TABLE OF CONTENTS

Introduction	2
Chapter 1- Compositional analysis of municipal solid waste (MSW) of Vadodara city and study	of
the fungal diversity	.14
Compositional analysis	.14
Methodology	.14
Result and discussion	.17
Active disposal Sites	.16
Collection and Physical Characterization of Solid waste	.16
Fungal diversity in municipal solid waste	.22
Methodology	.22
Result and discussion	.23
Isolation and identification of microbial strains	.23
Bacterial strains	.23
Fungal strains	.24
Chapter 2- Screening for potential plastic degrading fungal species	29
Methodology	.29
Result and discussion	.32
Polyethylene Powders	.33
Polyethylene Beads	.36
Polyethylene Films	.40
Photo-oxidized polyethylene film experiment	.40
Thermo-oxidized polyethylene film experiment	.49
Thermo-chemical oxidized polyethylene experiment	.53
Chapter 3- Evaluation of plastic degrading fungal enzymes	.61
Methodology	.61
Result and discussion	.64
Screening of fungal isolates for proteolytic, lipolytic, esterolytic and	
ligninolytic enzyme activities	.64
Evaluation of proteolytic, lipolytic, esterolytic and ligninolytic enzyme	
activities	.66
Chapter 4- Characterization and optimization of enzyme degradation by the selected	
fungi	.71
Methodology	.71
Result and discussion	.73
Determination of optimal inoculum size	.73

Determination of optimum temperature for maximum enzy	yme activity 79
Determination of optimum pH for enzyme activities	
Optimization of enzyme extraction methodology for solid state	medium under
simulated optimized conditions	97
Chapter 5- Enhancement of plastic degradation under optimized condition us	sing different
enhancers. (Chemical & Biological)	103
Methodology	
Result and discussion	106
Biotic augmentation	106
Paired interaction test	106
Screening of potential consortia	109
Abiotic augmentation	113
Tween 80	113
Soluble starch	117
Mineral oil	118
Chapter 6- Practical experimentation and assessment of fungal biodegradation	on of polyethylene
under natural conditions	121
Methodology	121
Result and discussion	
Degradation experiment under lab conditions	124
Degradation experiment at simulated open field area	
Conclusion	145
References	
Appendix	170

LIST OF FIGURES

Figure No	Details	Page No
1	Map showing the study area including three temporary dumpsites and a main landfill area	15
2	Sample collection methodology of Jambuva landfill area	16
3	Temporary Dumping sites of Vadodara City	19
4	Comparison of daily waste (temporary dumping sites) and 10-years old waste samples (Atladara dumping sites)	20
5	Comparison of Jambuva landfill waste samples from three different depths	21
6	Bacterial isolates showing distinguished morphological characteristics	24
7	Fugal isolates showing distinguished morphological characteristics	25
8	Fugal isolates showing distinguished microscopic characteristics	27
9	Experiment set up for screening of fungal strains with LDPE beads and Polyethylene bag films	30
10	Screening of fungal strains with HDPE powder	34
11	Screening of fungal strains with LDPE powder	34
12	Screening of fungal strains with LLDPE powder	35
13	Scanning Electron Microscopic (SEM) images of polyethylene (LDPE) beads	38
14	FTIR spectra of polyethylene (LDPE) beads	39
15	Graph showing percentage weight-loss in Photo-oxidized polyethylene films	42
16	FTIR spectra of photo-oxidised PE films	46
17	Carbonyl Index of experimented UV treated PE films	47
18	Scanning Electron Microscopic (SEM) images of polyethylene films	48
19	Graph showing percentage weight-loss in pre-heated polyethylene films	50
20	Fourier transform Infrared (FTIR) spectrum of films heat treated PE film experiment	52
21	Scanning Electron Microscopic (SEM) images of experimented PE films with <i>F. solani</i> (SA17)	53
22	Percentage weight-loss of Polyethylene films experimented in a mixture of soil and mulch	55
23	Fourier transform Infrared (FTIR) spectrum of films Nitric Acid treated PE film experiment	57
24	Scanning Electron Microscopic (SEM) images of experimented PE films with <i>F. solani</i> (SA17)	58
25	DNA sequence of fungal strains	59
26	Qualitative analysis of Lipolytic, Proteolytic & Ligninolytic enzyme activity by fungal strains <i>F. solani</i> & <i>A. oryzae</i>	65
27	Qualitative analysis of Esterase enzyme activity by fungal strains <i>F. solani & A. oryzae</i>	65
28	Quantitative analysis of enzyme activities by <i>F. solani</i>	68
29	Quantitative analysis of enzyme activities by two inoculum sizes of <i>F. solani</i>	74
30	Fungal biomass obtained in 3 enzyme substrate media with 2 different inoculum size	77
31	Quantitative analysis of enzyme activities by <i>F. solani</i> at different temperatures	80
32	Fungal biomass obtained in 3 enzyme substrate media at different temperatures	85
33	Quantitative analysis of enzyme activities by <i>F. solani</i> at different pH levels	88
34	Quantitative analysis of enzyme activities by F. solani at different temperatures	92
35	Fungal biomass obtained in 3 enzyme substrate media at different pH levels	93
<u>36</u>	Quantitative analysis of enzyme activities by two different extraction method from solid state medium	98
37	Schematic diagram showing interactions between two different fungal isolates grown adjacently (4cm apart) on medium observed after one week incubation period (based on the observations of Porter (1924)	105

38	Paired interaction test of five fungal strains	107
39	Percentage weight-loss of polyethylene films experimented by co-culture	111
	technique	
40	Percentage weight-loss of polyethylene films experimented by adding chemical	114
	enhancers (Tween80, Soluble Starch, Mineral oil)	
41	A- Experimented film after SDS wash displaying black spots B, C, D & E-	115
	Scanning Electron Microscopic (SEM) images of polyethylene films	
42	FTIR spectra of experimented PE films with Tween 80	116
43	Arrangement of the fungal inoculum & film in soil and mulch medium	112
	(Experimental medium)	
44	A-C- F. solani growth in culture bottles containing soil+mulch at optimum	123
	conditions in lab-simulated area; D- Experiment set-up in earthen pots in the	
	field area	
45	Enzyme activities and weight-loss of PE films in soil+mulch medium in lab	125
	simulated area	100
46	A- Experimented film after 10- & 20-day incubation displaying fungal hyphae	128
17	penetration, hole and polymer fragments	120
47	FTIR spectra of experimented PE films in lab-simulated area at optimum conditions	130
48	<i>F. solani</i> growth in earthen pots containing soil+mulch at optimized conditions in	131
40	open field area after 10-day incubation	131
49	Enzyme activities and weight-loss of PE films in soil+mulch medium in field	133
50	A- Experimented film after 10- & 20-day incubation displaying fungal hyphae	135
50	penetration, hole and cracks	155
51	FTIR spectra of experimented PE films in open field area at optimum conditions	136
52	Gel-permeation chromatography analysis	130
53	Get permeation chromatography analysis Get-permeation chromatography analysis	130
54	An overlay thermogram of Differential Sanning Calorimetry (DSC) analysis	139
57	performed on experimented films	140
55	Tensile strength analysis of the experimented PE films	141
55	renone such gin analysis of the experimented 1 L mino	1 1 1

LIST OF TABLES

Figure No	Details	Page No
1	Physical characteristics of daily Solid waste from temporary dumping sites	18
2	Physical characterization of solid waste from Atladara dumpsite (Ten-year-old)	20
3	Physical characteristics of Municipal Solid waste from Jambuva landfill Area	21
4	Colony characteristics of bacterial isolates	23
5	Distinguished characteristics of fungal isolates	26
6	List of nineteen fungal strains screened with Polyethylene	26
7	Screening of fungal strains with Polyethylene powders	33
8	Percentage weight-loss of experimented LDPE Beads	37
9	Percentage weight-loss of Photo-oxidized Polyethylene films	41
10	Percentage weight-loss of Thermo-oxidized Polyethylene films	49
11	Percentage weight-loss of Thermo-chemically oxidized Polyethylene films	54
12	Result of enzyme plate assays of <i>F. solani</i> MN201580.1 (SA17) & <i>A. oryzae</i> (SA15)	66
13	Fungal biomass of <i>F. solani</i> MN201580.1 produced in culture broths during different incubation period	69
14	Enzyme production by <i>F. solani</i> MN201580.1 at various incubation periods	70
15	Enzyme production by two inoculum sizes of <i>F. solani</i> MN201580.1 at various incubation periods	75
16	Fungal biomass of <i>F. solani</i> MN201580.1 produced in culture broths during different incubation period	76
17	Enzyme production by F. solani MN201580.1 at four different temperatures	81
18	Fungal biomass of <i>F. solani</i> MN201580.1 produced at different temperatures in all three culture media	84
19	Enzyme production by <i>F. solani</i> MN201580.1 in different pH level of all three culture media	89
20	Fungal biomass of <i>F. solani</i> MN201580.1 produced in different pH level of all three culture media	96
21	Optimized condition for the enhanced enzyme production to degrade polyethylene material	97
22	Evaluation of enzyme activity in Solid State medium by two extraction methodology	99
23	Characteristic features observed on 3rd and 6th day of incubation of different fungal isolates grown together	108
24	Percentage weight-loss in experimented PE films in fungal consortium	110
25	Percentage weight-loss in experimented PE films with chemical enhancers	117
26	Enzyme production by <i>F. solani</i> MN201580.1 in lab simulated condition (Soil+mulch medium)	126
27	Percentage weight-loss in experimented PE films under lab-simulated area at optimised conditions	127
28	Enzyme production by <i>F. solani</i> MN201580.1 in soil+mulch medium at open field area	132
29	Percentage weight-loss in experimented PE films in open field area at optimised conditions	134
30	GPC analysis of control, pre-treated and fungal treated films	137
31	DSC analysis of experimented polyethylene films	140
32	Tensile strength results of experimented polyethylene films	141

ABBREVIATIONS

ANOVA - Analysis of Variance **BOD** - Biochemical Oxygen Demand CDM - Clean Development Mechanism CI - Carbonyl Index CPCB - Central Pollution Control Board CRNTS - Centre for Research in Nanotechnology & Science DNA - Deoxyribonucleic acid DSC - Differential Scanning Calorimetry EAB - Elongation at Break E-SEM - Environmental- Scanning Electron Microscope FICCI - Federation of Indian Chambers of Commerce and Industry FOG - Fat, Oil and Grease FTIR - Fourier Transform Infrared GIRDA - Gujarat Industrial Research and Development Agency GPC - Gel Permeation Chromatography HDPE - High-density polyethylene KMC - Kolkata Municipal Corporation LBA- Luria Bertani Agar LDPE – Low-density polyethylene LLDPE - Linear low-density polyethylene M.T – Metric Ton MEA - Malt Extract Agar MFPP - Polypropylene Metallized Film MnP - Manganese peroxidase MSU - The Maharaja Sayajirao University of Baroda MSW - Municipal Solid Waste NA- Nutrient Agar NDMC - New Delhi Municipal Corporation NFCCI - National Fungal Culture Collection of India PCS - Plasticized Cassava Starch PDA - Potato Dextrose Agar PE – Polyethylene PET - Polyethylene Terephthalate

- PP-Polypropylene
- PPE Personal Protection Equipment
- PVC Polyvinyl Chloride
- RDF Refuse derived fuel
- SEM Scanning Electron Microscopy
- SICART Sophisticated Instrumentation Centre for Applied Research & Testing
- SWM Solid Waste Management
- TCA Trichloro Acetic Acid
- TS Tensile Strength
- VMC Vadodara Municipal Corporation