List of Figures

Fig. No		Caption	Page
1.1		Energy Perspective	2
1.2		Simplified characterization of Power Quality	5
1.3		Power Quality Concerns	8
1.4		Levels of protection for Power Quality mitigation	10
1.5		VSC based FACTs controllers for transmission	11
1.6		Network node consideration with power	12
1.7		Major trends in power electronic applications driven by new generation of power	13
1.8		Evolution of Power electronic systems for controlling the parameters of power	14
2.1		Current source topology	17
2.2	(a)	Voltage source topology	18
	(b)	Vector relationship	. 18
2.3	(a)	Half bridge single phase VSC	20
	(b)	Typical two level input voltage waveform	20
	(c)	Operating modes	20
2.4	(a)	Full bridge single phase VSC	21
	(b)	Typical three level input voltage waveform	21
	(c)	Operating modes	21
2.5		Half bridge type three phase VSC	22
2.6		Full bridge type three phase VSC	23
2.7	(a)	Three level VSC with centre tapped output	24
	(b)	Operating modes	24
2.8		Three level three phase VSC with centre tapped	25
2.9		Equivalent circuit of Multi-level voltage source	26
2.10		A three phase, five level diode clamped	27
2.11		A three phase five level flying capacitor converter	27

i

2.12		A hybrid multi-level converter	27
2.13	(a)	Series operating converters	29
	(b)	Carrier signals and common modulating signal	29
2.14		Parallel operating VSC with interphase reactor	30
2.15		Line diagram of typical reactive power	31
2.16	(a)	For typical reactive power compensation	31
	(b)	For typical reactive power compensation	31
2.17		Static Var Compensation Scheme-1	33
2.18		Static Var Compensation Scheme-2	34
2.19		Indirect current control scheme	37
2.20		Load current control scheme	37
2.21		Power semiconductor spectrum	39
2.22		Growth of IGBT Technology	41
2.23		Control Electronics	43
2.24		PEBB Functionality and interfaces	44
2.25		Smart Power ICs	44
2.26		New Concept in Power devices integration	45
2.27		Single line diagram of STATCON installation at	50
2.28		Single line diagram of STATCON installation at	51
2.29	~	Single line diagram of STATCON installation at	51
2.30		Single line diagram of STATCON installation at	52
2.31		Single line diagram of STATCON installation at Reisby bede wind farm Denmark	52
2.32		Single line diagram of STATCON installation at	53
2.33		Single line diagram of STATCON installation at	53
2.34		Single line diagram of SVC installation at channel tunnel rail link between England and	54
21		France Vector diagram for canacitive and inductive	57
3.2		compensation Variation in terminal voltage Vt with supply	V 1
~ . m		current is at 360° power angle range	
	(a)	Source voltage supplying current i_s at lagging	58
	(b)	Locus of V _t	58

ii

.

3.3		Shunt compensation	60
3.4		Series compensation	60
3.5		Fixed capacitor	61
3.6		Fixed capacitor and APFC	62
3.7		TSC	63
3.8		TCR with FC	64
3.9		Basic operating principle of STATCON	
	(a)	Single line diagram of typical load using	67
	(b)	STATCON Equivalent circuit for compensating reactive	67
	(c)	current drawn by STATCON Vector diagram for capacitive compensation	67
	(d)	Vector diagram for inductive compensation	67
3.10	(a)	Modified equivalent circuit and vector diagram for STATCON considering variable loss resistor Modified equivalent circuit including variable	69
	(b)	loss component of STATCON Modified vector diagram for capacitive	69
	(0)	compensation Modified vector diagram for inductive	69
2 11	(0)	compensation Power scheme for Three phase STATCON	72-74
2 4 2		PWM generation based on SPWM method	76
3.12		Circuit diagram for the voltage distortion	78
3.13		analysis	79
3.14	(a)	Control Electronice	80-82
	(0)		92.94
3.15			03-04
3.16		Signals received and delivered by various control cards	85-92
3.17		Block diagram of digital card	93
3.18		General arrangements of three phase STATCON	94-96
3.19	(a)	Inductive mode of operation	97
	(b)	Capacitive mode of operation	97
3.20	(a)	Mode changeover response	98
3.20	(b)	Dynamic response	99
3.21	(a)	Photograph of Prototype Three phase STATCON	113
	(b)	STATCON compensation scheme for windmill	113

iii

٠

	(c)	STATCON installation at AQUASAB, Muppandal site at Nagercoil. (TN) on 250kw windmill	114
	(d)	More windmill responses	114
3.22		Power scheme for Single phase STATCON	117-119
3.23		PWM generation based on SPWM method	120
3.24		Circuit diagram for the voltage distortion	121
3.25	(a)	Control Logic	122
	(b)	Control Electronics	123-125
3.26		Flow chart	126-127
3.27		Signals received and delivered by various	128-135
3.28		Block diagram of digital card	136
3.29		General arrangements of single phase STATCON	137-139
3.30		Dynamic response	141
3.31	(a)	Photograph of Prototype Single phase STATCON	155
	(b)	panel Reactive Power compensation scheme for spot	155
	(C)	weiging application STATCON installation at Tata Motors, Poona	156
3.32	(a)	Individual converter with switching frequency	161
3.32	(b)	Individual converter with switching frequency	162
3.33		Current profile without carrier wave shifting	162
3.34		Current profile with carrier phase shift technique	163
3.35		Current profile with carrier phase shift with 1 khz	163
3.36		Current profile for converter at 1 Khz switching	164
4.1		Solution with 8085/8086 Based controller	169
4.2		Solution with 8051 Based controller	170
4.3		Solution with MCS-96 Based controller	170
4.4		Solution with PC Based controller	171
4.5		Solution with 24X DSP Based controller	171
4.6		Solution with 24XX DSP Based controller	172
4.7		Photograph of MCS-96 (80196) based controller	172
4.8		Block diagram of TMS320LF240PQ based DSP controller	174

	4.9		Photograph of TMS320LF240PQ based DSP controller	175
	4.10		Pulse waveform from Digital controller	
		(a)	24 Pulse waveform from MCS 196 controller	175
		(b)	48 Pulse waveform from DSP controller	175
	4.11		Photograph of prototype 2407A DSP board	176
	4.12		120 deg. phase shifted sinusoidal PWM output	178
	4.13		Three phase PWM output of inverters	179
	4.14		PWM waveforms demonstrating dead band	179
	4.15		The single line diagram of the transformer supplying the spot welding loads and the	186
	4.16		Power scheme for each of the 50 kVAR converter	186
	4.17		Control Electronics schematic for the 50 kVAR	187
	4.18		Compensation for capacitive current	187
	4.19		Compensation for inductive current	188
	4.20		Dynamic Mode Changeover Response	188
	4.21		Dynamic Multi cycle Burst response	189
	4.22		KVA variation before compensation	191
	4.23		KVAR variation before compensation	191
	4.24		Power factor variation before compensation	192
,	4.25		THD Variation before compensation	192
	4.26		600-3000kVAR DRPC	193
	4.27		3D View of Railway DRPC installation	194
	4.28		3D View of STATCON Installation	194
	4.29		kW, kVA and kVAR variation with and without compensation	195
	4.30		Power factor variation with and without DRPC compensation	195
	4.31		Voltage THD variation with and without DRPC compensation	196
	4.32		Bus Voltage variation with and without DRPC compensation	196
	4.33		Close to 0.98 power factor after installation of the DRPC system	197
	4.34	•	Re-engineered STATCON	198
	5.1		Reactive Power compensation with load kW balancing	209

.

5.2		Vector diagram for the STATCON operation for KW balancing	209
5.3		MATLAB Simulation model for STATCON with KW balancing	
	(a)	Basic simulation scheme	212
	(b)	MATLAB Model	212
5.4		STATCON block as sub-system	213
5.5		Triangular waveform comparison with sinusoidal waveform	214
5.6		Converter voltage	214
5.7		Waveforms for Supply voltage, phase and line and STATCON output voltage	215
5.8		Voltage across DC Bus capacitor	215
5.9		STATCON three phase connection and load currents	
	(a)	STATCON connection for three phase load	216
	(b)	Unbalanced load current and balanced load	216
5.10		Voltage and current waveforms for Case 1	217
5.11		Voltage and current waveforms for Case 2	218
5.12		Voltage and current waveforms for Case 3	218
6.1		Absorption of unbalanced kVAr through real time multiplexing of single-phase PWM Voltage Source Converter	221
6.2		MATLAB Simulation model of STATCON with multiplexing concept	222
6.3		Key MATLAB Simulation blocks and waveforms for the concept	
	(a)	STATCON block	223
	(b)	Time Multiplexing block	223
	(c)	Controller Block	224
	(d)	Waveform showing STATCON voltage & current with capacitive load and inductive load	224
	(e)	Waveform for : STATCON connected to dynamic inductive load	224
	(f)	WAVEFORM for STATCON connected to	225
	(g)	WAVEFORM for STATCON mode change-over	225
6.4		Block diagram of FUZZY system with overtime	229
6.5		Fuzzy System	229
	(a)	Membership function voltage	229
	·(b)	Membership function current	229

vi

•

	(c)	Cycle count	229
	(d)	Representative result of MATLAB Fuzzy simulation	230
	(e)	Fuzzy logic rule base	230
6.6		Compensation for R phase	230
6.7		Compensation for Y phase	231
6.8		Compensation for B phase	231
6.9		DSP setup	
	(a)	Setup block schematic	232
	(b)	Setup photographs	232
6.10		Waveforms from the prototype hardware test setup	
	(a)	Pulses from Controller to drive Thy. Module	233
	(b)	Multiplexing operation proposed in Novel Control Concept	234
	(c)	Two cycle operation of Novel Control Concept for R-phase	234
	(d)	Typical Input Voltage, Current and converter switching waveforms	234
7.1		STATCON with base level compensation	237
7.2		Window operated STATCON	
	(a)	Scheme for window operated STATCON	239
	(b)	Possible Operation with STATCON Capacity = TSC Step/2	239
	(c)	Possible Operation with STATCON Capacity = TSC Step	239
7.3		MATLAB Simulation model of STATCON with windowing concept	240
7.4		Different Blocks details	
	(a)	STATCON simulation block for the concept	240
	(b)	Switched Capacitor block	240
	(c)	Thyristor switching module	241
7.5		Simulation results for the Window operated STATCON	
	(a)	STATCON and TSC driven from the single control unit share the compensation demand	242
	(b)	Load dynamics addressed through STATCON and TSC driven from the single control unit	242
7.6		Gate drive circuit	244
7.7		DSP based hardware development / environment	
	(a)	Basic setup	244

. - •

	(b)	Overall block diagram	245
7.8		Waveforms on experimental setup	245
	(a)	Waveform showing PWM output pulses from DSP at zero current Supported from STATCON (VSC part)	245
	(b)	Waveform showing source voltage and current when compensated by integrated STATCON	246
	(c)	Waveform showing Statcon current and TSC current while offering compensated for the above case	246
8.1		Electronic transformer galvanically isolated for	248
8.2		Electronic transformer galvanically isolated for 11/22kV distribution system – Scheme 2	249
8.3		Electronic Transformer Conceptual diagram	250
8.4		Buck Section	252
8.5	(a)	Simulink block set for Open Loop Simulation of Buck Converter	253
	(b)	Result of open loop Buck converter	254
8.6		Closed loop control of Buck Converter with	254
8.7		Controller Subsystem (S1)	255
8.8		Voltage & Current Waveform	255
8.9		O/P Voltage Ripple Waveform	255
8.10		Close Loop Control of Buck converter with Voltage Feedback	255
8.11		Controller Subsystem	256
8.12		Voltage & Current Waveform	256
8.13		O/P Voltage Ripple Waveform	256
8.14		Close Loop Control of Buck converter with Voltage Feedback PI Controller	256
8.15		Output current & voltage: with Pl controller	257
8.16		Close Loop Control of Buck converter with Voltage Feedback PID Controller	257
8.17		Voltage and Current waveforms with PID Control- Case 1	258
8.18		Voltage and Current waveforms with PID Control- Case 2	258
8.19		Voltage and Current waveforms with PID Control- Case 2 in steady state	259
8.20		Voltage and Current waveforms with PID Control- Case 3	259
8.21		Voltage and Current waveforms with PID Control- Case 3 in steady state	260
8.22		Voltage and Current waveforms with PID Control- Case 4	260
8.23		Voltage and Current waveforms with PID Control- Case 4 in steady state	261

8.24		Close Loop Control of Buck converter with Voltage Feedback PID Controller with rectifier and Capacitor on input side	261
8.25		Voltage and Current waveforms with PID Control with rectifier and capacitor on input side	262
8.26		Advanced Current Control using voltage & current feedback	263
8.27		Controller Subsystem	263
8.28		Voltage & Current Waveform	263
8.29		O/P Voltage Ripple	263
9.1		Voltage dips and sag compensation scheme	266
9.2		Basic MATLAB simulation block	
	(a)	Basic System	267
	(b)	Compensating Transformer block details	267
9.3		Compensating Transformer modeling	268
9.4		Input source modeling for voltage dip/rise	268
9.5		R phase input and output voltage profile under	
	(a)	R phase input and output profilecontd	269
	(b)	R phase input and output profile	269
9.6		Three phase voltage profile under dip and rise conditions	
	(a)	Three phase input and output voltage response under dip and rise conditionscontd	270
	(b)	Three phase input and output voltage response	270
9.7		Experimental setup	271
9.8		Differential voltage waveforms for the R, Y, B phase series connected secondaries as per the scheme at the nominal input excitation	273
9.9		Differential voltage waveforms for the R, Y, B phase series connected secondaries as per the scheme at the varying R phase excitation with 235, 220, 203V	273
9.10		Differential voltage waveforms for the R, Y, B phase series connected secondaries as per the scheme at the varying R phase excitation with 180 and 157V	274
9.11		Input and Output voltage waveforms for the R, Y, and B phase with compensating transformer at the varying R phase excitation (load side)	

ix

	(a)	Input- Output voltage for varying R phase	274
	(b)	Input- Output voltage for varying R phase	275
9.12		Transient response of compensated voltage for sudden change in input voltage conditions on R	276
9.13		Phase relationship of input and output voltage (Ch1 is R phase input and Ch2 is R phase output, while Ch3 and Ch4 are Y and B phase output respectively)	276
9.14		Voltage compensation at very low input voltage, R phase input = 138V (Ch1), R phase output = 209V (Ch2), while Y & B phase are 219 and 213 V (Ch3 and 4 respectively)	277
9.15		Input and Output voltage waveforms for the R, Y, and B phase with compensating transformer at the varving R phase excitation (source side)	
	(a)	Input –Output voltage for varying R phase	277
	(b)	Input –Output voltage for varying R phase	277
9.16		Input and Output voltage waveforms for the R, Y, and B phase with compensating transformer at the varying R and Y phase excitation (source side)	
	(a)	Input –Output voltage for varying R and Y phase	278
	(b)	Input –Output voltage for varying R and Y phase	278
9.17		Input and Output voltage waveforms for the R, Y, and B phase with compensating transformer at the varying R and Y phase excitation (load side)	
	(a)	Input –Output voltage for varying R and Y phase	279
	(b)	Input –Output voltage for varying R and Y phase	279
9.18		Transient response for two phase coupled variation on input side	
	(a)	Rise and fall effect	280
	(b)	Short duration sag for coupled R and Y phase with Ch1 as Input R and Ch2,3,4 as output R,Y,B respectively	280
9.19		Waveforms for the R, Y, and B phase with compensating transformer at the coupled variation on R Y and B phase inputs (waveforms are for load side)	
	(a)	Input –Output voltage for coupled R, Y and B phase	280
	(b)	Input –Output voltage for coupled R, Y and B phase	281

.

х