a firm and exact theoretical foundation of DFT.13 The two theorems 

are as follow; 

Theorem I:  

“The external potential 𝑉̂𝑒𝑥𝑡(𝑟 ) is a unique functional of the electron density 𝑛(𝑟 ). As a result, 

the total ground state energy E of any many body systems is also a unique functional of 𝑛(𝑟 ), 

that is, 𝐸 = 𝐸[𝑛].”  

According to the aforementioned statement, the Hamiltonian operator (equation (2.3)) can be 

uniquely derived from the electron density, given that the ground state is unique functional of 

density. Let us consider two different external potentials 𝑉𝑒𝑥𝑡
(1)

(𝑟 ) and 𝑉𝑒𝑥𝑡
(2)

(𝑟 ) corresponding to 

separate ground state wave functions say, 𝜓(1) and 𝜓(2) which have same ground state density 

𝑛(𝑟 ). There must be two Hamiltonians, 𝐻̂(1) and 𝐻̂(2) corresponding to two different external 

potentials.  
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𝐸(1) = 〈𝜓(1)| 𝐻̂(1)|𝜓(1)〉 <  〈𝜓(2)| 𝐻̂(1)|𝜓(2)〉 -----(2.14) 

 The last can also be written as; 

〈𝜓(2)| 𝐻̂(1)|𝜓(2)〉 =  〈𝜓(2)| 𝐻̂(2)|𝜓(2)〉 + 〈𝜓(2)| 𝐻̂(1) − 𝐻̂(2)|𝜓(2)〉 -----(2.15) 

=  𝐸(2) + ∫[𝑉𝑒𝑥𝑡
(1)(𝑟 ) − 𝑉𝑒𝑥𝑡

(2)(𝑟 )] 𝑛(𝑟 ) 𝑑3𝑟 -----(2.16) 

From equation (2.14) and (2.16),  

𝐸(1) < 𝐸(2) + ∫[𝑉𝑒𝑥𝑡
(1)(𝑟 ) − 𝑉𝑒𝑥𝑡

(2)(𝑟 )] 𝑛(𝑟 ) 𝑑3𝑟 -----(2.17) 

Also, 

𝐸(2) < 𝐸(1) + ∫[𝑉𝑒𝑥𝑡
(2)(𝑟 ) − 𝑉𝑒𝑥𝑡

(1)(𝑟 )] 𝑛(𝑟 ) 𝑑3𝑟 -----(2.18) 

By adding equation (2.17) and (2.18), we get  

𝐸(1) + 𝐸(2) < 𝐸(1) + 𝐸(2) -----(2.19) 

The above equation contradicts our assumptions and therefore we can conclude that there is 

only one 𝑉𝑒𝑥𝑡(𝑟 ) which can uniquely produce the ground state density 𝑛(𝑟 ) and vice versa. 

Theorem II: 

“The functional 𝐸[𝑛] for the total energy has a minimum equal to the ground state energy at 

the ground state density.” 

This theorem implies that, 

𝐸𝐻𝐾[𝑛] = 𝑇[𝑛] + 𝐸[𝑛] + ∫𝑉𝑒𝑥𝑡 (𝑟 ) 𝑛(𝑟 ) 𝑑3𝑟 -----(2.20) 

while, the universal functional of electron density 𝑛(𝑟 ) is defined as, 

𝐹𝐻𝐾[𝑛] =  𝑇[𝑛] + 𝐸[𝑛] -----(2.21) 
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Substituting equation (2.21) in (2.20) we get, 

𝐸𝐻𝐾[𝑛] = 𝐹𝐻𝐾[𝑛] + ∫𝑉𝑒𝑥𝑡 (𝑟 ) 𝑛(𝑟 ) 𝑑3𝑟 -----(2.22) 

Hence, for known 𝐹𝐻𝐾[𝑛], we can calculate exact solution of the Schrödinger equation without 

any approximations used. Suppose we have a system that exhibits a ground state density 𝑛1(𝑟 ) 

corresponds to the external potential 𝑉𝑒𝑥𝑡
1 (𝑟 ) than the expectation value of the Hamiltonian has 

the form, 

𝐸(1) = 𝐸𝐻𝐾[𝑛1] =  〈𝜓(1)| 𝐻̂(1)|𝜓(1)〉 -----(2.23) 

Hence, the electron density 𝑛1(𝑟 ) for the ground state energy is lower than any other electron 

density 𝑛2(𝑟 ) which leads to the equation (2.24). 

𝐸(1) = 〈𝜓(1)| 𝐻̂(1)|𝜓(1)〉 <  〈𝜓(2)| 𝐻̂(1)|𝜓(2)〉 =  𝐸(2) -----(2.24) 

This variational principle based on density is also known as the Hohenberg-Kohn theorem 

wherein, lowest energy state is obtained by the universal functional only when the input 

electron density is equivalent to the ground state electron density. 

2.2.3 Kohn-Sham Approach 

             The unique significance of the Hohenberg and Kohn14 theorem lies in its contribution 

to establishing the fundamental principles of density functional theory.15 To find the functional 

𝐹𝐻𝐾[𝑛] which gives the exact solution is the major challenge in the Hohenberg-Kohn theorems. 

In this regard, Kohn and Sham (KS) came up with a better approach in which they replace N-

electrons to that with fictious system of one electron.14 According to KS, there is a single 

particle potential 𝑉𝑒𝑓𝑓(𝑟) capable of producing the same ground state density for non-

interacting electrons as the one obtained with interacting problem. Therefore, total energy 

within KS approach is written as; 
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𝐸𝐾𝑆[𝑛] = 𝑇𝑆[𝑛] + 𝐸𝐻[𝑛] + 𝐸𝑥𝑐[𝑛] + ∫𝑉𝑒𝑥𝑡 (𝑟 ) 𝑛(𝑟 ) 𝑑3𝑟 -----(2.25) 

where 𝑇𝑆[𝑛] and 𝐸𝐻[𝑛] represents non-interacting kinetic energy and energy term under 

Hartree approximation, respectively. The 𝑇𝑆[𝑛] and 𝐸𝐻[𝑛] are defined as; 

𝐸𝐻[𝑛] =  
1

2
 ∬

𝑛(𝑟 ′) 𝑛(𝑟 )

|𝑟 − 𝑟 ′|
  𝑑3𝑟 𝑑3𝑟 ′  -----(2.26) 

𝑇𝑆[𝑛] =  − 
1

2
 ∑ 〈𝜙𝑖| ∇

2|𝜙𝑖〉
𝑁
𝑖  -----(2.27) 

𝑛(𝑟) = ∑ |𝜙𝑖 (𝑟)|
2𝑁

𝑖  -----(2.28) 

𝑁 = ∫𝑛(𝑟) 𝑑3𝑟 -----(2.29) 

Here, 𝑇𝑆[𝑛] was described in the context of KS orbitals. As we know, energy of the wave 

function changes under the position exchange of two particles as a consequence of anti-

symmetric characteristics. This is termed as exchange energy (𝐸𝑥). Conversely, when two 

electrons possess opposite spin orientations, they can share an orbital. Since they both carry 

negative charges, they exert a repulsive force on each other. This is known as electronic 

correlation and the energy is denoted as 𝐸𝑐. However, the exact formulation for the correlation 

energy is lacking, the sum of the 𝐸𝑥 and 𝐸𝑐 is collectively known as exchange-correlation 

energy, 𝐸𝑥𝑐. The functional derivative of the 𝐸𝑥𝑐, represented as 𝑉𝑥𝑐, is the component that 

enhances the efficiency and advantages of DFT compared to the HF approximation: 

𝑉𝑥𝑐[𝑛(𝑟)] =  
𝛿𝐸𝑥𝑐[𝑛(𝑟)]

𝛿𝑛(𝑟)
 -----(2.30) 

In practice, electrons move within an 𝑉𝑒𝑓𝑓, which indirectly encompasses electronic 

interactions. The electron-electron interaction in KS equations is replaced by the interaction 

between electrons and a medium, which effectively represents electron-electron interactions. 

The KS equation in the Schrödinger form is written as; 
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𝐻̂𝐾𝑆𝜙𝑖(𝑟) = 𝐸𝐾𝑆 𝜙𝑖(𝑟) -----(2.31) 

and the Hamiltonian is;  

𝐻̂𝐾𝑆 = −
1

2
 ∑ ∇2 + 𝑉𝑒𝑓𝑓 -----(2.32) 

where 𝑉𝑒𝑓𝑓 represents the sum of the three potential terms (𝑉𝑒𝑥𝑡 + 𝑉𝐻 + 𝑉𝑥𝑐). By adjusting the 

ground state electron density of the non-interacting system to that of real interacting system, 

the iterative method is employed to solve the Hamiltonian in order to get system’s ground state 

energy and density. This method is known as Self-consistent method where the initial guess is 

based on electron density. The determination of each potential term is based on the trial density 

where the energy convergence occurs. KS approach reduces many electrons problem to one 

electron problem and found effective but the exchange-correlation potential (𝑉𝑥𝑐) is still not 

known exactly and the suitable approximations has to be made which is discussed in next 

section. 

2.3 Exchange-Correlation Functionals 

We have now established reasonable framework to determine the electronic ground 

state of the system and correspondingly many required properties can be obtained using KS 

approach is we have the electron density on our plate. In particular, 𝑉𝑥𝑐 term in KS equation 

plays a vital role in terms of the accuracy of solutions. Over the time, several approximations 

were developed to effectively describe the exchange-correlation (XC) functionals. In general, 

they can categorize and comprehended using Jacob's ladder in which moving upwards in the 

rungs increases the computational cost for the system being examined. These functionals can 

be given as local, semi-local and non-local approximations. The functionals originating from 

the local density approximation (LDA) and the generalized gradient approximation (GGA) are 

the three most popular and commonly used.  
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2.3.1 Local Density Approximation 

When evaluating approximations for the XC energy, one easy way to address the 

varying electron densities in a system is to assume that electrons perceive the overall landscape 

in the same manner as they perceive local surroundings.16 This is similar to the homogeneous 

free electron gas. The XC energy in the context of LDA is given as; 

𝐸𝑥𝑐
𝐿𝐷𝐴[𝑛(𝑟)] = ∫𝑛(𝑟) 𝜖𝑥𝑐[𝑛(𝑟)]𝑑3𝑟 -----(2.33) 

where 𝜖𝑥𝑐 represents the per particle XC energy for interacting free electron gas with density 

𝑛(𝑟). This is local functional and shows excellent results for the systems with relatively slowly 

varying densities like metals. LDA satisfies the XC energy sum rule very well as exchange 

overestimates and correlation underestimates the values. Nevertheless, LDA does not satisfies 

the asymptotic behaviour of the potential and additionally underestimates the band gaps in 

semiconductors and insulators.17  

2.3.2 Generalized Gradient Approximation 

It is evident that the real systems lack homogeneity and display differing density 

distributions around electrons. To enhance the accuracy of XC functionals, GGA came from 

Herman’s (1969) proposition which includes both local and semi-local characteristics, 

specifically, the electron density and its gradient at a particular point.18 The XC functional 

according to GGA is defined as; 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛(𝑟)] = ∫𝑛(𝑟) 𝜖𝑥𝑐[𝑛(𝑟), ∇ [𝑛(𝑟)]]𝑑3𝑟 -----(2.34) 

Unlike 𝐸𝑥𝑐
𝐿𝐷𝐴[𝑛(𝑟)], there is no single functional equation that adequately describes the GGA 

data. Consequently, the practical representation of GGA takes the LDA as its foundation and 

incorporates an enhancement factor F(s) to directly modify the LDA energy. 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛(𝑟), 𝑠] = ∫ 𝑛(𝑟) 𝜖𝑥𝑐

𝐿𝐷𝐴[𝑛(𝑟)]𝐹(𝑠)𝑑3𝑟 -----(2.35) 
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here, 𝑠 = 𝐶 
|∇𝑛(𝑟)|

𝑛4/3 (𝑟)
 . Typically, 𝑠 ranging from 0 to 3 in solids. Several variations of GGA have 

been suggested, and the commonly favoured options include PW91 (Perdew and Wang, 1992; 

Perdew et al., 1992)19 and PBE (Perdew et al., 1996).20 In terms of the structural properties, 

GGA performs better than LDA and is also highly accurate in determining the magnetic 

properties of solids. 

2.4 Electronic Approximation 

Accurately solving the KS equations requires determining the electron-ion interaction 

term, Vext. However, this becomes challenging when dealing with solids that have a large 

number of electrons and experience significant electron oscillations near the nuclei. Defining 

Vext accurately is difficult due to the differing behaviour of electrons depending on their 

location within the solid, whether in the core or valence. Core electrons, unlike valence 

electrons, do not actively contribute to bond formation and have minimal impact on the 

material's physical properties. Consequently, a distinct approach utilizing DFT can be 

employed to effectively address the treatment of core electrons in solid-state systems. To solve 

the KS equations effectively, it is necessary to expand the auxiliary KS orbitals using 

established basis functions. There are several options available for choosing basis functions, 

and Gaussian functions are widely employed in traditional quantum chemistry tools. Gaussian 

functions are especially suitable for orbitals that are highly localized. The field of theoretical 

chemistry has developed basis sets over time that are well-adapted to a diverse range of 

materials. However, one drawback of Gaussian functions is that the quality of the basis sets 

relies on the preferences of the user, and their transferability and ability to produce consistent 

computational results can be problematic when dealing with diverse systems. Alternatively, 

Planes waves are turns out to be effective as compared to Gaussian basis functions as they are 

well-suited for systems that exhibits periodic boundary conditions. 
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2.4.1 Pseudopotential Formalism 

The use of Plane waves in 

calculation provides a simple approach 

which offers convenient way to evaluate 

forces and stress tensors like energy. 

Nonetheless, when dealing with system 

having localized core/valence orbitals 

within the core region of an atom, which 

needs to oscillate extensively to 

maintain the orthogonality with core 

orbitals. Consequently, the enormous 

Plane waves is necessary to accurately 

describe the significant variations in 

these orbitals. To overcome this challenge, pseudopotentials are implemented to represent the 

potential of the ionic core and the core electrons. This is elucidated in the Fig. 2.1 wherein; 

blue colour represents wave function for the coulomb potential of the nucleus while red colour 

indicates pseudo wave function.  There are specific criteria that needs to be satisfied, which 

includes; (1) keeping the valence wave function unchanged outside the core region rc, (2) 

achieving an exact match of the pseudo wave function within the core at the boundary, (3) 

maintaining continuity of the pseudo wave function and its first derivative at the boundary, and 

(4) ensuring that the pseudo wave function remains without any nodes within the core region. 

The pseudo wave functions are constructed to match the all-electron wave functions beyond a 

specified core radius rc, ensuring their possible smoothness within this core radius. Over the 

years, different pseudopotentials such as norm-conserving, ultra-soft, projector-augmented 

wave methods and many more has been developed.21–23  

Figure 2.1: A schematic illustration of the concept 

of pseudopotential. 
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2.4.2 Van der Waals Corrections 

The standard DFT does not incorporate the van der Waals (vdW) interaction which is 

important to understand the adsorption behaviour of atoms and molecules on the surface and 

interfaces. Moreover, investigation of the materials with quantum confinement in particular 

direction such as 2D materials24 must be treated with the inclusion of vdW interactions for the 

accurate calculation of several properties namely, electronic dispersion, adsorption energy etc., 

The solution for this is given by the Grimme which is known as D2 and D3 dispersion 

correction methods to include the long-range dispersion forces in the DFT.25–27 The total energy 

with the inclusion of dispersion correction is written as; 

𝐸𝐷𝐹𝑇+𝐷 = 𝐸𝐾𝑆 + 𝐸𝑑𝑖𝑠 -----(2.36) 

where 𝐸𝐾𝑆 and 𝐸𝑑𝑖𝑠 represents the energies due to KS approach and Grimme’s dispersion 

correction term, respectively. The empirical dispersion correction to the correlational 

functional 𝐸𝑑𝑖𝑠 is given by; 

𝐸𝑑𝑖𝑠 = −𝑠6  ∑ ∑
𝐶6

𝑖𝑗

𝑅𝑖𝑗
6

𝑁𝑎𝑡
𝑗=𝑖+1  𝑓𝑑𝑚𝑝

(𝑁𝑎𝑡−1)
𝑖=1  (𝑅𝑖𝑗) -----(2.37) 

here, 𝑠6 is global scaling factor and vary according to functionals used, Nat is number of total 

atoms, 𝐶6
𝑖𝑗

 denotes the coefficient of dispersion for atomic pair ij, and 𝑅𝑖𝑗
6  represents interatomic 

distance. The 𝑓𝑑𝑚𝑝 (𝑅𝑖𝑗) indicates damping function which is given as; 

𝑓𝑑𝑚𝑝 (𝑅𝑖𝑗) =  
1

1+ 𝑒
−𝑑(𝑅𝑖𝑗/𝑅0𝑖𝑗 −1)  -----(2.38) 

where, R0 is sum of the atomic vdW radius. Also, 𝐶6
𝑖𝑗

 and 𝑅0𝑖𝑗 are written as; 

𝐶6
𝑖𝑗

= √𝐶6
𝑖𝐶6

𝑗
 -----(2.39) 

𝑅0𝑖𝑗 = 𝑅0𝑖 + 𝑅0𝑗 -----(2.40) 
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This method is also precisely calculated on larger elements.  

2.5 Lattice Dynamics and Ab Initio Molecular Dynamics  

2.5.1 Density Functional Perturbation Theory 

                The understanding of system's vibrational energies is essential for gaining insights 

into the arrangement of atoms, the bonding between them, and the overall dynamical stability 

of the system. This can be achieved experimentally using IR and Raman spectroscopy. 

However, the density functional perturbation theory provides a theoretical framework to 

address these phenomena, involving the investigation of the lattice dynamics of a material.28–

32 Applying linear response to the Kohn-Sham equation allows us to examine the alteration in 

the electron charge density solution caused by a slight perturbation in this approach. Therefore, 

external potential can be expanded in terms of a Taylor series. This can be represented as 

follow; 

𝑉𝜆,𝑒𝑥𝑡 = 𝑉𝑒𝑥𝑡 +  𝜆
𝜕𝑉𝑒𝑥𝑡(𝑟)

𝜕𝜆
+ 

1

2
 𝜆2 𝜕2𝑉𝑒𝑥𝑡(𝑟)

𝜕𝜆2 + ⋯  -----(2.41) 

Likewise, electron density and energy functional are written as; 

𝑛𝜆(𝑟) = 𝑛(𝑟) +  𝜆
𝜕𝑛(𝑟)

𝜕𝜆
+ 

1

2
 𝜆2 𝜕2𝑛(𝑟)

𝜕𝜆2 + ⋯ -----(2.42) 

𝐸𝜆(𝑟) = 𝐸(𝑟) +  𝜆
𝜕𝐸(𝑟)

𝜕𝜆
+ 

1

2
 𝜆2 𝜕2𝐸(𝑟)

𝜕𝜆2 + ⋯  -----(2.43) 

where,  
𝜕𝐸(𝑟)

𝜕𝜆
= ∫𝑛(𝑟) 

𝜕𝑉𝑒𝑥𝑡(𝑟)

𝜕𝜆
 𝑑𝑟 which shows that the first-order derivative of energy is 

independent to the any derivative of 𝑛(𝑟) while the second-order derivative is explicitly 

depends on first-order derivative of 𝑛(𝑟). Hence, the dynamical matrix for phonon frequencies 

and Born effective charges is determined using the second-order derivative of energy.28–32 In 

relation to the electron density, the energy functional is expressed as; 
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𝐸 [𝜓] = 𝜓𝑚𝑖𝑛
(1)

 ∑ 〈𝜓𝑖| 𝑇 + 𝑉𝑒𝑥𝑡|𝜓𝑖〉𝑖𝜖𝑜𝑐𝑐 + 𝐸𝐻,𝑥𝑐 [𝑛] -----(2.44) 

𝜕2𝐸(𝑟)

𝜕𝜆2 = 𝜓𝑚𝑖𝑛
(1)

 ∑ [〈𝜓𝑖
(1)

| 𝐻(0) − 𝜀𝑖
(0)

|𝜓(1)〉 + 〈𝜓𝑖
(1)

|𝑉𝑒𝑥𝑡
(1)

|𝜓𝑖
(0)〉 + 〈𝜓𝑖

(0)
|𝑉𝑒𝑥𝑡

(1)
|𝜓𝑖

(1)〉 +𝑖𝜖𝑜𝑐𝑐

 〈𝜓𝑖
(0)

|𝑉𝑒𝑥𝑡
(2)

|𝜓𝑖
(0)〉] + 

1

2
 

𝛿2𝐸𝐻,𝑥𝑐 

𝛿𝑛(𝑟)𝛿𝑛(𝑟′)
|
𝑛(0)

 𝑛(1)(𝑟)𝑛(1)(𝑟′) 𝑑3𝑟 𝑑3𝑟′ +

 ∫ (
𝑑

𝑑𝜆
 
𝛿𝐸𝐻,𝑥𝑐

𝛿𝑛(𝑟)
|
𝑛(0)

 𝑛(1)(𝑟)𝑑3𝑟) 
1

2
 
𝛿2𝐸𝐻,𝑥𝑐 

𝑑𝜆2 |
𝑛(0)

 -----(2.45) 

here, variational principle is used to calculate the second-order energy term with respect to the 

first-order wave function provided that the first order wave-functions are orthogonal to the 

ground state wave-functions as represented in equation 2.46. 

〈𝜓𝑖
(0)

|𝜓𝑗
(𝑗)〉 = 0 -----(2.46) 

Therefore, the obtained dynamical matrix is Hermitian. Consequently, the eigenvalues 𝜔𝑗
2(𝑞) 

and eigenvectors  j(q) are real and orthonormal, respectively. As the phonon band structure 

and density of states are related to each other, the details of phonon dispersions in the entire 

Brillouin zone are obtained.31,33–37 Matrix diagonalization (Dαβ) spanning the entire Brillouin 

zone with the wavevector 𝑞  in three dimensions, allows for the comprehensive determination 

of the phonon dispersion spectra. The summation over all the photon states will give the 

resultant phonon density of states which is defined as; 

g (𝜔) = 𝐷′ ∫ ∑ 𝛿 (𝜔 − 𝜔𝑗 (𝑞)) 𝑑𝑞 =  𝐷′ ∫ ∑ 𝛿 (𝜔 − 𝜔𝑗  (𝑞)) 𝑑𝑞𝑝 𝑗,𝑝𝐵𝑍𝑗𝐵𝑍
-----(2.47) 

here 𝐷′ is normalization constant such that ∫ g (𝜔)𝑑𝜔 = 1 where g (𝜔)𝑑𝜔 represents fraction 

of phonon energies ranging from 𝜔 to 𝜔 + 𝑑𝜔.31,33,38 In the discretized irreducible Brillouin 

zone, the mesh indices ‘p’ is characterized by the wave vector ‘𝑞 ’, where the volume of pth 

mesh in 𝑞  space is given by the weighting factor 𝑑𝑞𝑝.  
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2.5.2 Ab Initio Molecular Dynamics 

                 The success of DFT can be largely credited to its scalability across different system 

sizes and its remarkable accuracy in replicating microscopic ground state properties throughout 

the years. Then, a question can be raised that is it possible to investigate the temperature effect 

on the system? As a solution, ab initio molecular dynamics (AIMD) method is implemented 

and successfully used to understand the effects of temperature and structural stability of 

materials. In classical molecular dynamics, the system is typically assumed as consisting of 

rigid and massive point-like nuclei. These nuclei are subject to forces derived from empirically 

devised effective potentials. By integrating Newton's equation of motion, one can obtain the 

microscopic trajectory of each atom in the system being studied. The AIMD is based on same 

consideration except that the calculation of forces is based on electron density obtained by DFT 

which makes this method more accurate. The computational cost is a serious concern for this 

method but it is highly effective for the systems with relatively lower number of atoms. In 

present thesis, we employed AIMD method to investigate the structural properties and stability 

of material at room temperature. Statistical mechanics involves determining the average of a 

physical variable by employing an ensemble average. However, the choice of ensemble in 

AIMD highly depends on desired properties under investigation. The two major ensembles 

used are microcanonical (N, V, E) and canonical (N, V, T) ensembles, respectively. In the 

microcanonical ensemble, the number of atoms and volume are fixed and the system evolves 

in time. The simulation generates spread-out configurations across the phase space, all of which 

reside on the constant energy hypersurface while in the canonical ensemble, the thermal 

averages are computed under a constant temperature, T. The numerical prescription to achieve 

this is to connect the system to the external heat bath. This heat bath has a significantly larger 

number of degrees of freedom compared to the system, ensuring that its temperature remains 

nearly constant. This approach was suggested by Andersen,39 Nose,40 and Hoover.41 In 
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simulation, they are referred to as Anderson thermostat or Nose-Hoover thermostat. We have 

used NVT ensemble in AIMD to calculate the thermal stability of the system at room 

temperature. 

2.6 Computational Packages 

This section will explore the computational packages utilized throughout the work 

conducted under this thesis which includes Quantum Espresso and Vienna Ab initio Simulation 

Package (VASP). 

2.6.1 Quantum Espresso Package 

In 2001, a group of renowned researchers, including Stefano Baroni, Paolo Giannozzi, 

Andrea Dal Corso, and others, began a collaborative project that would bring about a 

remarkable change. This initiative, known as Quantum Espresso,42 captured the imagination of 

scientists and researchers around the world. Its open-source nature and endless possibilities 

turned it into a valuable resource in the fields of condensed matter physics and material 

chemistry. We have used Quantum Espresso for first-principles based structural optimization, 

to compute ground state energy of several 2D structures under the formalism of self-consistent 

field. All the calculations were performed with van der Waals dispersion correction as the 

present thesis have all 2D structures. To compute the electronic band structure, we have 

performed nonself-consistent field calculations to find the ground state eigen values for high 

symmetric crystal momentum. Furthermore, density of states, projected density of states and 

vibrational frequency calculation were performed using Quantum Espresso package. 

2.6.2 Vienna Ab initio Simulation Package 

VASP was developed in 1998 by Prof. George Kresse and his team.43 It is package for 

performing ab initio quantum mechanical calculations using the PAW, and a plane wave basis 
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set. Within the scope of this thesis, VASP is primarily utilized for calculation of AIMD using 

particular thermostat. VASP has basically four input files, which are: 

INCAR: It is central input file which defines, how to do and what to do in the particular 

calculation.  

POSCAR: A position card which includes geometrical parameters of structure. 

POTCAR: A potential card which includes pseudopotential information for all the atoms 

present in the structure. To create the POTCAR file for the compound, the individual POTCAR 

of each atomic species are concatenated.  

KPOINTS: This file specifies the necessary k-points (Bloch vectors) for sampling the 

Brillouin zone during computation. In the case of band-structure calculations, this file provides 

the high symmetry points along which bands will be plotted.  

2.7 Summary 

               The present chapter delves into the detailed computational methodology utilized in 

this thesis. It begins by introducing the concept of many-electron systems and subsequently 

explores different approximate methods employed to solve the intricate many-electron 

Schrödinger equation, with particular emphasis on Density Functional Theory (DFT). 

Additionally, a comprehensive explanation of exchange-correlation functionals is included in 

the discussion. Finally, a succinct overview of the computational software used to calculate the 

diverse material properties examined in this thesis is provided. 
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