LIST OF FIGURES

Figure 1: Sources of nitrate contamination in groundwater19
Figure 2: General mechanism of nitrate reduction (Z. Wang et al., 2021)22
Figure 3 : Calibration plot of NO3-N (a), NO2-N (b) and NH3-N (c)46
Figure 4: Fresh PVA beads (a), Ag coated on PVA beads (b), and AgMPs (c)47
Figure 5: Experimental setup in an undivided cell49
Figure 6: Experimental setup in a divided cell49
Figure 7 : SEM analysis of Ag-coated PVA bead65
Figure 8 : EDAX spectra of Ag-PVA bead (a), and Ag coated on the surface of PVA bead (b). The inset pictures show the respective SEM images
Figure 9 : Undivided cell - Time course profile of NO3-N removal in the absence (dotted line) and presence (solid line) of Ag-PVA beads67
Figure 10 : Divided cell - Time course profile of NO3-N removal in the absence (dotted line) and presence (solid line) of Ag-PVA beads
Figure 11 : Removal of NO3-N with various catalyst concentrations
Figure 12 : Nitrate reduction using various cathode materials in absence and presence of Ag- PVA beads
Figure 13 : Effect of current density on nitrate removal (a)5mA/cm2, (b)10mA/cm2, (c)15mA/cm2, and (d)20mA/cm273
Figure 14 : Effect of current density in the presence of Ag-PVA beads. Inset figure shows specific energy consumption for nitrate removal74
Figure 15 : Effect of initial nitrate concentration75
Figure 16 :Reusability of Ag-PVA beads76
Figure 17 : SEM analysis of fresh AgMPs (a) and (b); used AgMPs (c) and (d)78
Figure 18 : XRD analysis of fresh and used AgMPs79
Figure 19 : NO3-N removal in the absence (dotted line) and presence (solid line) of AgMPs in an undivided cell
Figure 20 : NO3-N removal in the absence (dotted line) and presence (solid line) of AgMPs in a divided cell
Figure 21 : Effect of various concentrations of AgMPs catalyst84
Figure 22 : Effect of inter-electrode spacing on NO3-N elimination in a divided cell in the presence of AgMPs
Figure 23 : Nitrate reduction using various cathode materials in the absence and presence of AgMPs

Figure 24 : Effects of current density on nitrate removal and selectivity of end-products90
Figure 25 : Effect of initial NO3-N concentration on nitrate reduction and its selectivity91
Figure 26 : Experiments and results of simultaneous nitrate removal and ammonia oxidation.94
Figure 27: Reusability of AgMPs (a) nitrate reduction, (b) nitrite generation, (c) ammonia generation, and (d) TN removal96
Figure 28 : Mechanism of nitrate reduction on the cathode in the absence and presence of Ag- PVA beads and AgMPs98
Figure 29 : Mechanism of nitrate reduction on the cathode in the absence and presence of AgMPs99
Figure 30 : Nitrate removal in the absence (a) and presence of Ag-PVA (b) beads in groundwater
Figure 31 : Nitrate removal in the absence (a) and presence (b) of AgMPs in groundwater102
Figure 32 : Nitrate removal using Ti/Co3O4 in groundwater102
Figure 33 : Nitrate removal using AgMPs with Ti/CossO4 in groundwater
Figure 34 : XRD analysis of fresh and used Ti/Co3O4106
Figure 35 : Effect of initial nitrate concentration108
Figure 36 : Effect of current density on nitrate removal110
Figure 37 : Reusability of Ti/Co3O4 cathode112
Figure 38 : Concentration of metals before and after treatment112
Figure 39 : XRD analysis of precipitates formed in treated water
Figure 40 : XRD analysis of struvite115
Figure 41 : Ammonia removal by struvite formation116